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Definition of

Learnabllity

A hypothesis class H is PAC learnable if there exists a
function my: (0,1) x (0,1) - N and a learning algorithm with
the following property:

For every ¢,8 € (0,1), for every distribution D over X, and

for every labeling function f: X — {0,1}, if the realizable
assumption holds with respect to H, D, f, then when running
the learning algorithm on m = my (e, 6) i1.1.d. samples
generated by D and labeled by f, the algorithm returns

a hypothesis h € H such that, with probability of at least
1 — & (over the choice of the samples), Lp s (h) < €.
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* The accuracy parameter € determines how far the resulted
classifier can be from the optimal one (this corresponds to
the * " part of PAC), and a confidence
parameter § indicating how likely the classifier is to meet
that accuracy requirement (corresponds to the * §
part of PAC).

* Under the data access model that we are investigating, these
approximations are inevitable. Since the training set is randomly
generated, there may always be a small chance that it will happen to
be non-representative (for example, the training set might contain only
one domain point, sampled over and over again). Furthermore, even
when we are lucky enough to get a training sample that does faithfully
represent D, because it is just a finite sample, there may always be
some fine details of D that it fails to reflect. The accuracy parameter, ¢,
allows * " the learner's classifier for making minor errors.
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Sample Complexity

* The function my (¢, §) determines the sample complexity
of learning H: that is, how many samples are required to
guarantee a probably approximately correct solution.

* Note that if H is PAC learnable, there are many
functions my (g, 6) that satisfy the requirements given in
the definition of PAC learnability. Therefore, to be precise,
we will define the sample complexity of learning H to be
the minimal function, in the sense that my (€, §) gives the
minimal integer that satisfies the requirements of PAC
learning.

« Using the terminology of sample complexity, Theorem 1
can be expressed as follows:
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Corollary 2

» Every finite hypothesis class is PAC
learnable with sample complexity

In(|H[/8)

€
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Releasing the Realizability Assumption

* Recall that the realizability assumption requires that there
exists h* € H such that P,._p|h*(x) = f(x)] = 1. In many
practical problems this assumption does not hold.
Furthermore, it iIs maybe more realistic not to assume that
the labels are fully determined by the features we measure
on input elements (in the case of the papayas learning, it is
plausible that two papayas of the same color and softness
will have different taste). In the following, we relax the
realizability assumption by replacing the “target labeling
function” with a more flexible notion, a data-labels
generating distribution.
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* Formally, let D be a probabillity distribution over X x Y,
where, X Is our domain set and Y Is a set of labels (usually
Y ={0,1}). That is, D is a joint distribution over domain
points and labels.

« One can view such a distribution as being composed of
two parts: a distribution D, over unlabeled domain points
(sometimes called the marginal distribution) and a
conditional probability over labels for each domain point,
D((x,y)|x). In the papaya example, D, determines the
probability of encountering a papaya whose color and
softness fall in some color-softness values domain, and the
conditional probability is the probabllity that a papaya with
color and softness represented by x Is tasty. Indeed, such
modeling allows for two papayas that share the same color
and softness to belong to different taste categories.

S—— ‘
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The Revised True Error

* For a probability distribution, D, over X x Y, one can
measure how likely h is to make an error when labeled
points are randomly drawn according to D. We redefine
the true error (or risk or loss) of a prediction rule h to be

Lp(h) € Py)-plh(x) # y] £ D((x,y): h(x) # y})

« We would like to find a predictor, h, for which this error
will be minimized. However, the learner does not know
the data generating D. What the learner does have
access to Is the training data, S.
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The definition of the empirical risk remains the same as

before, namely,
Lo(h) & I{lE[m]=%xi)¢3'i}|

Given S, a learner can compute Ls(h) for any function
h:X -Y.

Note that Lg(h) = LD(uniform over S) (h).

We wish to find some hypothesis, h: X — Y, that
probably approximately minimizes the true risk, Ly(h).
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Definition of
Agnostic Learnability

A hypothesis class H is Agnostic PAC learnable if there
exists a function my: (0,1) X (0,1) —» N and a learning
algorithm with the following property:

For every ¢,8 € (0,1), for every distribution D over X x Y,
when running the learning algorithm on m = mg(e, ) I.1.d.
samples generated by D, the algorithm returns a
hypothesis h € H such that, with probability of at least 1 — 6
(over the choice of the m training samples),

Lp(h) < mEiELD(g) iaGe
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Agnostic PAC learning generalizes
PAC learning

 If the realizability assumption holds, agnostic PAC learning
provides the same guarantee as PAC learning. In that
sense, agnostic PAC learning generalizes PAC learning.

* When the realizability assumption does not hold, no learner
can guarantee an arbitrarily small error. Nevertheless,
under the definition of agnostic PAC learning, a learner can
still declare success if its error is not much larger than the
best error achievable by a predictor from the class H.

« This is In contrast to PAC learning, in which the learner is
required to achieve a small error in absolute terms and not
relative to the best error achievable by the hypothesis
class.
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Extension to a variety of learning tasks

= Our classification does not have to be binary. Take, for
example, the task of document classification according
to topics.

= We wish to find some simple pattern in the data, i.e., a
functional relationship between the X and Y components
of the data. Here the target set Y is the the set of real
numbers.
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Generalized Loss Functions

« To accommodate a wide range of learning tasks we
generalize our formalism of the measure of success as
follows:

= Given any set H (that plays the role of our
hypotheses, or models) and some domain Z let ¢ be
any function from H x Z to the set of nonnegative real
numbers,
0:HXZ - R,

* The risk function is defined to be the expected loss of
a classifier, h € H, with respect to a probability
distribution D over Z, namely,
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= Similarly, we define the empirical risk to be the
expected loss over a given sample S = (z4,...,2,,) €
Z™, namely,

LS(h) = % Yizq L(h.z)).

* For example, the loss function used in the binary and
multiclass classification tasks is the 0-1 loss:
o |0 if h(x) =y

30—1(}1; (xl 3’)) — {1 lf h(x) —+ y

The random variable z ranges over the set of pairs X x Y.
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Definition of
Agnostic Learnability for General Loss Functions

A hypothesis class H is Agnostic PAC learnable with
respect to a set Z and a loss function #: H X Z - R, if there
exists a function my: (0,1) X (0,1) —» N and a learning
algorithm with the following property:

For every €,8 € (0,1), for every distribution D over Z, when
running the learning algorithm on m = my(e, 6) i.i.d.
samples generated by D, the algorithm returns a
hypothesis h € H such that, with probability of at least 1 — §
(over the choice of the m training samples),

LD(h) < min LD(g) + €,
gEH
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A Bit of History

* PAC learning was introduced by Leslie
Valiant (1984).

= Valiant, L. G. (1984), “A theory of the
learnable,” Communications of the ACM
27(11), 1134-1142.
* Valiant was named the winner of the 2010
for the introduction of the
PAC model.
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Learning via Uniform Convergence

* The idea behind uniform convergence is very simple.

* Recall that, given a hypothesis class, H, the ERM learning
paradigm works as follows: Upon receiving a training
sample, S, the learner evaluates the risk (or error) of each
h in H on the given sample and outputs a member of H that
minimizes this empirical risk.

* The hope is that an h that minimizes the empirical risk with
respect to S is a risk minimizer w.r.t. the true data
probability distribution as well. For that, it suffices to ensure
that the empirical risks of all members of H are good
approximations of their true risk. This condition is
formalized as follows.
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definition of
e-representative sample

A training set S Is called -representative

(w.r.t. domain Z, hypothesis class H, loss
function £, and distribution D) if

Vvh € H,|Ls(h) — Lp(h)| < e.
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LEMMA 4.2  Assume that a training set S is 5-representative (w.r.t. domain
Z, hypothesis class H, loss function £, and distribution D). Then, any output of
ERMy(S), namely, any hg € argminy, q, Lg(h), satisfies

Lp(hg) < min Lpl(h)+ €.
plhs) = i D) + €

For every h € H,
€
Lp(hs) — Lg(hg) + > < Ls(h) +
= Lp(h) + ¢,

where the first and third inequalities are due to the
assumption that S is g-representative and the second

Inequality holds since hg Is an ERM predictor.

€

€ €

2 2

——
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definition of
Uniform Convergence

A hypothesis class H has the uniform convergence property
(w.r.t. a domain Z and a loss function #) if there exists a

function m}}C: (0,1) x (0,1) — N such that for every €,6 €
(0,1) and for every probability distribution D over Z, if S is a

sample of m > m}qjc(e, d) instances drawn i.i.d. according
to D, then, with probability of at least 1 — 6,

S Is e-representative.

* Note: The term uniform here refers to having a fixed sample size
that works for all members of H and over all possible probability
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* The following corollary follows directly
from Lemma 4.2 and the definition of
uniform convergence.

COROLLARY 4.4 If a class ‘H has the uniform convergence property with a
function myy’ then the class is agnostically PAC learnable with the sample com-

plexity myy(€,8) < m3f(e/2,0). Furthermore, in that case, the ERMy paradigm
18 a successful agnostic PAC learner for ‘H.
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every finite hypothesis class is
agnostic PAC learnable

COROLLARY 4.6 Let ‘H be a finite hypothesis class, let Z be a domain, and let
t:HxZ — 0,1 be a loss function. Then, ‘H enjoys the uniform convergence
property with sample complexity

Ly P
2e°

mag(€,0) < {

Furthermore, the class is agnostically PAC learnable using the ERM algorithm
with sample complexity

ma(€,8) < mif(e/2,0) < {
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