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Definition of 

PAC (Probably Approximately Correct) 

Learnability

A hypothesis class H is PAC learnable if there exists a 

function 𝑚𝐻: (0,1) × 0,1 → ℕ and a learning algorithm with 

the following property: 

For every 𝜖, 𝛿 ∈ 0,1 , for every distribution D over X, and

for every labeling function 𝑓: 𝑋 → 0,1 , if the realizable 

assumption holds with respect to H, D, f, then when running 

the learning algorithm on 𝑚 ≥ 𝑚𝐻(𝜖, 𝛿) i.i.d. samples 

generated by D and labeled by f, the algorithm returns

a hypothesis ℎ ∈ 𝐻 such that, with probability of at least 

1 − 𝛿 (over the choice of the samples), 𝐿 𝐷,𝑓 (ℎ) ≤ 𝜖.
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• The accuracy parameter 𝜖 determines how far the resulted 

classifier can be from the optimal one (this corresponds to 

the “approximately correct” part of PAC), and a confidence 

parameter 𝛿 indicating how likely the classifier is to meet 

that accuracy requirement (corresponds to the “probably” 

part of PAC). 

• Under the data access model that we are investigating, these 

approximations are inevitable. Since the training set is randomly 

generated, there may always be a small chance that it will happen to 

be non-representative (for example, the training set might contain only 

one domain point, sampled over and over again). Furthermore, even 

when we are lucky enough to get a training sample that does faithfully 

represent D, because it is just a finite sample, there may always be 

some fine details of D that it fails to reflect. The accuracy parameter, 𝜖, 

allows “forgiving” the learner's classifier for making minor errors.
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Sample Complexity

• The function 𝑚𝐻(𝜖, 𝛿) determines the sample complexity 

of learning H: that is, how many samples are required to 

guarantee a probably approximately correct solution. 

• Note that if H is PAC learnable, there are many 

functions 𝑚𝐻(𝜖, 𝛿) that satisfy the requirements given in 

the definition of PAC learnability. Therefore, to be precise, 

we will define the sample complexity of learning H to be 

the minimal function, in the sense that 𝑚𝐻(𝜖, 𝛿) gives the 

minimal integer that satisfies the requirements of PAC 

learning.

• Using the terminology of sample complexity, Theorem 1 

can be expressed as follows:
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Corollary 2

• Every finite hypothesis class is PAC 

learnable with sample complexity

𝑚𝐻(𝜖, 𝛿) ≤
ln(|H|/δ)

𝜖
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Releasing the Realizability Assumption

• Recall that the realizability assumption requires that there 

exists ℎ∗ ∈ 𝐻 such that ℙ𝑥∽𝐷 ℎ∗ 𝑥 = 𝑓 𝑥 = 1. In many 

practical problems this assumption does not hold. 

Furthermore, it is maybe more realistic not to assume that 

the labels are fully determined by the features we measure 

on input elements (in the case of the papayas learning, it is 

plausible that two papayas of the same color and softness 

will have different taste). In the following, we relax the 

realizability assumption by replacing the “target labeling 

function” with a more flexible notion, a data-labels 

generating distribution.
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• Formally, let D be a probability distribution over X  Y, 

where, X is our domain set and Y is a set of labels (usually 

Y = {0,1}). That is, D is a joint distribution over domain 

points and labels. 

• One can view such a distribution as being composed of 

two parts: a distribution Dx over unlabeled domain points 

(sometimes called the marginal distribution) and a 

conditional probability over labels for each domain point, 

D((x,y)|x). In the papaya example, Dx determines the 

probability of encountering a papaya whose color and 

softness fall in some color-softness values domain, and the 

conditional probability is the probability that a papaya with 

color and softness represented by x is tasty. Indeed, such 

modeling allows for two papayas that share the same color 

and softness to belong to different taste categories.
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The Revised True Error

• For a probability distribution, D, over X  Y, one can 

measure how likely h is to make an error when labeled 

points are randomly drawn according to D. We redefine 

the true error (or risk or loss) of a prediction rule h to be

𝐿𝐷(ℎ) ≝ ℙ(𝑥,𝑦)∽𝐷 ℎ 𝑥 ≠ 𝑦 ≝ 𝐷( 𝑥, 𝑦 : ℎ 𝑥 ≠ 𝑦 )

• We would like to find a predictor, h, for which this error 

will be minimized. However, the learner does not know 

the data generating D. What the learner does have 

access to is the training data, S. 
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• The definition of the empirical risk remains the same as 

before, namely,

𝐿𝑆 ℎ ≝ {𝑖∈ 𝑚 :ℎ(𝑥𝑖)≠𝑦𝑖}
𝑚

• Given S, a learner can compute 𝐿𝑆 ℎ for any function 

ℎ: 𝑋 → 𝑌.

• Note that 𝐿𝑆 ℎ = 𝐿𝐷(uniform over 𝑆) ℎ .

• We wish to find some hypothesis, ℎ: 𝑋 → 𝑌, that 

probably approximately minimizes the true risk, LD(h).
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Definition of 

Agnostic PAC Learnability

A hypothesis class H is Agnostic PAC learnable if there 

exists a function 𝑚𝐻: (0,1) × 0,1 → ℕ and a learning 

algorithm with the following property: 

For every 𝜖, 𝛿 ∈ 0,1 , for every distribution D over X  Y,

when running the learning algorithm on 𝑚 ≥ 𝑚𝐻(𝜖, 𝛿) i.i.d. 

samples generated by D, the algorithm returns a 

hypothesis ℎ ∈ 𝐻 such that, with probability of at least 1 − 𝛿
(over the choice of the m training samples),

𝐿𝐷 ℎ ≤ min
𝑔∈𝐻

𝐿𝐷 𝑔 + 𝜖.
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Agnostic PAC learning generalizes

PAC learning

• If the realizability assumption holds, agnostic PAC learning 

provides the same guarantee as PAC learning. In that 

sense, agnostic PAC learning generalizes PAC learning. 

• When the realizability assumption does not hold, no learner 

can guarantee an arbitrarily small error. Nevertheless, 

under the definition of agnostic PAC learning, a learner can 

still declare success if its error is not much larger than the 

best error achievable by a predictor from the class H.

• This is in contrast to PAC learning, in which the learner is 

required to achieve a small error in absolute terms and not 

relative to the best error achievable by the hypothesis 

class.

Slides 04
12



Extension to a variety of learning tasks

• Multiclass Classification 

 Our classification does not have to be binary. Take, for 

example, the task of document classification according 

to topics.

• Regression

 We wish to find some simple pattern in the data, i.e., a 

functional relationship between the X and Y components 

of the data. Here the target set Y is the the set of real 

numbers.
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Generalized Loss Functions

• To accommodate a wide range of learning tasks we 

generalize our formalism of the measure of success as 

follows:

 Given any set H (that plays the role of our 

hypotheses, or models) and some domain Z let ℓ be 

any function from H  Z to the set of nonnegative real 

numbers,

ℓ:𝐻 × 𝑍 → ℝ+

 The risk function is defined to be the expected loss of 

a classifier, h  H, with respect to a probability 

distribution D over Z, namely,

𝐿𝐷 ℎ ≝ 𝔼
𝑧~𝐷

[ℓ ℎ, 𝑧 ] .
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 Similarly, we define the empirical risk to be the 

expected loss over a given sample 𝑆 = 𝑧1, … , 𝑧𝑚 ∈
𝑍𝑚, namely,

𝐿𝑆 ℎ ≝ 1

𝑚
 𝑖=1
𝑚 ℓ(ℎ,𝑧𝑖).

• For example, the loss function used in the binary and 

multiclass classification tasks is the 0-1 loss:

ℓ0−1(ℎ, 𝑥, 𝑦 ) ≝  
0 if ℎ 𝑥 = 𝑦

1 if ℎ 𝑥 ≠ 𝑦

The random variable 𝑧 ranges over the set of pairs 𝑋 × 𝑌.
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Definition of 

Agnostic PAC Learnability for General Loss Functions

A hypothesis class H is Agnostic PAC learnable with 

respect to a set Z and a loss function ℓ:𝐻 × 𝑍 → ℝ+, if there 

exists a function 𝑚𝐻: (0,1) × 0,1 → ℕ and a learning 

algorithm with the following property: 

For every 𝜖, 𝛿 ∈ 0,1 , for every distribution D over Z, when 

running the learning algorithm on 𝑚 ≥ 𝑚𝐻(𝜖, 𝛿) i.i.d. 

samples generated by D, the algorithm returns a 

hypothesis ℎ ∈ 𝐻 such that, with probability of at least 1 − 𝛿
(over the choice of the m training samples),

𝐿𝐷 ℎ ≤ min
𝑔∈𝐻

𝐿𝐷 𝑔 + 𝜖,

where 𝐿𝐷 ℎ = 𝔼
𝑧~𝐷

[ℓ ℎ, 𝑧 ] .
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• PAC learning was introduced by Leslie

Valiant (1984). 

 Valiant, L. G. (1984), “A theory of the 

learnable,” Communications of the ACM 

27(11), 1134-1142.

• Valiant was named the winner of the 2010 

Turing Award for the introduction of the 

PAC model.
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Machine Learning 

+

Big Data

⇓
Industrially Useful Predictor
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Learning via Uniform Convergence

• The idea behind uniform convergence is very simple.

• Recall that, given a hypothesis class, H, the ERM learning 

paradigm works as follows: Upon receiving a training 

sample, S, the learner evaluates the risk (or error) of each 

h in H on the given sample and outputs a member of H that 

minimizes this empirical risk. 

• The hope is that an h that minimizes the empirical risk with 

respect to S is a risk minimizer w.r.t. the true data 

probability distribution as well. For that, it suffices to ensure 

that the empirical risks of all members of H are good 

approximations of their true risk. This condition is 

formalized as follows.
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definition of 

-representative sample

A training set S is called -representative

(w.r.t. domain Z, hypothesis class H, loss 

function ℓ, and distribution D) if

∀ℎ ∈ 𝐻, 𝐿𝑆 ℎ − 𝐿𝐷 ℎ ≤ 𝜖.
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Proof 

For every ℎ ∈ 𝐻,

𝐿𝐷 ℎ𝑆 ≤ 𝐿𝑆 ℎ𝑆 +
𝜖

2
≤ 𝐿𝑆 ℎ +

𝜖

2
≤ 𝐿𝐷 ℎ +

𝜖

2
+
𝜖

2
= 𝐿𝐷 ℎ + 𝜖,

where the first and third inequalities are due to the 

assumption that S is 
𝜖

2
-representative and the second 

inequality holds since hS is an ERM predictor.



definition of 

Uniform Convergence
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A hypothesis class H has the uniform convergence property 

(w.r.t. a domain Z and a loss function ℓ) if there exists a 

function 𝑚𝐻
UC: (0,1) × 0,1 → ℕ such that for every 𝜖, 𝛿 ∈

0,1 and for every probability distribution D over Z, if S is a 

sample of 𝑚 ≥ 𝑚𝐻
UC(𝜖, 𝛿) instances drawn i.i.d. according 

to D, then, with probability of at least 1 − 𝛿,

S is 𝜖-representative.

• Note: The term uniform here refers to having a fixed sample size 

that works for all members of H and over all possible probability 

distributions over the domain.



• The following corollary follows directly 

from Lemma 4.2 and the definition of 

uniform convergence.
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every finite hypothesis class is 

agnostic PAC learnable

Slides 04
24


