
ADF-BDD.DEV: Debug Abstract Dialectical
Frameworks with Binary Decision Diagrams

Stefan Ellmauthaler[0000−0003−3882−4286] and Lukas Gerlach[0000−0003−4566−0224]

Knowledge-Based Systems Group
ScaDS.AI / Faculty of Computer Science / cfaed

TU Dresden, Germany
{firstname.lastname}@tu-dresden.de

https://kbs.inf.tu-dresden.de/

Abstract. Abstract Dialectical Frameworks (ADF) are a well known
and understood generalisation of Dung’s Argumentation frameworks.
Multiple approaches to solve the computation and enumeration of the
semantics have been proposed over the last decade. One recent approach
is to solve the computational hard problems by translating the accep-
tance condition of a given ADF into reduced ordered binary decision
diagrams (roBDD). While the number of solvers for ADFs is plenty-
ful, they merely give text-based solutions to the problems. The use of
roBDDs lays a foundation for straightforward graphical visualization of
the underlying ADFs and their solutions. In this work, we present ADF-
BDD.DEV, a web-service that generates graphical solutions to ADFs
for different semantics, allowing their comparison and to spot the in-
fluence of yet undecided statements. We think that this is a first steps
towards better explainability and simplifies debugging of ADFs.

1 Introduction

Abstract Dialectical Frameworks (ADFs) [6] are a knowledge representation and
reasoning formalism, which generalises the seminal work of Dung [8], so-called
Dung’s Argumentation Frameworks. The general idea is to represent knowledge
as abstract statements. Whether a statement can be accepted is devised by an
acceptance condition, usually represented as a propositional formula, where the
variables represent the statements of the framework. The semantics of a set of
statements with its acceptance conditions map for each statement whether it
is acceptable, rejected, or not decided. Various semantics have been defined for
ADFs, to have different properties to build upon (i.e. uniqueness, existence,
minimality, . . .). Alas, most of the semantics are at least on the second level
of the polynomial hierarchy and are in general one level higher than the same
computational problems for Dung frameworks. The recent proposal [10] of using
reduced ordered binary decision diagrams (roBDDs) [7] to represent ADFs offers
a normal form for acceptance conditions (with a given variable order) and leads
to a drop of complexity to match Dung frameworks1. The tool ADF-BDD [9]
1 Intuitively using roBDDs as the input size and the property of roBDDs to answer

sat queries in constant time leads to this result.

https://kbs.inf.tu-dresden.de/

2 S. Ellmauthaler, L. Gerlach

provides an implementation of that approach by encoding the acceptance con-
ditions of an ADF as a forest of roBDDs [7]. This forest will share and reuse
nodes from other roBDDs and allows for a compact graph-based representation.
While ADF-BDD achieves outstanding performance, it is still rather techni-
cal to use since it is only accessible through a command line interface (CLI)
and has mere text-based output. This is an issue ADF-BDD shares with other
ADF solvers making problems in the ADF input harder to debug. However,
the use of roBDDs allows for a natural graphical visualization of the computa-
tional models and solutions pruduced by ADF-BDD. In this work, we present
ADF-BDD.DEV; offering ADF-BDD as a public web-service2 that displays
the underlying forest of roBDDs of a given ADF in different stages of solving.
Thereby, our tool assists users to understand and compare the different possible
semantics for solving ADFs and simplifies to debug the inputs. In particular, it
offers a concise view of acceptance conditions for statements that remain unde-
cided. To the best of our knowledge, ADF-BDD.DEV is the first ADF solver
to offer this kind of visualisation.

2 Solving ADFs with roBDDs

We recall basics of Abstract Dialectical Frameworks and refer the interested
reader to the recent Handbook of Formal Argumentation [1,5]. For more insights
on roBDDs with ADFs, we kindly point to the respective previous work [10].

Definition 1. An ADF is a triple D := (S,L,C) where S is a fixed finite
set of statements; L ⊆ S × S is a set of links; and C := {φs}s∈S consists of
acceptance conditions for statements, which correspond to propositional formulas
φ ::= s ∈ S | ⊥ | ⊤ | ¬φ | (φ ∧ φ) | (φ ∨ φ) | (φ → φ) over the parents
P (s) := {s′ ∈ S | (s′, s) ∈ L} of statement s.

Since links can be determined by acceptance conditions, throughout this paper
we will mostly omit links and simply define ADFs as a tuple consisting of state-
ments and their respective acceptance conditions. We are following the newly
proposed representation ofADFs with roBDDs [10].

Definition 2. A binary decision diagram (BDD) B over variables X is a rooted
directed acyclic graph with two external nodes labeled with 0 or 1 and internal
nodes u with two outgoing edges given by low(u) and high(u). Each internal
node u is associated with a variable x ∈ X, denoted by var(u) = x. A BDD is
ordered, if on all paths the variables respect a linear order x1 < x2 < · · · < xn

and it is reduced if it satisfies the following two conditions:

(a) if var(u) = var(v), low(u) = low(v) and high(u) = high(v), then u = v, for
each pair of internal nodes u, v; and

(b) low(u) ̸= high(u) for each internal node u.

2 ADF-BDD.DEV- https://adf-bdd.dev

https://adf-bdd.dev

adf-bdd.dev: Debug adfs with bdds 3

Paths from the root to 1 correspond to partial assignments on X (true for high
and false for low), and their completions (assigning remaining variables in X)
to models of B. For a formula φ, we use Bφ, to denote a binary decision diagram
for φ over the variables of φ s.t. the models of φ coincide with the models of Bφ.
Define restriction Bφ[x1/v1, . . . , xn/vn] of Bφ s.t. each xi is set to vi ∈ {0, 1} by
redirecting incoming edges of each node u with var(u) = xi to low(u), if vi = 0,
and to high(u), if vi = 1; and removing u.

By representing ADFs as roBDDs the two previous definitions are combined:

Definition 3. The BDD representation B(D) = (Bφs1
, . . . ,Bφsn

) of an ADF
D = (S,C) is a tuple consisting of one BDD for each acceptance condition φsi

of si ∈ S where 1 ≤ i ≤ n = |S|.

The semantics of a given ADF are based on three-valued interpretations.
Such an interpretation is a function I : S → {t, f ,u} that maps each statement
to either true, false, or undecided. We call an interpretation two-valued, denoted
by I2, if ∀s ∈ S : I(s) ∈ {t, f}. Additionally the information ordering ≤i is
defined as the reflexive transitive closure of the relation <i with u <i v for
v ∈ {t, f}. We lift ≤i and <i to interpretations by I ′ ≤i I iff I ′(s) ≤i I(s) for
each s ∈ S, and I ′ <i I if I ′ ≤i I and for some s ∈ S we have I ′(s) <i I(s). By
Bφ[I] := Bφ[s/1 : I(s) = t][s/0 : I(s) = f] we define the partial evaluation of Bφ

with respect to I.

Definition 4. Let D = (S,B) be an ADF, B(D) its BDD-representation, and I
be a three-valued interpretation over S. The characteristic operator ΓD(I) = I ′

is defined by the revisited interpretation I ′ of I, such that for each s ∈ S

I ′(s) =


t if the reduced Bφs [I] is a tautology (i.e. is a 1 node);
f if the reduced Bφs

[I] is an inconsistency (i.e. is a 0 node);
u otherwise.

We are now in position to define Dung’s standard semantics for ADFs that
is currently supported by ADF-BDD.DEV.

Definition 5. Let D = (S,C) be an ADF, B(D) its BDD-representation, and I
a three-valued interpretation. I is complete in D if I = ΓD(I), and I is grounded
in D if I is the least fixed-point of ΓD for Iu with Iu(s) = u for each s ∈ S.

We additionally define the reduced ADF DI2 := (SI2 , CI2) for a two-valued
interpretation (i.e. all statements are mapped to t or f) I2, a where SI2 := {s ∈
S | I2(s) = t} and CI2 := {φs[s

′/⊥ : I2(s
′) = f] | s ∈ SI2 , s′ ∈ S}. Analogously,

we define the corresponding BDD-representation BI2
D := BD[s/0 : I2(s) = f]

and remove all statements and corresponding roBDDs, where I2(s) = t. Let
G be the grounded interpretation of BI2

D , I2 is a stable model of D if for all
s ∈ SI2 : I2(s) = t implies G(s) = t.

4 S. Ellmauthaler, L. Gerlach

(a) Input (b) Parsed (c) Grounded

Fig. 1: Screenshots: Analysing an ADF in ADF-BDD.DEV. Orange lines rep-
resent low-edges and blue lines high-edges of a given roBDD.

3 Visualising ADF Semantics using roBDDs

To debug an ADF and to illustrate the different semantics, it is natural to give a
visualisation of the corresponding roBDD-representation as a graph. The under-
lying forest of roBDDs is presented in a single graph marked with multiple root
nodes where nodes from different roBDDs are merged whenever possible. For
ADF-BDD.DEV, we rely on a state of the art, feature-rich, web-based library
for graph visualisation3 [17]. The library has many layouting algorithms buillt-in
that we can use for roBDDs; one of them is the so-called “dagre” layout.4 This
implementation combines various previous works [13,14,2,3,16] to rank nodes
into a hierarchy while minimising the number of crossing edges. This rank-based
layout comes very natural for the merged forest of roBDDs: Intuitively, all nodes
without outgoing edges go to the first rank (i.e. the 0 and 1 nodes). Then on
each next rank, we have all nodes that only have outgoing edges to nodes in the
previous ranks. In the following, we give an example how we can analyse a given
ADF using its roBDD-representations on ADF-BDD.DEV:

The ADF D = (S,C) in the input in Figure 1a contains four statments,
a through d (S), represented by the unary predicates s. Its four corresponding
acceptance conditions (C) are represented by the binary predicate ac that relates
each statement to the actual condition as follows: (1) a is assumed to be true
(“verum”). (2) b is true if b is true (which is self-supporting). (3) c is true if
a and b are true. (4) d is true if b is not true. We use a common syntactic
representation for ADFs [4,15], first introduced by [12] and described in detail
later [11]. In the future, we also plan to incorporate graphical ADF editing.

Figure 1b shows the roBDD representation B(D) for D as a forest of the
underlying roBDDs with merged nodes as described above. The visualisation
helps to see how the truth value of a statement s depends on other statements

3 G6 - https://g6.antv.antgroup.com/en/
4 Dagre original implementation https://github.com/dagrejs/dagre

https://g6.antv.antgroup.com/en/
https://github.com/dagrejs/dagre

adf-bdd.dev: Debug adfs with bdds 5

by starting at the root for s and then following the possible paths to the top. To
simplify the indentification of a subtree that belongs to a statement, our ADF-
BDD.DEV visualisation allows to hightlight those trees by clicking the “root”
nodes (and all other nodes as well). For instance, the root for a is directly at the
“TOP” (i.e. 1) node, which indicates that a is true. To obtain the truth value for
c, we start at the bottom left node. If a is known to be false, we follow the orange
path, which is the low-edge in the roBDD, yielding that c is false as well. The
blue path corresponds to the high-edge in the roBDD and represents the case,
where a is true. Then, if b is also true, we find that c is true. Unsurprisingly,
this direcly corresponds to acceptance condition (3) above.

The intuitive procedure of determining truth values iteratively by following
paths and pluging in known values into the nodes of the roBDDs is exactly
what is done by the characteristic operator ΓD. Since we intuitively start with
the interpretation Iu where all statements are undecided, this procedure gives
us the grounded interpretation Iground for D. The grounded interpretation (and
the other semantics introduced in Section 2) can again be visualised with ADF-
BDD.DEV. Figure 1c shows the partial evaluation of B(D) with respect to
Iground. This representation allows to debug the ADF D and to analyse why
some statements are still undecided. One can see that the statements b and
c are still dependent on the outcome of b. In addition, it is also shown that
whatever the result for b and c will be, statement d will behave with the inverse
truth value. This is an important step in understanding and explaining further
results and semantics and allows a way to directly address yet undecided truth-
value assignments and their reasons. To the best of our knowledge, this is the
first work to give this kind of insight.

4 Outlook

In the future, we plan to further improve user experience on ADF-BDD.DEV.
For example, we want to allow graphical editing of ADFs instead of only text
based input and we want to allow to edit the produced roBDD representation
directly. As a long term goal, the graphical editing can be enhanced with on-the-
fly analysis and other advanced features to provide a fully-fledged “IDE” for ADF
editing. Furthermore, better tooltips and hints shall assist even untrained users
to become familiar with ADFs and their sematics by making use of the roBDD
presentation in a didactic fashion. In its current form, we are convinced that
ADF-BDD.DEV simplifies debugging of ADFs for individuals that are already
familiar with ADFs. Looking further, we think that our powerfully backed yet
easy to access tool ADF-BDD.DEV bears great potential for making work on
ADFs more approachable for already experienced users but also for newcomers
that want to get some first hands-on experience.

Acknowledgements This work was supported in DFG grant 389792660 (TRR
248), by BMBF in grants ITEA-01IS21084 (InnoSale), and in DAAD grant
57616814 (SECAI).

https://www.perspicuous-computing.science/
https://www.perspicuous-computing.science/
https://www.innosale.eu/
https://secai.org/

6 S. Ellmauthaler, L. Gerlach

References

1. Baroni, P., Gabbay, D., Giacomin, M., van der Torre, L. (eds.): Handbook of Formal
Argumentation. College Publications (2018)

2. Barth, W., Mutzel, P., Jünger, M.: Simple and Efficient Bilayer Cross Counting.
Journal of Graph Algorithms and Applications 8(2), 179–194 (2004). https://doi.
org/10.7155/jgaa.00088, http://jgaa.info/getPaper?id=88

3. Brandes, U., Köpf, B.: Fast and Simple Horizontal Coordinate Assignment. In:
Mutzel, P., Jünger, M., Leipert, S. (eds.) Graph Drawing. pp. 31–44. Lecture Notes
in Computer Science, Springer, Berlin, Heidelberg (2002). https://doi.org/10.1007/
3-540-45848-4_3

4. Brewka, G., Diller, M., Heissenberger, G., Linsbichler, T., Woltran, S.: Solving
advanced argumentation problems with answer set programming. TPLP 20(3),
391–431 (2020)

5. Brewka, G., Ellmauthaler, S., Strass, H., Wallner, J.P., Woltran., S.: Abstract di-
alectical frameworks. In: Baroni, P., Gabbay, D., Giacomin, M., van der Torre, L.
(eds.) Handbook of Formal Argumentation, chap. 5, pp. 237–285. College Publica-
tions (2018)

6. Brewka, G., Ellmauthaler, S., Strass, H., Wallner, J.P., Woltran, S.: Abstract di-
alectical frameworks. an overview. IfCoLog Journal of Logics and their Applications
4(8), 2263–2317 (October 2017)

7. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Comput. Surv. 24(3), 293–318 (1992)

8. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995)

9. Ellmauthaler, S., Gaggl, S.A., Rusovac, D., Wallner, J.P.: Adf - BDD : An ADF
solver based on binary decision diagrams. In: Toni, F. (ed.) Proceedings of the 9th
International Conference on Computational Models of Argument (COMMA 2022).
FAIA, vol. 220146, pp. 355–356. IOS Press (September 2022). https://doi.org/10.
3233/FAIA220170

10. Ellmauthaler, S., Gaggl, S.A., Rusovac, D., Wallner, J.P.: Representing abstract
dialectical frameworks with binary decision diagrams. In: Gottlob, G., Inclezan,
D., Maratea, M. (eds.) Proceedings of the 16th International Conference on Logic
Programming and Non-monotonic Reasoning (LPNMR 2022). Lecture Notes in
Computer Science, vol. 13416, pp. 177–198. Springer (2022). https://doi.org/10.
1007/978-3-031-15707-3_14

11. Ellmauthaler, S., Straß, H.: The DIAMOND system for argumentation: Prelimi-
nary report. In: Fink, M., Lierler, Y. (eds.) Proceedings of the Sixth International
Workshop on Answer Set Programming and Other Computing Paradigms (AS-
POCP) (September 2013)

12. Ellmauthaler, S., Wallner, J.P.: Evaluating Abstract Dialectical Frameworks with
ASP. In: Verheij, B., Szeider, S., Woltran, S. (eds.) Proc. COMMA. vol. 245, pp.
505–506. IOS Press (2012)

13. Gansner, E., Koutsofios, E., North, S., Vo, K.P.: A technique for drawing directed
graphs. IEEE Transactions on Software Engineering 19(3), 214–230 (Mar 1993).
https://doi.org/10.1109/32.221135

14. Jünger, M., Mutzel, P.: 2-Layer Straightline Crossing Minimization: Performance
of Exact and Heuristic Algorithms. Journal of Graph Algorithms and Applications
1(1), 1–25 (1997). https://doi.org/10.7155/jgaa.00001

https://doi.org/10.7155/jgaa.00088
https://doi.org/10.7155/jgaa.00088
https://doi.org/10.7155/jgaa.00088
https://doi.org/10.7155/jgaa.00088
http://jgaa.info/getPaper?id=88
https://doi.org/10.1007/3-540-45848-4_3
https://doi.org/10.1007/3-540-45848-4_3
https://doi.org/10.1007/3-540-45848-4_3
https://doi.org/10.1007/3-540-45848-4_3
https://doi.org/10.3233/FAIA220170
https://doi.org/10.3233/FAIA220170
https://doi.org/10.3233/FAIA220170
https://doi.org/10.3233/FAIA220170
https://doi.org/10.1007/978-3-031-15707-3_14
https://doi.org/10.1007/978-3-031-15707-3_14
https://doi.org/10.1007/978-3-031-15707-3_14
https://doi.org/10.1007/978-3-031-15707-3_14
https://doi.org/10.1109/32.221135
https://doi.org/10.1109/32.221135
https://doi.org/10.7155/jgaa.00001
https://doi.org/10.7155/jgaa.00001

adf-bdd.dev: Debug adfs with bdds 7

15. Linsbichler, T., Maratea, M., Niskanen, A., Wallner, J.P., Woltran, S.: Advanced
algorithms for abstract dialectical frameworks based on complexity analysis of
subclasses and SAT solving. Artif. Intell. 307, 103697 (2022)

16. Sander, G.: Layout of compound directed graphs. workingPaper (1996).
https://doi.org/10.22028/D291-25806, https://publikationen.sulb.uni-saarland.
de/handle/20.500.11880/25862, accepted: 2005-06-23

17. Wang, Y., Bai, Z., Lin, Z., Dong, X., Feng, Y., Pan, J., Chen, W.: G6: A web-
based library for graph visualization. Visual Informatics 5(4), 49–55 (Dec 2021).
https://doi.org/10.1016/j.visinf.2021.12.003

https://doi.org/10.22028/D291-25806
https://doi.org/10.22028/D291-25806
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/25862
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/25862
https://doi.org/10.1016/j.visinf.2021.12.003
https://doi.org/10.1016/j.visinf.2021.12.003

	ADF-BDD.DEV: Debug Abstract Dialectical Frameworks with Binary Decision Diagrams

