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Was bisher geschah ...

Grundbegriffe, die wir verstehen und erklaren kénnen:
DTM, NTM, Entscheider, Aufzéhler, berechenbar/entscheidbar, semi-entscheidbar,
unentscheidbar, Church-Turing-These

Das Unentscheidbare:

* _An algorithm is a finite answer to an infinite number of questions.*
(Stephen Kleene)

® Aber: Es gibt mehr Méglichkeiten, unendlich viele Fragen zu beantworten, als es
Algorithmen geben kann (Georg Cantor)

Weitere wichtige Ergebnisse:
® DTM und NTM haben die gleiche Ausdrucksstérke
® Zusammenhang Aufzéhler « Semi-Entscheidbarkeit
® Busy Beaver ist unentscheidbar:
,Was eine TM schaffen kann, das kann keine TM vorherberechnen.*
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LOOP
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Von TMs zu Programmiersprachen

Turingmaschinen als Berechnungsmodell

® Pro: Einfache, kurze Beschreibung (eine Folie)
~> Beweise oft ebenfalls einfach und kurz

e Kontra: Umstandliche Programmierung
~> einfache Algorithmen erfordern tausende Einzelschritte

Programmiersprachen als Berechnungsmodell

® Pro: Einfache, bequeme Programmierung
~» GroBBer Befehlssatz + Bibliotheken fiir Standardaufgaben

e Kontra: Umstandliche Beschreibung
(z.B. Beschreibung von C++ [ISO/IEC 14882] hat 776 Seiten)
~> Eigenschaften oft unklar; Beweise sehr umsténdlich
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LOOP-Programme

Idee: Definiere eine imperative Programmiersprache, die dennoch sehr einfach ist.

Features:

® Variablen xg, X1, X, ... oder auch x, y, variablenName, ...
alle vom Typ “nattrliche Zahl”

® Wertezuweisungen der Form
X =y + 42 und x 1=y - 23
fir beliebige natirliche Zahlen und Variablennamen
® “For-Schleifen”: LOOP x DO ... END
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LOOP-Programme: Syntax

Definition: Die Programmiersprache LOOP basiert auf einer unendlichen Menge V
von Variablen und der Menge N der natlrlichen Zahlen. LOOP-Programme sind induk-
tiv definiert:

® Die Ausdriicke
x:=y+n und x:=y-n (Wertzuweisung)

sind LOOP-Programme fir alle x,y € V und n € N.
e Wenn P; und P, LOOP-Programme sind, dann ist

Py; P, (Hintereinanderausfiihrung)

ein LOOP-Programm.
®* Wenn P ein LOOP-Programm ist, dann ist

LOOP x DO P END (Schleife)

ein LOOP-Programm, fiir jede Variable x € V.

Vereinfachung: Wir erlauben ; in Programmen durch Zeilenumbriche zu ersetzen
Markus Krotzsch, 12. Januar 2026 Formale Systeme Folie 6 von 32



Beispiel

Das folgende LOOP-Programm addiert zum Wert von y genau x-mal die Zahl 2:

LOOP x DO
yi=y+2
END

Dies entspricht also der Zuweisungy := y + (2 * x), die wir in LOOP nicht direkt
schreiben kénnen.
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LOOP-Programme: Semantik (1)

Funktionsweise eines LOOP-Programms P:

e Eingabe: Eine Liste von k natlrlichen Zahlen
(Anmerkung: k wird nicht durch das Programm festgelegt)

® Ausgabe: Eine natirliche Zahl
P berechnet also eine totale Funktion N* — N, fiir beliebige k

Initialisierung fiir Eingabe n,, ..., n;:
® LOOP speichert firr jede Variable eine natlrliche Zahl als Wert
® Den Variablen x;, ..., xx werden anfangs die Werte ny, ..., n; zugewiesen

® Allen anderen Variablen wird der Anfangswert 0 zugewiesen
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LOOP-Programme: Semantik (2)

Nach der Initialisierung wird das LOOP-Programm abgearbeitet:

® X =Yy + n:
der Variable x wird als neuer Wert die Summe des (alten) Wertes fiir y und der
Zahl n zugewiesen

® X =y - n
der Variable x wird als neuer Wert die Differenz des (alten) Wertes fir y und der
Zahl n zugewiesen, falls diese gréBer 0 ist; ansonsten wird x der Wert 0
zugewiesen

® Pi; P
erst wird P, abgearbeitet, dann P,

° LOOP x DO P END:
P wird genau n-mal ausgefihrt, fir den Zahlenwert n, der x anfangs zugewiesen ist
(n @ndert sich also nicht, wenn P den Wert von x &ndert)
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LOOP-Programme: Semantik (3)

Ausgabe eines LOOP-Programmes:

® Das Ergebnis der Abarbeitung ist der Wert der Variable x¢ nach dem Beenden der
Berechnung

Fatz: LOOP-Programme terminieren immer nach endlich vielen Schritten.

Beweis: Die Behauptung gilt sicherlich fir Wertzuweisungen.

Weitere Falle:
® Py; P
wenn P; und P, nach endlich vielen Schritten terminieren, dann auch P;; P,

° LOOP x DO P END:
fir jede mdgliche Zuweisung von x wird P endlich oft wiederholt; wenn P in endlich
vielen Schritten terminiert, dann also auch die Schleife O
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Anmerkung: Strukturelle Induktion

Der vorangegangene einfache Beweis verwendet Induktion, um eine Aussage fur
unendlich viele Programme zu zeigen:

® |nduktionsanfang: Die Behauptung gilt fir Wertzuweisungen (die einfachsten
LOOP-Programme)

® [nduktionsannahme: Die Behauptung gilt bereits fir Programme P, Py, P,

® |nduktionsschritte:

(1) Die Behauptung gilt dann auch fir Py ; Ps.
(2) Die Behauptung gilt dann auch fiir LOOP x DO P END.

Merke: Induktion kann man nicht nur auf natirliche Zahlen anwenden, sondern auf al-
le (unendlichen) Mengen, die man induktiv mit endlich vielen Operationen aus Grund-
fallen erzeugen kann.
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Programmieren in LOOP (1)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros

definieren.’

Wertzuweisung mit Variable: “x := y”:

X:=y+0

Wertzuweisung mit 0: “x := 0™

LOOP x DO
Xx:=x-1
END

Wertzuweisung einer beliebigen konstanter Zahl: “x := n”:

x:=0
X:=X+nh

"Nutzen Sie zum Testen auch unseren LOOP-Simulator [Link] online.
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Programmieren in LOOP (2)

LOOP hat nur wenige Ausdrucksmittel, aber man kann sich leicht weitere als Makros
definieren.’
Wertzuweisung: “x := y + z”:
X =y
LOOP z DO
X:i=x+1
END

Fallunterscheidung: “IF x!=0 THEN P END":

LOOP x DO y :=1 END
LOOP y DO P END

Dabei ist y eine frische Variable, die bisher nirgends sonst verwendet wird.

"Nutzen Sie zum Testen auch unseren LOOP-Simulator [Link] online.
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LOOP-Berechenbare Funktionen

Definition: Eine Funktion N¥ — N hei3t LOOP-berechenbar, wenn es ein LOOP-
Programm gibt, das die Funktion berechnet.

Beispiel: Die folgenden Funktionen sind LOOP-berechenbar:
e Addition: (x,y) — x + y (gerade gezeigt)

Multiplikation: (x, y) — x - y (sieche Ubung)

Potenz: (x,y) — x¥ (entsteht aus - wie - aus +)

® und viele andere ...(max, min, div, mod, usw.)
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LOOP jenseits von N

LOOP kann auch das x-te Bit der Binarkodierung von y berechnen. Dadurch kann man
in LOOP (auf umstandliche Weise) auch Daten verarbeiten, die keine Zahlen sind:

(1) Kodiere beliebigen Input binar
(2) Evaluiere die Binarkodierung als natirliche Zahl und verwende diese als Eingabe
(3) Dekodiere den Input im LOOP-Programm

In diesem Sinne sind viele weitere Funktionen LOOP-berechenbar.

Beispiele fiir LOOP-berechenbare Funktionen:
® das Wortproblem regularer, kontextfreier und kontextsensitiver Sprachen
® alle Probleme in NP, z.B. Erfullbarkeit propositionaler Logik
® praktisch alle gangigen Algorithmen (Sortieren, Suchen, Optimieren, ...)
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Die Grenzen von LOOP

Fatz: Es gibt berechenbare Funktionen, die nicht LOOP-berechenbar sind.

Das ist weniger Uberraschend, als es vielleicht klingt:

Beweis: Ein LOOP-Programm terminiert immer. Daher ist jede LOOP-berechenbare
Funktion total. Es gibt aber auch nicht-totale Funktionen, die berechenbar sind (z.B. die
“partiellste” Funktion, die nirgends definiert ist). O
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LOOP-berechenbar # berechenbar

E\tz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Das ist Uberraschend. Hilbert glaubte 1926 noch, dass alle Funktionen so berechnet
werden kdénnen — quasi ein erster Versuch der Definition von Berechenbarkeit.

Hilbert definierte LOOP-Berechenbarkeit etwas anders, mithilfe sogenannter primitiv rekursiver Funktionen.

Bewiesen wurde der Satz zuerst von zwei Studenten Hilberts:
e Gabriel Sudan (1927)
® Wilhelm Ackermann (1928)

Jeder der beiden gab eine Funktion an (Sudan-Funktion und Ackermann-Funktion), die
nicht LOOP-berechenbar ist.

Unser Beweis verwendet eine etwas andere Idee . ..
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Flei3ige Biber fur LOOP

Die Lange eines LOOP-Programms ist die Anzahl an Zeichen, aus denen es besteht.
Dazu nehmen wir an:

® Zahlen werden in ihrer Dezimalkodierung geschrieben

e Variablen sind mit lateinischen Buchstaben und Ziffern benannt (wir sehen x;,3 als
Schreibweise flr x123 an)

e Wir betrachten ; als ein Zeichen (und Zeilenumbriiche ebenso)

Definition: Die Funktion £ oop : N — N liefert flr jede Zahl ¢ die groBte Zahl
Yioop(?), die ein LOOP-Programm der Lange < ¢ flr eine leere Eingabe (alle Varia-
blen sind 0) ausgibt. Dabei sei X oop(f) = 0 falls es kein Programm der Lange < ¢
gibt.

Beobachtung: X oop ist wohldefiniert:
® Die Zahl der LOOP-Programme mit maximaler Lange ¢ ist endlich
® Unter diesen Programmen gibt es eine maximale Ausgabe
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Beispiele

Beispiel: Die LOOP-Anweisung xg:=y+9 liefert das fleiBigste Programm fiir £ = 7, d.h.
Zoor(7) = 9.

Fir ¢ = 8 gilt dementsprechend bereits X oop(8) = 99.

Flr ¢ < 7 gibt es keine Zuweisung, die x¢ andert, d.h., £ oop(¢) = 0.

Bonusaufgabe: Gibt es eine Zahl ¢, bei der X, oop(£) durch ein Programm berechnet
wird, welches die Zahl £ oop(€) nicht als Konstante im Quelltext enthalt? Wie kénnte
das entsprechende Programm aussehen?
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Beweis (1)

Fatz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:
(1) ZLoop ist berechenbar
(2) ZLoop ist nicht LOOP-berechenbar

Behauptung (1) ist leicht zu zeigen:
® Es gibt endlich viele LOOP-Programme der Lange < ¢
® Man kann alle davon durchlaufen und auf einem Computer simulieren
® Die Simulation liefert immer nach endlich vielen Schritten ein Ergebnis
® Das Maximum aller Ergebnisse ist der Wert von X oop(¢)

(Anmerkung: Wir verwenden hier einen intuitiven Berechnungsbegriff und Church-Turing.)
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Beweis (2)

Fatz: Es gibt berechenbare totale Funktionen, die nicht LOOP-berechenbar sind.

Beweis: Wir zeigen zwei Teilaussagen:

(1) ZLoop ist berechenbar

(2) ZLoop ist nicht LOOP-berechenbar
Behauptung (2) zeigen wir per Widerspruch:

® Angenommen X, oop ist LOOP-berechenbar durch Programm Py. Sei k die Lange
von Psy.

® Wir wahlen eine Zahl m mit m > k + 17 + log,, m (immer mdglich)
® Sei P, das Programm x; :=x;+m (L&nge: 7 + [log,, m1)
® Sei P, das Programm xg:=x¢+1 (Lange: 8)
e Wir definieren P =P,,; Ps; P,,.
Die Lange von P ist k + 17 + [log;, m] und damit < m.
Aber P gibt die Zahl X\ oop(m) + 1 aus. Widerspruch. |
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WHILE
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Was fehlt?

Frage: Wieso ist LOOP zu schwach?

Intuitive Antwort: LOOP-Programme terminieren immer (zu vorhersehbar)

~» Wir brauchen ein weniger vorhersehbares Programmkonstrukt
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WHILE-Programme: Syntax und Semantik

Definition: Die Programmiersprache WHILE basiert wie LOOP auf Variablen V und
natirlichen Zahlen N.
WHILE-Programme sind induktiv definiert:

® Jedes LOOP-Programm ist ein WHILE-Programm
® Wenn P ein WHILE-Programm ist, dann ist

WHILE x!=0 DO P END

ein WHILE-Programm, fUr jede Variable x € V.

Semantik von WHILE x!=0 DO P END:
P wird ausgefiihrt solange der aktuelle Wert von x ungleich 0 ist.
(dies héngt davon ab, wie P den Wert von x andert)

Ansonsten werden WHILE-Programme wie LOOP-Programme ausgewertet.
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WHILE: Beobachtungen'

Es ist méglich, dass ein WHILE-Programm nicht terminiert, z.B.

x:=1

WHILE x!=0 DO
y:i=y+2

END

Wir kdnnen LOOP x DO P END ersetzen durch:

zZ:=X
WHILE z!=0 DO
P
z:=z-1
END

(far ein frisches z)

Also sind LOOP-Schleifen eigentlich nicht mehr nétig.

"Unser Online-Tool funktioniert auch als WHILE-Simulator [Link].
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https://tools.iccl.inf.tu-dresden.de/while/

WHILE-Berechenbare Funktionen

Definition: Eine partielle Funktion f : N* — N heit WHILE-berechenbar, wenn es ein
WHILE-Programm P gibt, so dass gilt:

e Falls f(ny,...,n;) definiert ist, dann terminiert P bei Eingabe n, ..., n; mit der
Ausgabe f(ny,...,n;)

® Falls f(n,...,n;) nicht definiert ist, dann terminiert P bei Eingabe ny, ..., n; nicht

Das wichtigste Ergebnis zu WHILE ist nun das folgende:

Satz: Eine partielle Funktion ist genau dann WHILE-berechenbar, wenn sie Turing-
berechenbar ist.
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WHILE —» TM

Behauptung 1: DTMs kénnen WHILE-Programme simulieren:

Wir verwenden eine Mehrband-TM, in der es fir jede Variable im simulierten
Programm ein eigenes Band gibt.

Naturliche Zahlen werden auf den Béndern binar kodiert.

DTMs kdnnen leicht (a) ein Band auf ein anderes kopieren, (b) die Zahl auf einem
Band um eins erhéhen
~> daraus kann man schon DTMs fur x := y + n erzeugen

Simulation von x := y - nist analog méglich (mit zusatzlichem Test auf
Gleichheit mit 0 beim Dekrementieren)

Sequentielle Programmausfihrung P, ; P, wird direkt im Zustandsgraphen der
DTM umgesetzt (,Hintereinanderhdngung” von TMs)

While-Schleifen sind durch Zyklen im Zustandsgraph darstellbar, wobei am Anfang
jeweils ein Test auf Gleichheit mit O steht, um die Schleife verlassen zu kénnen
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TM — WHILE (1)

Behauptung 2: WHILE-Programme kénnen DTMs simulieren:

® Wir nehmen zur Vereinfachung an, dass das TM-Arbeitsalphabet
I' = {0, 1} ist, und dass die Zustande natirliche Zahlen sind
¢ Eine TM-Konfiguration aas - - - a, g ap41a,42 - - - a, wird dargestellt durch drei
Variablen:
— left hat den Wert, der durch a;a, - - - a, binér kodiert wird (least significant bit
ist dabei a,)
— state hat den Wert ¢
— thgir hat den Wert, der durch a; - - - a,.2a,+1 binér kodiert wird (least
significant bit ist also a,+)
® Diese Kodierung kann leicht auf gréBere Arbeitsalphabete erweitert werden (n-are
statt bindre Kodierung)
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TM — WHILE (2)

Behauptung 2: WHILE-Programme kénnen DTMs simulieren:

* Wie gesagt:
left hat den Wert, der durch a;a; - - - a,, binar kodiert wird

* Wir wollen auf (die Binarkodierung von) left wie auf einen Stapel (Keller, Stack)
zugreifen:

— Pop: der folgende Pseudocode ist in WHILE (und LOOP) implementierbar

top := left mod 2
left :=left div 2

— Push: der folgende Pseudocode ist in WHILE (und LOOP) implementierbar
left := left * 2 + top

e Auf thgir kann man genauso zugreifen
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TM — WHILE (3)

Behauptung 2: WHILE-Programme kénnen DTMs simulieren:

® Wir haben das Band in zwei Stacks kodiert, mit den Zeichen links und rechts
neben dem TM-Kopf an oberster Stelle

® Die TM-Simulation erfolgt jetzt in einer WHILE-Schleife
WHILE halt!=0 DO  Pgjnseischrit  END

® Das Programm PEginzeischritt fUhrt einen Schritt aus:

thgir.pop() liefert Zeichen an Leseposition

Durch eine Folge von If-Bedingungen kann man fir jede Kombination aus
Zustand ¢ (in state) und gelesenem Zeichen eine Behandlung festlegen
Schreiben von Symbol a durch thgir.push(a)

Bewegung nach rechts: left.push(thgir.pop())

Bewegung nach links: thgir.push(left.pop())

Zustandsanderung durch einfache Zuweisung

Anhalten durch Zuweisung halt := 0
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TM — WHILE (3)

Behauptung 2: WHILE-Programme kénnen DTMs simulieren:

Zusammenfassung:
® Natlrliche Zahlen simulieren Stacks der Bandsymbole links und rechts
® Berechnungsschritte werden durch einfache Arithmetik implementiert (in LOOP
maoglich)
* WHILE-Schleife arbeitet Schritte ab, bis die TM halt

Was fehlt noch zum detaillierten Beweis?

® Unsere Stack-Implementierung kann noch nicht mit dem leeren Stack umgehen ~»
zusétzliche Tests und Sonderfélle (bei einseitig unendlichem TM-Band
asymmetrisch)

® Fir gréBere Arbeitsalphabete wirde man statt Binarkodierung eine n-are
Kodierung verwenden O
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Zusammenfassung und Ausblick

WHILE-Programme kdnnen alle berechenbaren Probleme I6sen
(ein weiteres Indiz fur die Church-Turing-These)

LOOP-Programme kénnen fast alle praktisch relevanten Probleme |6sen, aber nicht alle
berechenbaren Probleme

Online-Simulator fir WHILE und LOOP (mit kleinen syntaktischen Verbesserungen wie
Kommentaren): https://tools.iccl.inf.tu-dresden.de/while/

Beweistechniken: strukturelle Induktion, Widerspruch durch Selbstbezliglichkeit (Busy
Beaver), TM mit zwei Stacks simulieren

Was erwartet uns als nachstes?
® Relevantere Probleme
® Reduktionen
® Rice
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