CONCURRENCY THEORY Exercise Sheet 1: Bisimulation and Bisimilarity 17th of April 2024

Before we get into this exercise session, we want to introduce a notation that will also be present in the respective lecture slides. As a convention, and we sometimes already did, we write binary relations like $\stackrel{a}{\rightarrow} \subseteq \Pr \times \Pr(a \in \operatorname{Act})$ in infix notation: $P \stackrel{a}{\rightarrow} Q$ instead of $(P, a, Q) \in \rightarrow$. We use the same convention for bisimulations: write $P \mathcal{R} Q$ instead of $(P, Q) \in \mathcal{R}$.

Exercise 1.1. Find an LTS with only two states that is bisimilar to the following LTS:

Exercise 1.2. Show that R_1 and Q_1 are bisimilar.

Exercise 1.3. Consider the following change of clauses 1 and 2 in the definition of bisimulation, and consequently bisimilarity:

- for all P' with $P \xrightarrow{\mu} P'$, and for all Q' such that $Q \xrightarrow{\mu} Q'$, we have $P' \mathcal{R} Q'$; for all Q' with $Q \xrightarrow{\mu} Q'$, and for all P' such that $P \xrightarrow{\mu} P'$, we have $P' \mathcal{R} Q'$.

What would be the effect on *bisimilarity*?

Exercise 1.4. Let T be an LTS. Prove or disprove that bisimulations (on T) are closed under

- (a) union;
- (b) intersection;
- (c) relation concatenation.

Complete the proof of Theorem 7 (2nd lecture, slide 24).

Exercise 1.5. A process relation \mathcal{R} is a simulation if, whenever $P \mathcal{R} Q$, for all P' and μ with $P \xrightarrow{\mu} A$ P', there is a Q' such that $Q \xrightarrow{\mu} Q'$ and $P' \mathcal{R} Q'$. Similarity, written \leq , is the union of all simulations; *Q* simulates *P* if $P \leq Q$. *P* and *Q* are *simulation equivalent*, denoted by $P \approx Q$, if $P \leq Q$ and $Q \leq P$. Show that

- (a) \mathcal{R} is a bisimulation if, and only if, \mathcal{R} and \mathcal{R}^{-1} are simulations.
- (b) If *P* is a process without a transition, then $P \leq Q$ for all processes *Q*.
- (c) \leq is reflexive and transitive.

TU Dresden, Knowledge-Based Systems Group Dr. Stephan Mennicke

- (d) \Leftrightarrow is strictly included in \approx .
- (e) \approx is strictly included in trace equivalence.

Exercise 1.6. A process relation \mathcal{R} is a *bisimulation up-to* \Leftrightarrow if, whenever $P \Leftrightarrow Q$, for all μ we have (a) for all P' with $P \xrightarrow{\mu} P'$, there is a Q' such that $Q \xrightarrow{\mu} Q'$ and $P' \Leftrightarrow \mathcal{R} \Leftrightarrow Q'$;¹

- (b) the converse on transitions from Q.

Show that if $\mathcal R$ is a bisimulation up-to $\Leftrightarrow,$ then $\mathcal R\subseteq \Leftrightarrow.$

 $^{^{1}\}text{Here}, \Leftrightarrow \mathcal{R} \Leftrightarrow \text{is the two-fold relational composition of} \Leftrightarrow \text{with } \mathcal{R} \text{ and, then again, with} \Leftrightarrow.$