Concurrency Theory

Exercise Sheet 1: Bisimulation and Bisimilarity
 $17^{\text {th }}$ of April 2024

Before we get into this exercise session, we want to introduce a notation that will also be present in the respective lecture slides. As a convention, and we sometimes already did, we write binary relations like $\xrightarrow{a} \subseteq \operatorname{Pr} \times \operatorname{Pr}(a \in$ Act $)$ in infix notation: $P \xrightarrow{a} Q$ instead of $(P, a, Q) \in \rightarrow$. We use the same convention for bisimulations: write $P \mathcal{R} Q$ instead of $(P, Q) \in \mathcal{R}$.

Exercise 1.1. Find an LTS with only two states that is bisimilar to the following LTS:

c
Exercise 1.2. Show that R_{1} and Q_{1} are bisimilar.

Exercise 1.3. Consider the following change of clauses 1 and 2 in the definition of bisimulation, and consequently bisimilarity:

- for all P^{\prime} with $P \xrightarrow[\mu]{\mu} P^{\prime}$, and for all Q^{\prime} such that $Q \xrightarrow{\mu} Q^{\prime}$, we have $P^{\prime} \mathcal{R} Q^{\prime}$;
- for all Q^{\prime} with $Q \xrightarrow{\mu} Q^{\prime}$, and for all P^{\prime} such that $P \xrightarrow{\mu} P^{\prime}$, we have $P^{\prime} \mathcal{R} Q^{\prime}$.

What would be the effect on bisimilarity?
Exercise 1.4. Let T be an LTS. Prove or disprove that bisimulations (on T) are closed under
(a) union;
(b) intersection;
(c) relation concatenation.

Complete the proof of Theorem 7 ($2^{\text {nd }}$ lecture, slide 24).
Exercise 1.5. A process relation \mathcal{R} is a simulation if, whenever $P \mathcal{R} Q$, for all P^{\prime} and μ with $P \xrightarrow{\mu}$ P^{\prime}, there is a Q^{\prime} such that $Q \xrightarrow{\mu} Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$. Similarity, written \lesssim, is the union of all simulations; Q simulates P if $P \lesssim Q$. P and Q are simulation equivalent, denoted by $P \approx Q$, if $P \lesssim Q$ and $Q \lesssim P$. Show that
(a) \mathcal{R} is a bisimulation if, and only if, \mathcal{R} and \mathcal{R}^{-1} are simulations.
(b) If P is a process without a transition, then $P \lesssim Q$ for all processes Q.
(c) \lesssim is reflexive and transitive.

Dr. Stephan Mennicke
(d) \Leftrightarrow is strictly included in \approx.
$(\mathrm{e}) \approx$ is strictly included in trace equivalence.
Exercise 1.6. A process relation \mathcal{R} is a bisimulation $u p-t o \Leftrightarrow$ if, whenever $P \Leftrightarrow Q$, for all μ we have
(a) for all P^{\prime} with $P \xrightarrow{\mu} P^{\prime}$, there is a Q^{\prime} such that $Q \xrightarrow{\mu} Q^{\prime}$ and $P^{\prime} \Leftrightarrow \mathcal{R} \Leftrightarrow Q^{\prime} ;{ }^{1}$
(b) the converse on transitions from Q.

Show that if \mathcal{R} is a bisimulation up-to \Leftrightarrow, then $\mathcal{R} \subseteq \Leftrightarrow$.

[^0]
[^0]: ${ }^{1}$ Here, $\Leftrightarrow \mathcal{R} \Leftrightarrow$ is the two-fold relational composition of \Leftrightarrow with \mathcal{R} and, then again, with \Leftrightarrow.

