TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik, Institut fir Ktnstliche Intelligenz, Professur Computational Logic

THEORETISCHE INFORMATIK UND LOGIK

7. Vorlesung: Einfiihrung in die Komplexitdtstheorie

Sebastian Rudolph

Folien: © Markus Krotzsch, https://iccl.inf. tu-dresden.de/web/TheolLog2017, CC BY 3.0 DE

TU Dresden, 5. Mai 2025

https://iccl.inf.tu-dresden.de/web/Computational_Logic
https://iccl.inf.tu-dresden.de/web/TheoLog2025
https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch

Ubersicht

Der Raum der formalen Sprachen (Wortprobleme) lasst sich wie folgt aufteilen:

unentscheidbare Probleme

entscheidbare
Probleme

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 2 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Ubersicht

Der Raum der formalen Sprachen (Wortprobleme) lasst sich wie folgt aufteilen:

unentscheidbare Probleme

semi-entscheidbare .
entscheidbare
Probleme Probleme

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 2 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Ubersicht

Der Raum der formalen Sprachen (Wortprobleme) lasst sich wie folgt aufteilen:

unentscheidbare Probleme

semi-entscheidbare
Probleme

entscheidbare
Probleme

co-semi-entscheidbare
Probleme

Sebastian Rudolph, TU Dresden

Theoretische Informatik und Logik, VL 7

Folie 2 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Ubersicht

Der Raum der formalen Sprachen (Wortprobleme) lasst sich wie folgt aufteilen:

unentscheidbare Probleme

semi-entscheidbare) co-semi-entscheidbare
entscheidbare

Probleme Probleme Probleme

~> Wie kann man die entscheidbaren Probleme weiter unterteilen?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 2 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Kénigsberg im 18. Jahrhundert

Kénigsberg, Preu3en (heute Kaliningrad, Russland):

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 3 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Ein klassisches Problem

Ein populére Frage der Kénigsberger:innen:

Gibt es einen Weg durch die Stadt, auf dem man jede der sieben Briicken von Ko-
nigsberg genau einmal Uberquert?

Im Jahr 1735 beschéftigt sich Leonhard Euler (Mathematiker in Sankt Petersburg) mit
der Frage ...

ormene Aot I Tom VT8 T o5

Kiya, Ny <

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 4 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Ein klassisches Problem

Ein populére Frage der Kénigsberger:innen:
Gibt es einen Weg durch die Stadt, auf dem man jede der sieben Briicken von Ko-

nigsberg genau einmal Uberquert?

Im Jahr 1735 beschéftigt sich Leonhard Euler (Mathematiker in Sankt Petersburg) mit
der Frage ... und abstrahiert ...

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 4 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Eulers Einsichten ©
VOAS
O

®

® | age der Brliicken und Wege von einer Briicke zur néchsten sind egal.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 5 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Eulers Einsichten

Joas
w

® | age der Brliicken und Wege von einer Briicke zur néchsten sind egal.

® Ein Pfad kann als Liste von Brlicken dargestellt werden, aber es gibt viele
denkbare Listen (7! = 5040).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 5 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Eulers Einsichten ©
N

e

® | age der Brliicken und Wege von einer Briicke zur néchsten sind egal.

® Ein Pfad kann als Liste von Brlicken dargestellt werden, aber es gibt viele
denkbare Listen (7! = 5040).

® Wenn man n-mal auf einer Landmasse ankommt, dann muss man sie auch n-mal
verlassen — auf3er sie ist Start oder Ziel.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 5 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Eulers Einsichten ©
N
‘@

® | age der Brliicken und Wege von einer Briicke zur néchsten sind egal.

® Ein Pfad kann als Liste von Brlicken dargestellt werden, aber es gibt viele
denkbare Listen (7! = 5040).

® \Wenn man n-mal auf einer Landmasse ankommt, dann muss man sie auch n-mal
verlassen — auf3er sie ist Start oder Ziel.

® Daher muss jede Landmasse — auBBer der Start und das Ziel — eine gerade Zahl an
Briicken besitzen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 5 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Eulers Einsichten ©
N
‘@

® | age der Brliicken und Wege von einer Briicke zur néchsten sind egal.

® Ein Pfad kann als Liste von Brlicken dargestellt werden, aber es gibt viele
denkbare Listen (7! = 5040).

® \Wenn man n-mal auf einer Landmasse ankommt, dann muss man sie auch n-mal
verlassen — auf3er sie ist Start oder Ziel.

® Daher muss jede Landmasse — auBBer der Start und das Ziel — eine gerade Zahl an
Briicken besitzen.

~ Der gesuchte Weg kann nicht existieren.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 5 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Verallgemeinerung

Euler legt damit den Grundstein fiir die Graphentheorie, und definiert ein heute nach
ihm benanntes Konzept:

Ein Eulerpfad ist ein Pfad in einem Graphen, der jede Kante genau einmal durchquert.
Ein Eulerkreis ist ein zyklischer Eulerpfad.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 6 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Verallgemeinerung

Euler legt damit den Grundstein fiir die Graphentheorie, und definiert ein heute nach
ihm benanntes Konzept:

Ein Eulerpfad ist ein Pfad in einem Graphen, der jede Kante genau einmal durchquert.
Ein Eulerkreis ist ein zyklischer Eulerpfad.

Euler zeigte also:

Satz (Euler): Ein Graph hat genau dann einen Eulerschen Pfad, wenn er maximal
zwei Knoten ungeraden Grades besitzt.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 6 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Verallgemeinerung

Euler legt damit den Grundstein fiir die Graphentheorie, und definiert ein heute nach
ihm benanntes Konzept:

Ein Eulerpfad ist ein Pfad in einem Graphen, der jede Kante genau einmal durchquert.
Ein Eulerkreis ist ein zyklischer Eulerpfad.

Euler zeigte also:

Satz (Euler): Ein Graph hat genau dann einen Eulerschen Pfad, wenn er maximal
zwei Knoten ungeraden Grades besitzt.

SR A NN

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 6 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Ein &hnliches Problem

1859 publiziert der Physiker und Astronom Sir William Rowan Hamilton ein Brettspiel.
Es verkauft sich nicht gut, aber es liefert uns ein weiteres Rétsel auf Graphen:

Ein Hamiltonpfad ist ein Pfad in einem Graphen, der jeden Knoten genau einmal
durchquert. Ein Hamiltonkreis ist ein zyklischer Hamiltonpfad.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 7 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Ein &hnliches Problem

1859 publiziert der Physiker und Astronom Sir William Rowan Hamilton ein Brettspiel.
Es verkauft sich nicht gut, aber es liefert uns ein weiteres Rétsel auf Graphen:

Ein Hamiltonpfad ist ein Pfad in einem Graphen, der jeden Knoten genau einmal
durchquert. Ein Hamiltonkreis ist ein zyklischer Hamiltonpfad.

Wie bei Eulerpfaden ist die naive Lésung sehr ineffizient, da man alle (exponentiell
viele) Pfade systematisch Durchprobieren muss.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 7 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Ein &hnliches Problem

1859 publiziert der Physiker und Astronom Sir William Rowan Hamilton ein Brettspiel.
Es verkauft sich nicht gut, aber es liefert uns ein weiteres Rétsel auf Graphen:

Ein Hamiltonpfad ist ein Pfad in einem Graphen, der jeden Knoten genau einmal
durchquert. Ein Hamiltonkreis ist ein zyklischer Hamiltonpfad.

Wie bei Eulerpfaden ist die naive Lésung sehr ineffizient, da man alle (exponentiell
viele) Pfade systematisch Durchprobieren muss.

Aber im Gegensatz zu Eulerpfaden hat bislang niemand eine elegante einfache Lésung
gefunden. Die meisten Expert:innen glauben, dass es prinzipiell keine effiziente Lésung
geben kann.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 7 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Ein &hnliches Problem

1859 publiziert der Physiker und Astronom Sir William Rowan Hamilton ein Brettspiel.
Es verkauft sich nicht gut, aber es liefert uns ein weiteres Rétsel auf Graphen:

Ein Hamiltonpfad ist ein Pfad in einem Graphen, der jeden Knoten genau einmal
durchquert. Ein Hamiltonkreis ist ein zyklischer Hamiltonpfad.

Wie bei Eulerpfaden ist die naive Lésung sehr ineffizient, da man alle (exponentiell
viele) Pfade systematisch Durchprobieren muss.

Aber im Gegensatz zu Eulerpfaden hat bislang niemand eine elegante einfache Lésung
gefunden. Die meisten Expert:innen glauben, dass es prinzipiell keine effiziente Lésung
geben kann.

Lasst sich beweisen, dass es keine bessere Lésung gibt?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 7 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Leicht oder schwer?

Aufgabe: Gegeben einen Graphen mit zwei Knoten A und B, finde einen klirzesten
Weg von A nach B.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 8 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Leicht oder schwer?

Aufgabe: Gegeben einen Graphen mit zwei Knoten A und B, finde einen klirzesten
Weg von A nach B.

Leicht! Lésbar in polynomieller Zeit, z.B. mit Dijkstras Algorithmus

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 8 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Leicht oder schwer?

Aufgabe: Gegeben einen Graphen mit zwei Knoten A und B, finde einen klirzesten
Weg von A nach B.

Leicht! Lésbar in polynomieller Zeit, z.B. mit Dijkstras Algorithmus

Aufgabe: Gegeben einen Graphen mit zwei Knoten A und B, finde einen langsten
Weg von A nach B.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 8 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Leicht oder schwer?

Aufgabe: Gegeben einen Graphen mit zwei Knoten A und B, finde einen klirzesten
Weg von A nach B.

Leicht! Lésbar in polynomieller Zeit, z.B. mit Dijkstras Algorithmus

Aufgabe: Gegeben einen Graphen mit zwei Knoten A und B, finde einen langsten
Weg von A nach B.

Schwer! Keine sub-exponentielle Ldsung bekannt

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 8 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Leicht oder schwer?

Aufgabe: Gegeben einen Graphen mit zwei Knoten A und B, finde einen klirzesten
Weg von A nach B.

Leicht! Lésbar in polynomieller Zeit, z.B. mit Dijkstras Algorithmus

Aufgabe: Gegeben einen Graphen mit zwei Knoten A und B, finde einen langsten
Weg von A nach B.

Schwer! Keine sub-exponentielle Ldsung bekannt

Warum sind manche Probleme leicht und andere schwer?

(Und das, obwohl sie sich auf den ersten Blick stark &hneln?)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 8 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Quiz: Leicht oder schwer?

Quiz: Uberlegen Sie zu den folgenden Problemen, ob sie effizient Idsbar sind: . ..

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 9 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Einleitung

Fragen:
e Warum sind manche Probleme leicht und andere schwer?

® Und sind sie wirklich schwer oder hatten wir nur bisher nicht die richtige ldee zu
ihrer Losung?

Der Weg zu Antworten:

Ein Ziel der Komplexitatstheorie ist die Unterteilung berechenbarer Probleme
entsprechend der Menge an Ressourcen, die zu ihrer Ldsung nétig sind.

® Unterteile Problem in Klassen gleicher ,Schwere®;
® entwickle Methoden zur Bestimmung der Komplexitat eines Problems.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 10 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beschrankung von Zeit und Raum

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 11 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen beschranken

Wir wiederholen zunachst einige Grundlagen aus der Vorlesung Formale Systeme ...

TMs verwenden zwei Ressourcen, die man beschrénken kann:
® Speicher: die Zahl der verwendeten Speicherzellen;
e Zeit: die Zahl der durchgefuhrten Berechnungsschritte.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 12 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Turingmaschinen beschranken

Wir wiederholen zunachst einige Grundlagen aus der Vorlesung Formale Systeme ...

TMs verwenden zwei Ressourcen, die man beschranken kann:
® Speicher: die Zahl der verwendeten Speicherzellen;
e Zeit: die Zahl der durchgefuhrten Berechnungsschritte.
Feste Schranken ergeben wenig Sinn (sie fliihren wieder zu endlichen Automaten).
~» Schranken werden als Funktion in der Lange der Eingabe angegeben.

Beispiel: LBAs beschréanken den verfligbaren Speicher auf die Anzahl der Symbole in
der Eingabe. Dies entspricht einer Funktion, welche die Lange n der Eingabe auf den
Maximalwert von n Speicherzellen abbildet.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 12 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zur Erinnerung: O-Notation

Die O-Notation (mit groBem O) charakterisiert Funktionen nach ihrem asymptotischen
Verhalten und ,versteckt lineare Faktoren.

Fir Funktionen f, g : N — R schreiben wir genau dann f € O(g), wenn gilt:

Es gibt eine Zahl ¢ > 0 und eine Zahl ny € N,
so dass fir jedes n > ng gilt: f(n) < ¢ - g(n).

Das bedeutet: f wachst hdchstens so schnell wie g.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 13 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zur Erinnerung: O-Notation

Die O-Notation (mit groBem O) charakterisiert Funktionen nach ihrem asymptotischen
Verhalten und ,versteckt lineare Faktoren.

Fir Funktionen f, g : N — R schreiben wir genau dann f € O(g), wenn gilt:

Es gibt eine Zahl ¢ > 0 und eine Zahl ny € N,
so dass fir jedes n > ng gilt: f(n) < ¢ - g(n).

Das bedeutet: f wachst hdchstens so schnell wie g.

Notation 1: Manchmal schreibt man statt f € O(g) auch f = O(g). (Allerdings ist = dann
eine asymmetrische Relation.)

Notation 2: Manchmal schreibt man statt f € O(g) (oder f = O(g)) auch f(n) € O(g(n))
(oder f(n) = O(g(n))).

Beispiele: ® (10n® + 421> — n + 100) € O(n®)
° (Zn + n2000) c 0(2n)
e 279 ¢ 0(1)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 13 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Schwestern der O-Notation

Randbemerkung: Es gibt neben der O-Notation noch eine Reihe weiterer
asymptotischer Notationen, die in der Informatik verwendet werden:

f

Notation C = l}l_{g e Intuition
feo(® c=0 W <g"
f €0 C<oo S8
f €0y 0<C<o of = 8"
e Cc>0 of =g
few(g C=o0 of > 8"

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 14 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Schranken fir Zeit und Raum

Die O-Notation wird verwendet, um allgemeine Ressourcenschranken fir TMs anzugeben.

Sei f : N — R eine Funktion und M eine Turingmaschine.
® M hei3t genau dann O(f)-zeitbeschrankt wenn es eine Funktion g € O(f) gibt,
so dass fur alle w € Z* gilt:
M halt auf Eingabe w nach maximal g(jw|) Schritten.
®* M heiB3t genau dann O(f)-speicherbeschrankt wenn es eine Funktion g € O(f)
gibt, so dass flr alle w € X* gilt:
M hélt auf Eingabe w und verwendet dabei maximal g(jw|) Speicherzellen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 15 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Schranken fir Zeit und Raum

Die O-Notation wird verwendet, um allgemeine Ressourcenschranken fir TMs anzugeben.

Sei f : N — R eine Funktion und M eine Turingmaschine.
® M hei3t genau dann O(f)-zeitbeschrankt wenn es eine Funktion g € O(f) gibt,
so dass fur alle w € Z* gilt:
M halt auf Eingabe w nach maximal g(jw|) Schritten.
®* M heiB3t genau dann O(f)-speicherbeschrankt wenn es eine Funktion g € O(f)
gibt, so dass flr alle w € X* gilt:
M hélt auf Eingabe w und verwendet dabei maximal g(jw|) Speicherzellen.

Beispiel: Ein LBA entspricht einer O(n)-speicherbeschrankten TM.

Beispiel: Eine naive Suche nach einem Eulerpfad ware O(n!)-zeitbeschréankt, wenn
die Zahl der Kanten n nicht Ubersteigt.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 15 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Lineare Faktoren

Die O-Notation versteckt bei der Abschatzung der Laufzeit beliebig grof3e konstante
Faktoren. Werden dadurch nicht zu viele unterschiedlich schwere Probleme in einen
Topf geworfen?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 16 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Lineare Faktoren

Die O-Notation versteckt bei der Abschétzung der Laufzeit beliebig gro3e konstante
Faktoren. Werden dadurch nicht zu viele unterschiedlich schwere Probleme in einen
Topf geworfen?

Nein. Im Gegenteil: Das TM-Modell der Berechnung kann konstante Faktoren nicht
unterscheiden, zumindest wenn man mehrere Bander erlaubt:

Satz (Linear Speedup Theorem): Sei M eine TM mit k > 1 Bandern, die bei Ein-
gaben der Lange n nach maximal f(n) Schritten halt. Dann gibtves fur jede natirliche
Zahl ¢ > 0 eine aquivalente k-Band-TM AM’, die nach maximal 1@ 4 42 Schritten halt.

c

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 16 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Lineare Faktoren

Die O-Notation versteckt bei der Abschétzung der Laufzeit beliebig gro3e konstante
Faktoren. Werden dadurch nicht zu viele unterschiedlich schwere Probleme in einen
Topf geworfen?

Nein. Im Gegenteil: Das TM-Modell der Berechnung kann konstante Faktoren nicht
unterscheiden, zumindest wenn man mehrere Bander erlaubt:

Satz (Linear Speedup Theorem): Sei M eine TM mit k > 1 Bandern, die bei Ein-
gaben der Lange n nach maximal f(n) Schritten halt. Dann gibtves fur jede natirliche
Zahl ¢ > 0 eine aquivalente k-Band-TM AM’, die nach maximal 1@ 4 42 Schritten halt.

c

Beispiel: Wenn ein Problem mit einer Zwei-Band-TM in »n® Schritten gelést werden
kann, so ist das auch in W;OOOO + n + 2 Schritten maglich.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 16 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Linear Speedup Theorem: Beweis (1)

Satz (Linear Speedup Theorem): Sei M eine TM mit k > 1 Bandern, die bei Ein-
gaben der Lange n nach maximal f(n) Schritten halt. Dann gibt es fiir jede natirliche
Zahl ¢ > 0 eine &quivalente k-Band-TM AM’, die nach maximal @ +n+2 Schritten halt.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 17 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Linear Speedup Theorem: Beweis (1)

Satz (Linear Speedup Theorem): Sei M eine TM mit k > 1 Bandern, die bei Ein-
gaben der Lange n nach maximal f(n) Schritten halt. Dann gibt es fiir jede natirliche
Zahl ¢ > 0 eine aquivalente k-Band-TM AM’, die nach maximal @ +n+2 Schritten halt.

Beweisskizze: Wenn M das Arbeitsalphabet I" hatte, dann verwenden wird fir M’ das
Arbeitsalphabet I'" = £ U T,

Wir kdnnen Bandinhalte dadurch effizient kodieren:
* M’ liest die Eingabe und erzeugt eine kodierte Kopie auf Band 2.

¢ Dabei werden jeweils 6¢ Zeichen aus X in eines aus I'* (ibersetzt.
(Wir verwenden dazu die zusétzlichen Zustande Q x I fiir 1 <i < 6¢ — 1.)

® Diese Transkodierung benétigt n + 2 Schritte. (n+ [%1 + 2 Schritte mit Zurticklaufen)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 17 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Linear Speedup Theorem: Beweis (2)

Satz (Linear Speedup Theorem): Sei M eine TM mit k£ > 1 Bandern, die bei Einga-
ben der Lange n nach maximal f(n) Schritten halt. Dann gibt es flr jede natirliche
Zahl ¢ > 0 eine &quivalente k-Band-TM A’, die nach maximal 1™ 4 n+2 Schritten halt.

c

Beweisskizze: Wir haben die Eingabe im Alphabet ' kodiert.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 18 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Linear Speedup Theorem: Beweis (2)

Satz (Linear Speedup Theorem): Sei M eine TM mit k£ > 1 Bandern, die bei Einga-
ben der Lange n nach maximal f(n) Schritten halt. Dann gibt es fir jede natlrliche
Zahl ¢ > 0 eine &quivalente k-Band-TM A’, die nach maximal 1™ 4 n+2 Schritten halt.

c

Beweisskizze: Wir haben die Eingabe im Alphabet I'* kodiert.

Jetzt kann man M simulieren:

e Lies (in vier Schritten, L-R-R-L) das I'**-Symbol an den aktuellen k
Bandpositionen, sowie jeweils links und rechts davon.

® Das Ergebnis und die genaue Bandposition von M wird als Zustand gespeichert:
wir verwenden dazu |Q x {1, ..., 6¢}f x I''8| zusatzliche Zustande.

e Simuliere (in zwei Schritten) die nachsten 6¢ Schritte von M (M’ veréandert
hoéchstens das aktuelle Bandfeld und ein benachbartes Feld).

Ergebnis: Simulation von 6¢ M-Schritten mit 6 M’-Schritten. O

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 18 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Linear Speedup: Diskussion

Kann jedes Programm beliebig schnell gemacht werden?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 19 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Linear Speedup: Diskussion

Kann jedes Programm beliebig schnell gemacht werden?

In der Praxis: Nein
® Wirkprinzip Linear Speedup: Kodiere mehr Information pro Bandfeld und verarbeite
diese auf einen Schlag mithilfe einer gréBeren Zustandslibergangstabelle.
® |n der Praxis kann man nicht beliebig gro3e Daten in einem Schritt lesen.

® |n der Praxis kann man nicht beliebig komplexe Zustandslibergénge in konstanter
Zeit realisieren.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 19 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Linear Speedup: Diskussion

Kann jedes Programm beliebig schnell gemacht werden?

In der Praxis: Nein

® Wirkprinzip Linear Speedup: Kodiere mehr Information pro Bandfeld und verarbeite
diese auf einen Schlag mithilfe einer gréBeren Zustandslibergangstabelle.

® |n der Praxis kann man nicht beliebig gro3e Daten in einem Schritt lesen.

® |n der Praxis kann man nicht beliebig komplexe Zustandslibergénge in konstanter
Zeit realisieren.

In der Theorie: Nein

* Wir interessieren uns fiir asymptotisches Verhalten bei beliebig wachsenden
Eingaben.

® | ineare Faktoren machen meist nur bei relativ kleinen Werten einen Unterschied.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 19 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Quiz: O-Notation

Far Funktionen f, g : N — R schreiben wir genau dann f € O(g), wenn gilt:

Es gibt eine Zahl ¢ > 0 und eine Zahl ny € N,
so dass flr jedes n > ny gilt: f(n) < ¢ - g(n).

Das bedeutet: f wachst héchstens so schnell wie g.

Quiz: Welche der folgenden Aussagen Uber das asymptotische Verhalten von Funktio-
nen sind wahr? ...

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 20 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Wichtige Komplexitatsklassen

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 21 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zeit und Raum, deterministisch

Beschrankte TMs kdnnen verwendet werden, um viele weitere Sprachklassen zu definieren.

Sei f : N — R eine Funktion.
® DTIME(f(n)) ist die Klasse aller Sprachen L, welche durch eine
O(f)-zeitbeschrankte Turingmaschine entschieden werden kdnnen.
® DSPACE(f(n)) ist die Klasse aller Sprachen L, welche durch eine
O(f)-speicherbeschrankte Turingmaschine entschieden werden kénnen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 22 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zeit und Raum, deterministisch

Beschrankte TMs kdnnen verwendet werden, um viele weitere Sprachklassen zu definieren.

Sei f : N — R eine Funktion.
® DTIME(f(n)) ist die Klasse aller Sprachen L, welche durch eine
O(f)-zeitbeschrankte Turingmaschine entschieden werden kdnnen.
® DSPACE(f(n)) ist die Klasse aller Sprachen L, welche durch eine
O(f)-speicherbeschrankte Turingmaschine entschieden werden kénnen.

Beispiel: Die naive Suche nach Eulerpfaden kann in DSPACE(n) implementiert wer-
den (Ubung: Wie?).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 22 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zeit und Raum, deterministisch

Beschrankte TMs kdnnen verwendet werden, um viele weitere Sprachklassen zu definieren.

Sei f : N — R eine Funktion.
® DTIME(f(n)) ist die Klasse aller Sprachen L, welche durch eine
O(f)-zeitbeschrankte Turingmaschine entschieden werden kdnnen.
® DSPACE(f(n)) ist die Klasse aller Sprachen L, welche durch eine
O(f)-speicherbeschrankte Turingmaschine entschieden werden kénnen.

Beispiel: Die naive Suche nach Eulerpfaden kann in DSPACE(n) implementiert wer-
den (Ubung: Wie?).

Beispiel: Das Halteproblem ist in keiner der Klassen DTIME(f(n)) oder
DSPACE(f(n)), da es durch keine TM entschieden wird.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 22 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Maschinenmodelle

Es gibt viele unterschiedliche Versionen von deterministischen TMs und viele alternative
Berechnungsmodelle (z.B. Mehrband-Maschinen und WHILE-Programme).

Sind DTIME(f) und DSPACE(() fur jedes TM-Modell gleich?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 23 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Maschinenmodelle

Es gibt viele unterschiedliche Versionen von deterministischen TMs und viele alternative
Berechnungsmodelle (z.B. Mehrband-Maschinen und WHILE-Programme).

Sind DTIME(f) und DSPACE(f) fur jedes TM-Modell gleich?

Antwort: ,Nein, aber bei vielen typischen Variationen gibt es nur polynomielle
Unterschiede.”

Beispiel: Jede O(f(n))-zeitbeschrénkte k-Band-TM kann durch eine O(k - f*(n))-
zeitbeschrankte 1-Band-TM simuliert werden (siehe Formale Systeme, Vorlesung 18).
Einfacher gesagt: Der Verzicht auf mehrere Bander verursacht maximal quadratische
Zeitkosten (k ist hier ein linearer Faktor).

Anmerkung: Wir betrachten hier verschiedene Versionen deterministischer Rechenmodelle. Zwischen DTMs und NTMs gibt es vermutlich schon
groBe (nicht-polynomielle) Unterschiede.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 23 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Kodierungsdetails

Es gibt viele unterschiedliche Arten, auf die Eingaben von Problemen als Wérter kodiert
werden kdnnen.

Sind DTIME(f) und DSPACE(() fur jede Kodierung gleich?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 24 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Kodierungsdetails

Es gibt viele unterschiedliche Arten, auf die Eingaben von Problemen als Wérter kodiert
werden kdnnen.

Sind DTIME(f) und DSPACE(() fur jede Kodierung gleich?

Antwort: ,Nein, aber verniinftige Kodierungen unterscheiden sich voneinander in der
Regel nur polynomiell.”

Beispiel: Ein Graph kann als Adjazenzmatrix kodiert werden (O(n?) Speicher) oder
z.B. auch als Adjazenzliste (O(e - logv) Speicher flr e Kanten und v Knoten). Letzteres
ist deutlich effizienter fir lichte Graphen, aber der Unterschied bleibt stets polynomiell.

Aber: Wir werden Falle sehen, in denen eine (besonders ineffiziente) Kodierung die
Komplexitat veréndert.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 24 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Implementierungsdetails

Es gibt viele unterschiedliche Arten um ein Problem praktisch zu I6sen, z.B. unter
Verwendung spezifischer Datenstrukturen.

Sind DTIME(f) und DSPACE() fur verschiedene Implementierungsdetails gleich?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 25 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Implementierungsdetails

Es gibt viele unterschiedliche Arten um ein Problem praktisch zu I6sen, z.B. unter
Verwendung spezifischer Datenstrukturen.

Sind DTIME(f) und DSPACE() fur verschiedene Implementierungsdetails gleich?

Antwort: ,Nein, aber die meisten Anderungen an der Implementierung haben
bestenfalls polynomielle oder konstant-lineare Effekte.”

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 25 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Ist Komplexitatstheorie praktisch unmdoglich?

Die Klassen DTIME(f) und DSPACE(f) unterscheiden sich je nach ...

® ...Details des Maschinenmodells;
® .. .Details der Eingabekodierung;
e .. Details der Implementierung.
Eine exakte Bestimmung solcher Schranken ist oft sehr schwer.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7

Folie 26 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Ist Komplexitatstheorie praktisch unmdoglich?

Die Klassen DTIME(f) und DSPACE(f) unterscheiden sich je nach ...
® ...Details des Maschinenmodells;
® .. .Details der Eingabekodierung;
e .. Details der Implementierung.

Eine exakte Bestimmung solcher Schranken ist oft sehr schwer.

Beispiel: Ein naiver Algorithmus zur Matrixmultiplikation liegt in DTIME(n?).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 26 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Ist Komplexitatstheorie praktisch unmdoglich?

Die Klassen DTIME(f) und DSPACE(f) unterscheiden sich je nach ...
® ...Details des Maschinenmodells;
® .. .Details der Eingabekodierung;
e .. Details der Implementierung.

Eine exakte Bestimmung solcher Schranken ist oft sehr schwer.

Beispiel: Ein naiver Algorithmus zur Matrixmultiplikation liegt in DTIME(#?).

Seit Jahrzehnten suchen Forscher:innen nach besseren Lésungen:

DTIME(n>%%%) [Strassen, 1969], DTIME(n>"%) [Pan, 1978], DTIME(n>"%") [Bini et al.,
1979], DTIME(n*??) [Schénhage, 1981], DTIME(n**'") [Romani, 1982], DTIME(n”>**°)
[Coppersmith & Winograd, 1981], DTIME(n>*"?) [Strassen, 1986], DTIME(»n>"°) [Cop-
persmith & Winograd, 1990], DTIME(n>3"*) [Stothers, 2010] und DTIME(#n>"3) [Wil-
liams, 2011].

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 26 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Ist Komplexitatstheorie praktisch unmdoglich?

Die Klassen DTIME(f) und DSPACE(f) unterscheiden sich je nach ...
® ...Details des Maschinenmodells;
® .. .Details der Eingabekodierung;
e .. Details der Implementierung.

Eine exakte Bestimmung solcher Schranken ist oft sehr schwer.

Beispiel: Ein naiver Algorithmus zur Matrixmultiplikation liegt in DTIME(#?).

Seit Jahrzehnten suchen Forscher:innen nach besseren Lésungen:

DTIME(n>%%%) [Strassen, 1969], DTIME(n>"%) [Pan, 1978], DTIME(n>"%") [Bini et al.,
1979], DTIME(n*??) [Schénhage, 1981], DTIME(n**'") [Romani, 1982], DTIME(n”>**°)
[Coppersmith & Winograd, 1981], DTIME(n>*"?) [Strassen, 1986], DTIME(»n>"°) [Cop-
persmith & Winograd, 1990], DTIME(n>3"*) [Stothers, 2010] und DTIME(#n>"3) [Wil-
liams, 2011].

Vermutete optimale Lésung: DTIME(n?).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 26 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Wie weiter?

Problem:
® Die exakte Bestimmung der Komplexitét ist selbst bei einfachsten Algorithmen
bisher nicht gelungen.
® Selbst wenn sie gelédnge, ware sie von vielen detaillierten Annahmen abhangig, die
praktische Computer eventuell nicht erfillen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 27 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Wie weiter?

Problem:

® Die exakte Bestimmung der Komplexitét ist selbst bei einfachsten Algorithmen
bisher nicht gelungen.

® Selbst wenn sie gelédnge, ware sie von vielen detaillierten Annahmen abhangig, die
praktische Computer eventuell nicht erfillen.

Lésung:

® Wir betrachten noch allgemeinere Sprachklassen, die auch gegentber
polynomiellen Anderungen der Ressourcen robust sind.

e Nachteil: Wir kdnnen nicht mehr zwischen n und n'%%° unterscheiden.

e Vorteil: Wir mlissen nicht mehr zwischen 1n237* und n%373 unterscheiden.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 27 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Wichtige Komplextitatsklassen

Die wichtigen deterministischen Komplexitatsklassen fassen jeweils ganze Familien von
zeit- oder speicherbeschrankten Klassen zusammen. Wir erwahnen hier nur die
praktisch wichtigsten:

P = PTime = U DTime(nd) polynomielle Zeit
d>1
Exp = ExpTime = U DTime(Z"d) exponentielle Zeit*
d>1
L = LogSpace = DSpace(logn) logarithmischer Speicher
PSpace = U DSpace(nd) polynomieller Speicher
d>1

) Anmerkung: Dies ist die praktisch wichtigste Definition von ,exponentieller Zeit. Es gibt daneben auch E = ETime = (J 5| DTime(2d")
(exponentielle Zeit mit linearem Exponenten).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 28 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

LogSpace? Wie soll das gehen?

Farn > 1 gilt log(n) < n. Auch beliebige lineare Faktoren kénnen das nur fir kleine n
kompensieren.

Eine O(log(n))-speicherbeschréankte TM darf also weniger Speicher verwenden als ihre
Eingabe benétigt. ~ Wie soll das gehen?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 29 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

LogSpace? Wie soll das gehen?

Farn > 1 gilt log(n) < n. Auch beliebige lineare Faktoren kénnen das nur fir kleine n
kompensieren.

Eine O(log(n))-speicherbeschréankte TM darf also weniger Speicher verwenden als ihre
Eingabe benétigt. ~ Wie soll das gehen?

Man definiert O(log(n))-speicherbeschrénkte Turingmaschinen als besondere
Mehrband-TMs:
® Das erste Band ist das Eingabeband. Es enthalt die Eingabe und darf nur
gelesen, aber nicht beschrieben werden.
® Das zweite Band ist das Arbeitsband. Es darf beliebig gelesen und beschrieben
werden, aber es ist auf O(log(n)) viele Speicherzellen beschrankt.

Das geniigt zur Erkennung von Sprachen. Wenn die TM eine Ausgabe berechnen soll, dann wird
daflir ein drittes Ausgabeband verwendet, auf dem man beliebig viele Zeichen einmalig schreiben,
aber nicht lesen kann.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 29 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beziehungen der Komplexitatsklassen

Eine wichtige Frage der Komplexitatstheorie ist, was man Uber die Beziehungen der
Komplexitatsklassen aussagen kann.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 30 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beziehungen der Komplexitatsklassen

Eine wichtige Frage der Komplexitatstheorie ist, was man Uber die Beziehungen der
Komplexitatsklassen aussagen kann.

Offensichtlich fihren (asymptotisch) hdhere Ressourcenschranken zu gréBeren
Sprachklassen. Oft ist aber nicht klar, ob man mit mehr Ressourcen auch wirklich mehr
(oder einfach nur gleich viele) Probleme I6sen kann. Bei einigen Klassen ist das aber
bekannt:

Fakt: Es gilt P ¢ Exp und LogSpace ¢ PSpace.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 30 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beziehungen der Komplexitatsklassen

Eine wichtige Frage der Komplexitatstheorie ist, was man Uber die Beziehungen der
Komplexitatsklassen aussagen kann.

Offensichtlich fihren (asymptotisch) hdhere Ressourcenschranken zu gréBeren
Sprachklassen. Oft ist aber nicht klar, ob man mit mehr Ressourcen auch wirklich mehr
(oder einfach nur gleich viele) Probleme I6sen kann. Bei einigen Klassen ist das aber
bekannt:

Fakt: Es gilt P ¢ Exp und LogSpace ¢ PSpace.

Weiterhin kann man Speicher mit Zeit in Beziehung bringen:
® In n Rechenschritten kann man nur n Speicherzellen nutzen.

* Alle mdglichen Konfigurationen auf n Speicherzellen kann man in exponentieller
Zeit (bezlglich n) berechnen.

Fakt: Es gilt LogSpace c P € PSpace c Exp.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 30 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiele

Unsere Klassen sind recht robust: Details der Implementierung haben oft keinen
Einfluss auf die Einordnung eines Problems.
Oft gendigt eine Implementierungsskizze um zu zeigen, dass eine Sprache in einer

dieser Klassen liegt.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 31 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiele

Unsere Klassen sind recht robust: Details der Implementierung haben oft keinen
Einfluss auf die Einordnung eines Problems.
Oft gendigt eine Implementierungsskizze um zu zeigen, dass eine Sprache in einer

dieser Klassen liegt.

Beispiel: Eulers Methode um die Existenz von Eulerpfaden zu entscheiden, kann in
LogSpace implementiert werden: Wir zahlen die Kanten jedes Knotens und speichern
die Zahl der Knoten ungeraden Grades, jeweils binar.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 31 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiele

Unsere Klassen sind recht robust: Details der Implementierung haben oft keinen

Einfluss auf die Einordnung eines Problems.
Oft gendigt eine Implementierungsskizze um zu zeigen, dass eine Sprache in einer

dieser Klassen liegt.

Beispiel: Eulers Methode um die Existenz von Eulerpfaden zu entscheiden, kann in
LogSpace implementiert werden: Wir zahlen die Kanten jedes Knotens und speichern
die Zahl der Knoten ungeraden Grades, jeweils binar.

Beispiel: Die Suche nach Hamilton-Pfaden ist in ExpTime, aber auch in PSpace.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 31 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiele

Unsere Klassen sind recht robust: Details der Implementierung haben oft keinen
Einfluss auf die Einordnung eines Problems.

Oft gendgt eine Implementierungsskizze um zu zeigen, dass eine Sprache in einer
dieser Klassen liegt.

Beispiel: Eulers Methode um die Existenz von Eulerpfaden zu entscheiden, kann in
LogSpace implementiert werden: Wir zahlen die Kanten jedes Knotens und speichern
die Zahl der Knoten ungeraden Grades, jeweils binar.

Beispiel: Die Suche nach Hamilton-Pfaden ist in ExpTime, aber auch in PSpace.

Beispiel: Ein typisches Problem in P haben wir bereits in der Vorlesung Formale Sys-
teme kennengelernt: Das Erfillbarkeitsproblem aussagenlogischer Horn-Formeln. Un-
ser Resolutionsalgorithmus liefert allerdings keinen Hinweis auf Machbarkeit in L.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 31 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zusammenfassung und Ausblick

Die Komplexitétstheorie beschaftigt sich mit der Klassifikation entscheidbarer Probleme
nach ihrer Schwierigkeit.

Um robuste Ergebnisse zu erhalten, die nicht von Implementierungsdetails abhangen,
werden oft polynomielle Unterschiede in Kauf genommen.

Die wichtigsten deterministischen Komplexitatsklassen sind:

LogSpace C P C PSpace C Exp

Was erwartet uns als nachstes?
e FEffizient [6sbare Probleme: P
® Die kleinste ,traditionelle” Komplexitatsklasse: LogSpace

® Weitere Beziehungen zwischen Komplexitaten

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 7 Folie 32 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

