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Übersicht

Der Raum der formalen Sprachen (Wortprobleme) lässt sich wie folgt aufteilen:

unentscheidbare Probleme

co-semi-entscheidbare
Probleme

semi-entscheidbare
Probleme

entscheidbare
Probleme

{Wie kann man die entscheidbaren Probleme weiter unterteilen?
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Königsberg im 18. Jahrhundert

Königsberg, Preußen (heute Kaliningrad, Russland):
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Ein klassisches Problem

Ein populäre Frage der Königsberger:innen:

Gibt es einen Weg durch die Stadt, auf dem man jede der sieben Brücken von Kö-
nigsberg genau einmal überquert?

Im Jahr 1735 beschäftigt sich Leonhard Euler (Mathematiker in Sankt Petersburg) mit
der Frage . . .

und abstrahiert . . .

A

B

C

D
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Eulers Einsichten

A

B

C

D

• Lage der Brücken und Wege von einer Brücke zur nächsten sind egal.

• Ein Pfad kann als Liste von Brücken dargestellt werden, aber es gibt viele
denkbare Listen (7! = 5040).

• Wenn man n-mal auf einer Landmasse ankommt, dann muss man sie auch n-mal
verlassen – außer sie ist Start oder Ziel.

• Daher muss jede Landmasse – außer der Start und das Ziel – eine gerade Zahl an
Brücken besitzen.

{ Der gesuchte Weg kann nicht existieren.
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Verallgemeinerung

Euler legt damit den Grundstein für die Graphentheorie, und definiert ein heute nach
ihm benanntes Konzept:

Ein Eulerpfad ist ein Pfad in einem Graphen, der jede Kante genau einmal durchquert.
Ein Eulerkreis ist ein zyklischer Eulerpfad.

Euler zeigte also:

Satz (Euler): Ein Graph hat genau dann einen Eulerschen Pfad, wenn er maximal
zwei Knoten ungeraden Grades besitzt.
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Ein ähnliches Problem

1859 publiziert der Physiker und Astronom Sir William Rowan Hamilton ein Brettspiel.
Es verkauft sich nicht gut, aber es liefert uns ein weiteres Rätsel auf Graphen:

Ein Hamiltonpfad ist ein Pfad in einem Graphen, der jeden Knoten genau einmal
durchquert. Ein Hamiltonkreis ist ein zyklischer Hamiltonpfad.

Wie bei Eulerpfaden ist die naive Lösung sehr ineffizient, da man alle (exponentiell
viele) Pfade systematisch Durchprobieren muss.

Aber im Gegensatz zu Eulerpfaden hat bislang niemand eine elegante einfache Lösung
gefunden. Die meisten Expert:innen glauben, dass es prinzipiell keine effiziente Lösung
geben kann.

Lässt sich beweisen, dass es keine bessere Lösung gibt?
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Leicht oder schwer?

Aufgabe: Gegeben einen Graphen mit zwei Knoten A und B, finde einen kürzesten
Weg von A nach B.

Leicht! Lösbar in polynomieller Zeit, z.B. mit Dijkstras Algorithmus

Aufgabe: Gegeben einen Graphen mit zwei Knoten A und B, finde einen längsten
Weg von A nach B.

Schwer! Keine sub-exponentielle Lösung bekannt

Warum sind manche Probleme leicht und andere schwer?

(Und das, obwohl sie sich auf den ersten Blick stark ähneln?)
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Quiz: Leicht oder schwer?

Quiz: Überlegen Sie zu den folgenden Problemen, ob sie effizient lösbar sind: . . .
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Einleitung

Fragen:

• Warum sind manche Probleme leicht und andere schwer?

• Und sind sie wirklich schwer oder hatten wir nur bisher nicht die richtige Idee zu
ihrer Lösung?

Der Weg zu Antworten:

Ein Ziel der Komplexitätstheorie ist die Unterteilung berechenbarer Probleme
entsprechend der Menge an Ressourcen, die zu ihrer Lösung nötig sind.

• Unterteile Problem in Klassen gleicher „Schwere“;

• entwickle Methoden zur Bestimmung der Komplexität eines Problems.
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Beschränkung von Zeit und Raum
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Turingmaschinen beschränken

Wir wiederholen zunächst einige Grundlagen aus der Vorlesung Formale Systeme . . .

TMs verwenden zwei Ressourcen, die man beschränken kann:

• Speicher: die Zahl der verwendeten Speicherzellen;

• Zeit: die Zahl der durchgeführten Berechnungsschritte.

Feste Schranken ergeben wenig Sinn (sie führen wieder zu endlichen Automaten).

{ Schranken werden als Funktion in der Länge der Eingabe angegeben.

Beispiel: LBAs beschränken den verfügbaren Speicher auf die Anzahl der Symbole in
der Eingabe. Dies entspricht einer Funktion, welche die Länge n der Eingabe auf den
Maximalwert von n Speicherzellen abbildet.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 12 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Turingmaschinen beschränken

Wir wiederholen zunächst einige Grundlagen aus der Vorlesung Formale Systeme . . .

TMs verwenden zwei Ressourcen, die man beschränken kann:

• Speicher: die Zahl der verwendeten Speicherzellen;

• Zeit: die Zahl der durchgeführten Berechnungsschritte.

Feste Schranken ergeben wenig Sinn (sie führen wieder zu endlichen Automaten).

{ Schranken werden als Funktion in der Länge der Eingabe angegeben.

Beispiel: LBAs beschränken den verfügbaren Speicher auf die Anzahl der Symbole in
der Eingabe. Dies entspricht einer Funktion, welche die Länge n der Eingabe auf den
Maximalwert von n Speicherzellen abbildet.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 12 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Zur Erinnerung: O-Notation

Die O-Notation (mit großem O) charakterisiert Funktionen nach ihrem asymptotischen
Verhalten und „versteckt“ lineare Faktoren.

Für Funktionen f , g : N→ R schreiben wir genau dann f ∈ O(g), wenn gilt:

Es gibt eine Zahl c > 0 und eine Zahl n0 ∈ N,
so dass für jedes n > n0 gilt: f (n) ≤ c · g(n).

Das bedeutet: f wächst höchstens so schnell wie g.

Notation 1: Manchmal schreibt man statt f ∈ O(g) auch f = O(g). (Allerdings ist = dann
eine asymmetrische Relation.)

Notation 2: Manchmal schreibt man statt f ∈ O(g) (oder f = O(g)) auch f (n) ∈ O(g(n))
(oder f (n) = O(g(n))).

Beispiele: • (10n3 + 42n2 − n + 100) ∈ O(n3)
• (2n + n2000) ∈ O(2n)
• 2729 ∈ O(1)
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Schwestern der O-Notation

Randbemerkung: Es gibt neben der O-Notation noch eine Reihe weiterer
asymptotischer Notationen, die in der Informatik verwendet werden:

Notation C = lim
n→∞

f (n)
g(n)

Intuition

f ∈ o(g) C = 0 „ f < g“

f ∈ O(g) C < ∞ „ f ≤ g“

f ∈ Θ(g) 0 < C < ∞ „ f = g“

f ∈ Ω(g) C > 0 „ f ≥ g“

f ∈ ω(g) C = ∞ „ f > g“
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Schranken für Zeit und Raum

Die O-Notation wird verwendet, um allgemeine Ressourcenschranken für TMs anzugeben.

Sei f : N→ R eine Funktion und M eine Turingmaschine.

• M heißt genau dann O( f )-zeitbeschränkt wenn es eine Funktion g ∈ O( f ) gibt,
so dass für alle w ∈ Σ∗ gilt:

M hält auf Eingabe w nach maximal g(|w|) Schritten.

• M heißt genau dann O( f )-speicherbeschränkt wenn es eine Funktion g ∈ O( f )
gibt, so dass für alle w ∈ Σ∗ gilt:

M hält auf Eingabe w und verwendet dabei maximal g(|w|) Speicherzellen.

Beispiel: Ein LBA entspricht einer O(n)-speicherbeschränkten TM.

Beispiel: Eine naive Suche nach einem Eulerpfad wäre O(n!)-zeitbeschränkt, wenn
die Zahl der Kanten n nicht übersteigt.
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Lineare Faktoren

Die O-Notation versteckt bei der Abschätzung der Laufzeit beliebig große konstante
Faktoren. Werden dadurch nicht zu viele unterschiedlich schwere Probleme in einen
Topf geworfen?

Nein. Im Gegenteil: Das TM-Modell der Berechnung kann konstante Faktoren nicht
unterscheiden, zumindest wenn man mehrere Bänder erlaubt:

Satz (Linear Speedup Theorem): Sei M eine TM mit k > 1 Bändern, die bei Ein-
gaben der Länge n nach maximal f (n) Schritten hält. Dann gibt es für jede natürliche
Zahl c > 0 eine äquivalente k-Band-TM M′, die nach maximal f (n)

c +n+2 Schritten hält.

Beispiel: Wenn ein Problem mit einer Zwei-Band-TM in n3 Schritten gelöst werden
kann, so ist das auch in n3

1000000000 + n + 2 Schritten möglich.
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Linear Speedup Theorem: Beweis (1)

Satz (Linear Speedup Theorem): Sei M eine TM mit k > 1 Bändern, die bei Ein-
gaben der Länge n nach maximal f (n) Schritten hält. Dann gibt es für jede natürliche
Zahl c > 0 eine äquivalente k-Band-TM M′, die nach maximal f (n)

c +n+2 Schritten hält.

Beweisskizze: WennM das Arbeitsalphabet Γ hatte, dann verwenden wird fürM′ das
Arbeitsalphabet Γ′ = Σ ∪ Γ6c.

Wir können Bandinhalte dadurch effizient kodieren:

• M′ liest die Eingabe und erzeugt eine kodierte Kopie auf Band 2.

• Dabei werden jeweils 6c Zeichen aus Σ in eines aus Γ6c übersetzt.
(Wir verwenden dazu die zusätzlichen Zustände Q × Γi für 1 ≤ i ≤ 6c − 1.)

• Diese Transkodierung benötigt n + 2 Schritte. (n +
⌈

n
6c

⌉
+ 2 Schritte mit Zurücklaufen)
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Linear Speedup Theorem: Beweis (2)

Satz (Linear Speedup Theorem): Sei M eine TM mit k > 1 Bändern, die bei Einga-
ben der Länge n nach maximal f (n) Schritten hält. Dann gibt es für jede natürliche
Zahl c > 0 eine äquivalente k-Band-TM M′, die nach maximal f (n)

c +n+2 Schritten hält.

Beweisskizze: Wir haben die Eingabe im Alphabet Γ6c kodiert.

Jetzt kann manM simulieren:

• Lies (in vier Schritten, L-R-R-L) das Γ6c-Symbol an den aktuellen k
Bandpositionen, sowie jeweils links und rechts davon.

• Das Ergebnis und die genaue Bandposition vonM wird als Zustand gespeichert:
wir verwenden dazu |Q × {1, . . . , 6c}k × Γ18ck | zusätzliche Zustände.

• Simuliere (in zwei Schritten) die nächsten 6c Schritte vonM (M′ verändert
höchstens das aktuelle Bandfeld und ein benachbartes Feld).

Ergebnis: Simulation von 6cM-Schritten mit 6M′-Schritten. □
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Linear Speedup: Diskussion

Kann jedes Programm beliebig schnell gemacht werden?

In der Praxis: Nein

• Wirkprinzip Linear Speedup: Kodiere mehr Information pro Bandfeld und verarbeite
diese auf einen Schlag mithilfe einer größeren Zustandsübergangstabelle.

• In der Praxis kann man nicht beliebig große Daten in einem Schritt lesen.

• In der Praxis kann man nicht beliebig komplexe Zustandsübergänge in konstanter
Zeit realisieren.

In der Theorie: Nein

• Wir interessieren uns für asymptotisches Verhalten bei beliebig wachsenden
Eingaben.

• Lineare Faktoren machen meist nur bei relativ kleinen Werten einen Unterschied.
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Quiz: O-Notation

Für Funktionen f , g : N→ R schreiben wir genau dann f ∈ O(g), wenn gilt:

Es gibt eine Zahl c > 0 und eine Zahl n0 ∈ N,
so dass für jedes n > n0 gilt: f (n) ≤ c · g(n).

Das bedeutet: f wächst höchstens so schnell wie g.

Quiz: Welche der folgenden Aussagen über das asymptotische Verhalten von Funktio-
nen sind wahr? . . .
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Wichtige Komplexitätsklassen
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Zeit und Raum, deterministisch

Beschränkte TMs können verwendet werden, um viele weitere Sprachklassen zu definieren.

Sei f : N→ R eine Funktion.

• DTIME( f (n)) ist die Klasse aller Sprachen L, welche durch eine
O( f )-zeitbeschränkte Turingmaschine entschieden werden können.

• DSPACE( f (n)) ist die Klasse aller Sprachen L, welche durch eine
O( f )-speicherbeschränkte Turingmaschine entschieden werden können.

Beispiel: Die naive Suche nach Eulerpfaden kann in DSPACE(n) implementiert wer-
den (Übung: Wie?).

Beispiel: Das Halteproblem ist in keiner der Klassen DTIME( f (n)) oder
DSPACE( f (n)), da es durch keine TM entschieden wird.
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Maschinenmodelle

Es gibt viele unterschiedliche Versionen von deterministischen TMs und viele alternative
Berechnungsmodelle (z.B. Mehrband-Maschinen und WHILE-Programme).

Sind DTIME( f ) und DSPACE( f ) für jedes TM-Modell gleich?

Antwort: „Nein, aber bei vielen typischen Variationen gibt es nur polynomielle
Unterschiede.“

Beispiel: Jede O( f (n))-zeitbeschränkte k-Band-TM kann durch eine O(k · f 2(n))-
zeitbeschränkte 1-Band-TM simuliert werden (siehe Formale Systeme, Vorlesung 18).
Einfacher gesagt: Der Verzicht auf mehrere Bänder verursacht maximal quadratische
Zeitkosten (k ist hier ein linearer Faktor).

Anmerkung: Wir betrachten hier verschiedene Versionen deterministischer Rechenmodelle. Zwischen DTMs und NTMs gibt es vermutlich schon
große (nicht-polynomielle) Unterschiede.
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Kodierungsdetails

Es gibt viele unterschiedliche Arten, auf die Eingaben von Problemen als Wörter kodiert
werden können.

Sind DTIME( f ) und DSPACE( f ) für jede Kodierung gleich?

Antwort: „Nein, aber vernünftige Kodierungen unterscheiden sich voneinander in der
Regel nur polynomiell.“

Beispiel: Ein Graph kann als Adjazenzmatrix kodiert werden (O(n2) Speicher) oder
z.B. auch als Adjazenzliste (O(e · log v) Speicher für e Kanten und v Knoten). Letzteres
ist deutlich effizienter für lichte Graphen, aber der Unterschied bleibt stets polynomiell.

Aber: Wir werden Fälle sehen, in denen eine (besonders ineffiziente) Kodierung die
Komplexität verändert.
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Implementierungsdetails

Es gibt viele unterschiedliche Arten um ein Problem praktisch zu lösen, z.B. unter
Verwendung spezifischer Datenstrukturen.

Sind DTIME( f ) und DSPACE( f ) für verschiedene Implementierungsdetails gleich?

Antwort: „Nein, aber die meisten Änderungen an der Implementierung haben
bestenfalls polynomielle oder konstant-lineare Effekte.“
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Ist Komplexitätstheorie praktisch unmöglich?

Die Klassen DTIME( f ) und DSPACE( f ) unterscheiden sich je nach . . .

• . . . Details des Maschinenmodells;

• . . . Details der Eingabekodierung;

• . . . Details der Implementierung.

Eine exakte Bestimmung solcher Schranken ist oft sehr schwer.

Beispiel: Ein naiver Algorithmus zur Matrixmultiplikation liegt in DTIME(n3).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 26 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Ist Komplexitätstheorie praktisch unmöglich?

Die Klassen DTIME( f ) und DSPACE( f ) unterscheiden sich je nach . . .

• . . . Details des Maschinenmodells;

• . . . Details der Eingabekodierung;

• . . . Details der Implementierung.

Eine exakte Bestimmung solcher Schranken ist oft sehr schwer.

Beispiel: Ein naiver Algorithmus zur Matrixmultiplikation liegt in DTIME(n3).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 26 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Ist Komplexitätstheorie praktisch unmöglich?

Die Klassen DTIME( f ) und DSPACE( f ) unterscheiden sich je nach . . .

• . . . Details des Maschinenmodells;

• . . . Details der Eingabekodierung;

• . . . Details der Implementierung.

Eine exakte Bestimmung solcher Schranken ist oft sehr schwer.

Beispiel: Ein naiver Algorithmus zur Matrixmultiplikation liegt in DTIME(n3).
Seit Jahrzehnten suchen Forscher:innen nach besseren Lösungen:
DTIME(n2,808) [Strassen, 1969], DTIME(n2,796) [Pan, 1978], DTIME(n2,780) [Bini et al.,
1979], DTIME(n2,522) [Schönhage, 1981], DTIME(n2,517) [Romani, 1982], DTIME(n2,496)
[Coppersmith & Winograd, 1981], DTIME(n2,479) [Strassen, 1986], DTIME(n2,376) [Cop-
persmith & Winograd, 1990], DTIME(n2,374) [Stothers, 2010] und DTIME(n2,373) [Wil-
liams, 2011].
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Vermutete optimale Lösung: DTIME(n2).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 26 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Wie weiter?

Problem:

• Die exakte Bestimmung der Komplexität ist selbst bei einfachsten Algorithmen
bisher nicht gelungen.

• Selbst wenn sie gelänge, wäre sie von vielen detaillierten Annahmen abhängig, die
praktische Computer eventuell nicht erfüllen.

Lösung:

• Wir betrachten noch allgemeinere Sprachklassen, die auch gegenüber
polynomiellen Änderungen der Ressourcen robust sind.

• Nachteil: Wir können nicht mehr zwischen n und n1000 unterscheiden.

• Vorteil: Wir müssen nicht mehr zwischen n2,374 und n2,373 unterscheiden.
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Wichtige Komplextitätsklassen

Die wichtigen deterministischen Komplexitätsklassen fassen jeweils ganze Familien von
zeit- oder speicherbeschränkten Klassen zusammen. Wir erwähnen hier nur die
praktisch wichtigsten:

P = PTime =
⋃
d≥1

DTime
(
nd
)

polynomielle Zeit

Exp = ExpTime =
⋃
d≥1

DTime
(
2nd )

exponentielle Zeit∗

L = LogSpace = DSpace
(
log n
)

logarithmischer Speicher

PSpace =
⋃
d≥1

DSpace
(
nd
)

polynomieller Speicher

∗) Anmerkung: Dies ist die praktisch wichtigste Definition von „exponentieller Zeit“. Es gibt daneben auch E = ETime =
⋃

d≥1 DTime
(
2dn
)

(exponentielle Zeit mit linearem Exponenten).
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LogSpace? Wie soll das gehen?

Für n > 1 gilt log(n) < n. Auch beliebige lineare Faktoren können das nur für kleine n
kompensieren.

Eine O(log(n))-speicherbeschränkte TM darf also weniger Speicher verwenden als ihre
Eingabe benötigt.{Wie soll das gehen?

Man definiert O(log(n))-speicherbeschränkte Turingmaschinen als besondere
Mehrband-TMs:

• Das erste Band ist das Eingabeband. Es enthält die Eingabe und darf nur
gelesen, aber nicht beschrieben werden.

• Das zweite Band ist das Arbeitsband. Es darf beliebig gelesen und beschrieben
werden, aber es ist auf O(log(n)) viele Speicherzellen beschränkt.

Das genügt zur Erkennung von Sprachen. Wenn die TM eine Ausgabe berechnen soll, dann wird
dafür ein drittes Ausgabeband verwendet, auf dem man beliebig viele Zeichen einmalig schreiben,
aber nicht lesen kann.
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Beziehungen der Komplexitätsklassen

Eine wichtige Frage der Komplexitätstheorie ist, was man über die Beziehungen der
Komplexitätsklassen aussagen kann.

Offensichtlich führen (asymptotisch) höhere Ressourcenschranken zu größeren
Sprachklassen. Oft ist aber nicht klar, ob man mit mehr Ressourcen auch wirklich mehr
(oder einfach nur gleich viele) Probleme lösen kann. Bei einigen Klassen ist das aber
bekannt:

Fakt: Es gilt P ⊊ Exp und LogSpace ⊊ PSpace.

Weiterhin kann man Speicher mit Zeit in Beziehung bringen:

• In n Rechenschritten kann man nur n Speicherzellen nutzen.

• Alle möglichen Konfigurationen auf n Speicherzellen kann man in exponentieller
Zeit (bezüglich n) berechnen.

Fakt: Es gilt LogSpace ⊆ P ⊆ PSpace ⊆ Exp.
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Beispiele

Unsere Klassen sind recht robust: Details der Implementierung haben oft keinen
Einfluss auf die Einordnung eines Problems.
Oft genügt eine Implementierungsskizze um zu zeigen, dass eine Sprache in einer
dieser Klassen liegt.

Beispiel: Eulers Methode um die Existenz von Eulerpfaden zu entscheiden, kann in
LogSpace implementiert werden: Wir zählen die Kanten jedes Knotens und speichern
die Zahl der Knoten ungeraden Grades, jeweils binär.

Beispiel: Die Suche nach Hamilton-Pfaden ist in ExpTime, aber auch in PSpace.

Beispiel: Ein typisches Problem in P haben wir bereits in der Vorlesung Formale Sys-
teme kennengelernt: Das Erfüllbarkeitsproblem aussagenlogischer Horn-Formeln. Un-
ser Resolutionsalgorithmus liefert allerdings keinen Hinweis auf Machbarkeit in L.
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Zusammenfassung und Ausblick

Die Komplexitätstheorie beschäftigt sich mit der Klassifikation entscheidbarer Probleme
nach ihrer Schwierigkeit.

Um robuste Ergebnisse zu erhalten, die nicht von Implementierungsdetails abhängen,
werden oft polynomielle Unterschiede in Kauf genommen.

Die wichtigsten deterministischen Komplexitätsklassen sind:

LogSpace ⊆ P ⊆ PSpace ⊆ Exp

Was erwartet uns als nächstes?

• Effizient lösbare Probleme: P

• Die kleinste „traditionelle“ Komplexitätsklasse: LogSpace

• Weitere Beziehungen zwischen Komplexitäten
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