
Acta Cybernetica 00 (0000) 1–16.

On Pure Multi-Pushdown Automata that Perform
Complete Pushdown Pops

Tomáš Masopust∗and Alexander Meduna∗

Abstract

This paper introduces and discusses pure multi-pushdown automata that remove
symbols from their pushdowns only by performing complete pushdown pops. This
means that during a pop operation, the entire pushdown is compared with a prefix of
the input, and if they match, the whole contents of the pushdown is erased and the
input is advanced by the prefix. The paper proves that these automata define an infinite
hierarchy of language families identical with the infinite hierarchy of language families
resulting from right linear simple matrix grammars. In addition, this paper discusses
some other extensions of these automata with respect to operations they can perform
with their pushdowns. More specifically, it discusses pure multi-pushdown automata
that perform complete pushdown pops that are allowed to join two pushdowns and/or
create a new pushdown.

Keywords: Pure multi-pushdown automaton, complete pushdown pop, infinite hierar-
chy.

1 Introduction
Indisputably, pushdown automata fulfill a crucial role in formal language theory. There-
fore, it comes as no surprise that this theory has introduced many variants of these automata
(consult, for example, [1, 5, 6, 7, 8, 11, 12, 14, 17, 18] for more details).

It is well-known that the family of languages accepted by pushdown automata (with
only one pushdown) coincides with the family of context-free languages and that adding
any more pushdown makes these automata as powerful as Turing machines. Considering
the pushdown alphabet, it is not hard to see that any number of pushdown symbols can
be encoded by two different pushdown symbols. However, if the pushdown alphabet is a
singleton (more precisely, we have one pushdown symbol A, and a bottom-of-pushdown
symbol Z, Z 6= A, Z appears only on the bottom of the pushdown), we obtain so-called
counter automata or counter machines. It is known that these automata accept languages
from a proper subfamily of the family of context-free languages if they are equipped with
only one counter, or the family of recursively enumerable languages if they are equipped

∗Faculty of Information Technology, Brno University of Technology, Božetěchova 2, Brno 61266, Czech
Republic, E-mail: tomas.masopust@mail.muni.cz, meduna@fit.vutbr.cz.

2 Tomáš Masopust and Alexander Meduna

with two or more counters (see [9]). Furthermore, the pushdown alphabet can, in general,
contain symbols that are not in the input alphabet, i.e., symbols that will never occur as a
part of the input. If the pushdown automata are restricted so that the pushdown alphabet
does not contain any such symbols, we obtain so-called pure pushdown automata. Clearly,
with respect to the cardinality of the input alphabet, pure pushdown automata with only
one input symbol are as powerful as counter automata, whereas with two or more differ-
ent input symbols they are as powerful as pushdown automata. Therefore, the family of
languages accepted by pure pushdown automata with only one pushdown coincides ei-
ther with the family of languages accepted by one-counter automata, or with the family
of context-free languages. Finally, it immediately follows from the previous explanations
that pure pushdown automata with two or more pushdowns are as powerful as Turing ma-
chines. For an overview of multi-pushdown automata see the paper by Fischer [4] and the
references therein.

The present paper continues the investigations in this classical topic of formal language
theory. More specifically, it discusses pure multi-pushdown automata that can remove
symbols from their pushdowns only by performing a complete pushdown pop. This means
that during a pop operation, the entire pushdown is compared with a prefix of the input,
and if they match, the whole contents of the pushdown is eliminated and, simultaneously,
the input is advanced by the prefix. This paper demonstrates that these automata define
an infinite hierarchy of language families identical with the infinite hierarchy of language
families resulting from the following grammars and automata:

1. equal matrix languages (see Siromoney [16]);

2. right linear simple matrix grammars (see Ibarra [10]);

3. multi-tape one-way non-writing automata (see Fischer and Rosenberg [5]);

4. finite-turn checking automata (see Siromoney [17]);

5. all-move self-regulating finite automata (see Meduna and Masopust [13]).

In addition, this paper discusses pure multi-pushdown automata that perform complete
pushdown pops that are allowed (in some sense) to join two pushdowns and/or introduce
a new pushdown. These operations imply another infinite hierarchy of language families
dependent upon the number of pushdowns.

In its conclusion, this paper formulates some open problems.

2 Preliminaries and Definitions
In this paper, we assume that the reader is familiar with the theory of automata and for-
mal languages (see [15]). For an alphabet (finite nonempty set) V , V ∗ represents the free
monoid generated by V . The unit of V ∗ is denoted by ε . Set V + = V ∗−{ε}. For w ∈V ∗

and W ⊆ V , wR denotes the mirror image of w and occur(w,W) denotes the number of
occurrences of symbols from W in w. Let LREG denote the family of regular languages.

On Pure Multi-Pushdown Automata that Perform Complete Pushdown Pops 3

A context-free grammar is a quadruple G = (N,T,P,S), where N is a nonterminal
alphabet, T is a terminal alphabet such that N ∩ T = /0, V = N ∪ T , S ∈ N is the start
symbol, and P is a finite set of productions of the form A→ v, where A ∈ N and v ∈V ∗.

In what follows, productions from P are labeled by elements of a finite set Q chosen so
that there is a bijection lab from P to Q. Then, Q = lab(P) = {lab(p) : p ∈ P} is said to
be a set of production labels. For the brevity, we hereafter write q : A→ v ∈ P instead of
A→ v ∈ P with lab(A→ v) = q.

Let q : A→ v ∈ P and x,y ∈ V ∗. Then, G makes a derivation step from xAy to xvy,
written as xAy⇒ xvy. In the standard way, we define ⇒m, for m ≥ 0, ⇒+, and ⇒∗. To
express that G performs x⇒m y, for some x,y ∈ V ∗, by using a sequence of productions
q1,q2, . . . ,qm, we write x⇒m y [q1q2 . . .qm]. The language generated by a context-free
grammar G is defined as L(G) = {w ∈ T ∗ : S⇒∗ w} and is said to be a context-free lan-
guage. The family of all context-free languages is denoted by LCF .

For n ≥ 1, an n-right linear simple matrix grammar (defined in [16] (as equal matrix
grammars) and in [10], see also [19]) is an (n+3)-tuple G = (N1,N2, . . . ,Nn,T,P,S), where
N1,N2, . . . ,Nn are pairwise disjoint nonterminal alphabets, T is a terminal alphabet, N =
N1∪N2∪ ·· ·∪Nn, S 6∈ N ∪T is the start symbol, N ∩T = /0, and P is a finite set of matrix
productions of the following three forms:

1. [S→ X1X2 . . .Xn], Xi ∈ Ni, 1≤ i≤ n;
2. [X1→ w1Y1,X2→ w2Y2, . . . ,Xn→ wnYn], wi ∈ T ∗, Xi,Yi ∈ Ni, 1≤ i≤ n;
3. [X1→ w1,X2→ w2, . . . ,Xn→ wn], Xi ∈ Ni, wi ∈ T ∗, 1≤ i≤ n.

For x,y ∈ (N∪T ∪{S})∗, x⇒ y provided that

1. either x = S and [S→ y] ∈ P,

2. or x = y1X1y2X2 . . .ynXn, y = y1x1y2x2 . . .ynxn, and [X1→ x1, . . . ,Xn→ xn] ∈ P.

As usual, we define⇒m, for m ≥ 0,⇒+, and⇒∗. The language generated by an n-right
linear simple matrix grammar G is defined as L(G) = {w ∈ T ∗ : S⇒∗ w} and is said to be
an n-right linear simple matrix language. The family of all n-right linear simple matrix
languages is denoted by L n

R .
A programmed grammar is a quadruple G = (N,T,P,S), where N is a nonterminal

alphabet, T is a terminal alphabet such that N ∩ T = /0, V = N ∪ T , S ∈ N is the start
symbol, and P is a finite set of productions of the form (q : A→ v,g(q)), where q : A→ v
is a labeled context-free production and g(q)⊆ lab(P).

In every derivation of G, any two consecutive steps, x⇒ y⇒ z, made by productions
(p : A→ u,g(p)) and (q : B→ v,g(q)), respectively, satisfy q ∈ g(p). As usual, we define
⇒m, for m ≥ 0, ⇒+, and ⇒∗. The language generated by a programmed grammar G is
defined as L(G) = {w ∈ T ∗ : S⇒∗ w} and is said to be a programmed language. The
family of all programmed languages is denoted by LP.

Let D be a derivation of a string w ∈ V ∗ in G of the form w1 ⇒ w2 ⇒ . . .⇒ wr, for
some r ≥ 1, where S = w1 and wr = w. Set Ind(D,G) = max{occur(wi,N) : 1 ≤ i ≤ r}.
For w ∈ T ∗, set Ind(w,G) = min{Ind(D,G) : D is a derivation of w in G}. The index of G
is defined as Ind(G) = max{Ind(w,G) : w ∈ L(G)}.

4 Tomáš Masopust and Alexander Meduna

For L ∈ LP, set Ind(L) = min{Ind(G) : L(G) = L, G is a programmed grammar}.
Finally, let L n

P = {L∈LP : Ind(L)≤ n}, for all n≥ 1, denote the family of all programmed
languages of index n.

2.1 Pure Multi-Pushdown Automata that Perform Complete Push-
down Pops

Let n be a positive integer. A pure n-pushdown automaton that performs complete push-
down pops, an nPPDA for short, is a quadruple

M = (Q,T,R,s) ,

where Q is a finite set of states, T is an alphabet of input symbols, R⊆S ×S is a set of
rules, S = S1∪S2∪S3∪S4,

• S1 = {〈q,pop〉 : q ∈ Q}

• S2 = {〈q,push, i,a〉 : q ∈ Q, 1≤ i≤ n, a ∈ T ∪{ε}}

• S3 = {〈q,new, i〉 : q ∈ Q, 1≤ i≤ n}

• S4 = {〈q, join, i〉 : q ∈ Q, 2≤ i≤ n}

and s /∈S is the start state. In what follows, we use the notation p→ q for (p,q) ∈ R.
A configuration of M is a string over

(T ∗{$}∪{ε})n× (S ∪{s})×T ∗ .

Let 1≤ k≤ n and p→ q ∈ R. We define the relation⇒ depending on the left-hand side of
p→ q, i.e., p, as follows:

1. $nsw⇒ $nqw, for p = s;

2. wk$. . .$w2$w1$pwR
1 w⇒ wk$. . .$w2$qw for p = 〈r,pop〉;

3. wk$. . .wi . . .$w1$pw⇒ wk$. . .wia . . .$w1$qw, for p = 〈r,push, i,a〉 and i≤ k;

4. wk$. . .wi . . .$w1$pw⇒wk$. . .$wi$$. . .$w1$qw, for p = 〈r,new, i〉 and i≤ k < n;

5. wk$. . .$w1$pw⇒ wk . . .$w1$qw, for p = 〈r,new,k +1〉 and k < n;

6. wk$. . .wiwi−1$. . .$w1$pw⇒ wk$. . .$wiwi−1$. . .$w1$qw, for p = 〈r, join, i〉 and
i≤ k.

Remark 1. Note that symbols $ denote the tops of M’s pushdowns and that the automaton
cannot make a computational step unless there is at least one pushdown.

On Pure Multi-Pushdown Automata that Perform Complete Pushdown Pops 5

In the standard way, we define ⇒m, for m ≥ 0, and ⇒∗. Then, the language of an
nPPDA M is defined as

L(M) = {w ∈ T ∗ : $nsw⇒∗ q, for some q ∈S } ,

where $nsw⇒∗ q is said to be a successful computation of M on w.
Finally, for I ⊆ {1,2,3,4},

L n
I =

{
L(M) : M = (Q,T,R,s) is an nPPDA with R⊆

⋃
i∈I

Si×
⋃
i∈I

Si

}
.

3 Main Results
In this section, we demonstrate two infinite language hierarchies generated by pure multi-
pushdown automata that perform complete pushdown pops according to their pushdown
operations and the number of pushdowns. First, however, we generalize these automata so
that they are allowed to push a string to their pushdowns in one computational step instead
of only one symbol or the empty string.

3.1 Generalized nPPDAs
A generalized nPPDA is an nPPDA M = (Q,T,R,s) with R ⊆ S ′×S ′, where S ′ is a
finite subset of S1∪S ′

2∪S3∪S4; sets S1, S3, S4 are as in the case of standard nPPDA,
and S2 is modified so that a ∈ T is replaced with u ∈ T ∗:

• S ′
2 = {〈q,push, i,u〉 : q ∈ Q, 1≤ i≤ n, u ∈ T ∗}.

Correspondingly, the computational step is modified as follows:

3. wk$. . .wi . . .$w1$〈p,push, i,u〉w⇒ wk$. . .wiu . . .$w1$qw, for i≤ k.

The other computational steps are defined as in the case of standard nPPDA.
First, we prove that this generalization has no effect to the acceptance power of these

automata.

Lemma 1. Let M be a generalized nPPDA, for some n≥ 1. Then, there is an nPPDA, M′,
such that L(M) = L(M′).

Informally, what M does in one derivation step, M′ does in the-length-of-the-added-
string steps.

Proof. Let M = (Q,T,R,s) be a generalized nPPDA. Construct the following nPPDA M′=
(Q′,T,R′,s) by the following algorithm (S is as in the definition in Section 2.1):

1. Set R′ = {p→ q ∈ R : p,q ∈S ∪{s}} and Q′ = Q;

2. For each p→ 〈q,push, i,a1a2 . . .ak〉 ∈ R with ai ∈ T , for i = 1, . . . ,k, k ≥ 2, add

a) states qi,1
a1a2...ak ,q

i,2
a1a2...ak , . . . ,q

i,k
a1a2...ak to Q′;

6 Tomáš Masopust and Alexander Meduna

b) p→ 〈qi,1
a1a2...ak ,push, i,a1〉 to R′;

c) 〈qi, j
a1a2...ak ,push, i,a j〉 → 〈qi, j+1

a1...ak ,push, i,a j+1〉 to R′, for j = 1, . . . ,k−1;

d) for each 〈q,push, i,a1a2 . . .ak〉 → r ∈ R, add

〈qi,k
a1a2...ak ,push, i,ak〉 → r to

{
R′ for r ∈S ,
R otherwise.

3. If R′ has been changed, then go to step 2.

It is not hard to see that L(M) = L(M′).

3.2 Language Families
Consider an arbitrary I ⊆ {1,2,3,4}. It is not hard to see that if 1 6∈ I, then L n

I = /0; such
an automaton cannot remove $s from its configurations. Furthermore, if 1 ∈ I and 2 6∈ I,
then L n

I = {ε}; of course, such an automaton can remove all symbols $ but cannot read
any nonempty input. Thus, there are only four sets of interest: {1,2}, {1,2,3}, {1,2,4},
{1,2,3,4}. The following two lemmas are obvious.

Lemma 2. For all n≥ 1,

1. L n
{1,2} ⊆L n

{1,2,3} ⊆L n
{1,2,3,4},

2. L n
{1,2} ⊆L n

{1,2,4} ⊆L n
{1,2,3,4}.

Lemma 3. L 1
{1,2} = L 1

{1,2,3,4} = LREG.

Now, consider an automaton with pop, push, and join operations. We will show how
the join operation can be simulated by only push and pop operations without any change of
the accepted language. Notice that the join operation applied to the ith pushdown appends
the content of the ith pushdown to the bottom of the (i− 1)st pushdown. Thus, to push a
symbol to the jth pushdown in this automaton, for some j ≥ i, equals to skipping the join
operation and pushing the symbol to the (j +1)st pushdown. This is generalized and done
by a sequence of the form i1i2 . . . im added to states, for some m ≤ n, where ik ∈ {1,0},
for k = 1, . . . ,m, and ik = 0 if and only if the ikth pushdown has been joined. Then, the
automaton starts with a sequence of n 1s, 11 . . .1, in its start state, and to push a symbol to
the ith pushdown means to push the symbol to the lth pushdown, where l is the position
of the ith 1 in the sequence from the left. Analogously, to make the pop operation, say
from a state with 10 . . .0il . . . ik, where 2≤ l ≤ k and il = 1, the new automaton makes l−1
pop operations and goes to a state with il . . . ik. Finally, to join the ith pushdown means to
replace the ith 1 with 0 in the state by the push operation pushing ε to the first pushdown.

Hence, we have the following lemma.

Lemma 4. For all n≥ 1, L n
{1,2} = L n

{1,2,4}.

Corollary 1. For all n≥ 1, L n
{1,2} = L n

{1,2,4} ⊆L n
{1,2,3} ⊆L n

{1,2,3,4}.

As far as the L n
{1,2,3} language families are concerned, n ≥ 2, we only know the fol-

lowing result.

On Pure Multi-Pushdown Automata that Perform Complete Pushdown Pops 7

Theorem 1. For all n≥ 2, L n
{1,2} ⊂L n

{1,2,3}.

Proof. Let L = {akbk : k ≥ 1}. Clearly, L ∈L 2
{1,2}. Ibarra [10, Theorem 4.7] showed that

L∗ /∈L m
{1,2}, for m≥ 1. To prove this theorem, we show that L∗ ∈L 2

{1,2,3}.

The automaton starts with the initial configuration $$sakbkw, for some w∈ L∗. Then, it
simultaneously generates ak and bk in the first and the second pushdown, respectively, i.e.,
the configuration is of the form bkakpakbkw, for some p∈S . Then, the automaton pops
the first pushdown (reading ak from the input) and creates a new one on the second position,
i.e., its configuration is bkqbkw, for some q ∈S . Then, it pops the first pushdown again
(reading bk from the input) and creates a new pushdown, i.e., the configuration is $$rw, for
some r ∈S . Thus, the cycle can be repeated. The formal proof is left to the reader.

Corollary 2. L 2
{1,2,3}−

⋃
∞
n=1 L n

{1,2} 6= /0.

In the following two sections, language families L n
{1,2} and L n

{1,2,3,4} are discussed.
Note that most of the questions concerning language families L n

{1,2,3} are open (see the
last section for more details).

3.3 Language Families L n
{1,2}

First, let us give an example. Note that in case n = 2, this example shows that the language,
L, from the proof of Theorem 1 is in L 2

{1,2} as stated there.

Example 1. Consider an nPPDA M = ({s,q},{a1,a2, . . . ,an},R,s) with R having the fol-
lowing rules:

1. s→ 〈q,push,1,a1〉,

2. 〈q,push, i,ai〉 → 〈q,push, i+1,ai+1〉, for i = 1, . . . ,n−1,

3. 〈q,push,n,an〉 → 〈q,push,1,a1〉,

4. 〈q,push,n,an〉 → 〈q,pop〉,

5. 〈q,pop〉 → 〈q,pop〉.

Then, L(M) = {ak
1ak

2 . . .ak
n : k ≥ 1}.

In the following, we prove that the power of nPPDAs with push and pop operations is
precisely the power of n-right linear simple matrix grammars. First, however, notice that
any such automaton, M, has the property that there is precisely n pop operations in any of
its successful computations; clearly, the automaton has to pop n pushdowns and no new
pushdown can be created. Moreover, we can prove that there is an equivalent automaton,
M′, such that in any successful computation of M′, no pop operation precedes a push
operation. To show this, let M′ simulate M but if M pops the pushdown, M′ skips the pop
operation and increases the number of pop operations skipped so far recorded in its state.
Thus, in any time, M′ knows the number of pop operations applied in the corresponding

8 Tomáš Masopust and Alexander Meduna

computation of M, say k, 0≤ k ≤ n. Then, if M pushes a symbol to the ith pushdown, M′

pushes this symbol to the (i+k)th pushdown. Clearly, M′ finishes (pops all its pushdowns
one by one) only if M has performed n pop operations.

Lemma 5. Let n ≥ 1 and L ∈L n
{1,2}. Then, there is an nPPDA, M, such that L(M) = L

and its sequence of operations applied during any successful computation, starting from s,
is of the form

s, push1, push2, . . . , pushk, pop1, pop2, . . . , popn

for some k ≥ 1, pushi ∈S2, for all i = 1, . . . ,k, and pop j ∈S1, for all j = 1, . . . ,n.

Proof. This immediately follows from the previous arguments and the fact that if there is
no push operation in the successful computation, then we can push ε to the first pushdown,
i.e., for some state t, push1 = 〈t,push,1,ε〉.

Lemma 6. For all n≥ 1, L n
{1,2} ⊆L n

R .

Proof. Let M = (Q,T,R,s) be an nPPDA with R ⊆ (S1 ∪S2)× (S1 ∪S2) satisfying
the condition from Lemma 5. Clearly, without loss of generality, we can assume that
pop1 = pop2 = · · ·= popn = 〈r,pop〉, for some r ∈ Q. Thus, S1 = {〈r,pop〉}.

Let G = (N1, . . . ,Nn,T,P,SG) and set Ni = (S1 ∪S2)×{i}, for all i = 1, . . . ,n. Set
P = {SG→ 〈〈r,pop〉,1〉〈〈r,pop〉,2〉 . . .〈〈r,pop〉,n〉 : 〈r,pop〉 ∈S1}.

If q→ p ∈ R is of the form

1. 〈t,push, i,a〉 → 〈r,pop〉, add
[〈〈r,pop〉,1〉 → 〈q,1〉, . . . ,〈〈r,pop〉, i〉 → a〈q, i〉, . . . ,〈〈r,pop〉,n〉 → 〈q,n〉] to P;

2. 〈r,push, i,a〉 → 〈t,push, j,b〉, add
[〈p,1〉 → 〈q,1〉, . . . ,〈p, i〉 → a〈q, i〉, . . . ,〈p,n〉 → 〈q,n〉] to P;

3. s→ p, add
[〈p,1〉 → ε, . . . ,〈p, i〉 → ε, . . . ,〈p,n〉 → ε] to P.

Note that M starts with s→ p, continues with p→ q followed by the application of
a rule of the form p→ 〈r,pop〉, for some p,q ∈S2, and finishes with 〈r,pop〉 → 〈r,pop〉
applied n-times. Denote the sequence of applied rules by s, p1, . . . , pk, pop1, . . . , popn,
for some k ≥ 1. Then, G simulates M by the following sequence of productions: the
initial production (simulating all n pop operations) followed by a sequence of productions
p′k, . . . , p′1,s

′, where p′k is constructed from pk as in 1, p′i from pi as in 2, for all i =
1, . . . ,k−1, and s′ from s as in 3.

Lemma 7. For all n≥ 1, L n
R ⊆L n

{1,2}.

Proof. Let n ≥ 1 and G = (N1, . . . ,Nn,T,P,S) be an n-right linear simple matrix gram-
mar. Construct the following generalized nPPDA M = (Q,T,R,s), where Q = {(x,m) : x ∈
N1 . . .Nn, m ∈ P}∪{S} and R is defined as follows:

1. For α = X1 . . .Xn ∈ N1 . . .Nn and m = [X1→ w1, . . . ,Xn→ wn] ∈ P with wi ∈ T ∗, for
all i = 1,2, . . . ,n, add s→ 〈(α,m),push,1,wR

1 〉 to R;

On Pure Multi-Pushdown Automata that Perform Complete Pushdown Pops 9

2. For α = X1 . . .Xn, β =Y1 . . .Yn ∈N1 . . .Nn, and m′ = [Y1→ v1X1, . . . ,Yn→ vnXn]∈ P,
add 〈(α,m),push,n,wR

n 〉 → 〈(β ,m′),push,1,vR
1 〉 to R;

3. For α = Y1 . . .Yn ∈ N1 . . .Nn and m[i + 1] = Yi+1 → vi+1Xi+1 (m[i] denotes the ith
element of m) with vi+1 ∈ T ∗ and Xi+1 ∈ N∪{ε}, for all i = 1, . . . ,n−1, add
〈(α,m),push, i,vR

i 〉 → 〈(α,m),push, i+1,vR
i+1〉 to R;

4. For α = X1 . . .Xn, if there is [S→ X1 . . .Xn] ∈ P, add
〈(α,m),push,n,vR

n 〉 → 〈S,pop〉 to R;

5. Add 〈S,pop〉 → 〈S,pop〉 to R.

Clearly, M simulates the derivation of G bottom-up and what G does in one derivation step,
M does in n steps. Then, according to Lemma 1, the proof is complete.

The following theorem presents the main result of this section.

Theorem 2. For all n≥ 1, L n
{1,2} = L n

R .

Proof. This immediately follows from the previous two lemmas.

Corollary 3. For all n≥ 1, L n
{1,2} ⊂L n+1

{1,2}.

Proof. This follows from the previous theorem and Theorem 2.3 in [10].

3.4 Language Families L n
{1,2,3,4}

The following lemma shows that any language accepted by an nPPDA can be generated by
a programmed grammar of index n+1.

Lemma 8. For all n≥ 1, L n
{1,2,3,4} ⊆L n+1

P .

Before the formal proof of the lemma, we provide some explanations to the construc-
tion. Informally, to an nPPDA M, we construct a programmed grammar, G, of index
n + 1 so that the ith nonterminal of G, which is of the form 〈Ai,k〉, 1 ≤ k ≤ n + 1, is as-
sociated with the ith pushdown. Specifically, if the current content of M’s pushdowns is
c2c1$b2b1$a2a1$ (corresponding to a string a1a2b1b2c1c2), then the sentential form of G is
of the form 〈A1,4〉a1a2〈A2,4〉b1b2〈A3,4〉c1c2〈A4,4〉. Then, the pop operation is simulated
so that

〈A1,4〉a1a2〈A2,4〉b1b2〈A3,4〉c1c2〈A4,4〉

is replaced with
a1a2〈A1,3〉b1b2〈A2,3〉c1c2〈A3,3〉 .

The push operation pushing a onto the second pushdown, i.e., c2c1$b2b1a$a2a1$ corre-
sponding to a string a1a2ab1b2c1c2, is simulated by replacing

〈A1,4〉a1a2〈A2,4〉b1b2〈A3,4〉c1c2〈A4,4〉

10 Tomáš Masopust and Alexander Meduna

with
〈A1,4〉a1a2〈A2,4〉ab1b2〈A3,4〉c1c2〈A4,4〉 .

The operation introducing a new, say the first, pushdown, i.e., c2c1$b2b1$a2a1$$, is simu-
lated by replacing

〈A1,4〉a1a2〈A2,4〉b1b2〈A3,4〉c1c2〈A4,4〉

with
〈A1,5〉〈A2,5〉a1a2〈A3,5〉b1b2〈A4,5〉c1c2〈A5,5〉 .

Note that the previous first pushdown is the second from now on (till the other change).
Finally, the join operation of the first and the second pushdown (by a state of the form
〈r, join,2〉), i.e., c2c1$b2b1a2a1$, is simulated by replacing

〈A1,4〉a1a2〈A2,4〉b1b2〈A3,4〉c1c2〈A4,4〉

with
〈A1,3〉a1a2b1b2〈A2,3〉c1c2〈A3,3〉 .

The formal proof of Lemma 8 follows.

Proof. Let M = (Q,T,R,s) be an nPPDA. Construct the following programmed grammar
G = (N,T,P,S), where N = Q×{1, . . . ,n+1} and P is constructed as follows.

Set f (r) = {t : r→ t ∈ R}, and g(f (r)) =
⋃

p∈ f (r) g(p) (the definition of g(p) follows).

1. For any rule s→ p ∈ R, add

a) (S→ 〈A1,n+1〉〈A2,n+1〉 . . .〈An+1,n+1〉,g(p)) into P;

2. For all p ∈S1 and 1≤ l ≤ n+1, add

a) ([p, l, p] : 〈A1, l〉 → ε,{[/,2, l, p] : [/,2, l, p] ∈ lab(P)});

3. For all p ∈S1∪S4 and 1≤ i, l ≤ n+1, i≥ 2, add

a) ([/, i, l, p] : 〈Ai, l〉 → 〈Ai−1, l〉,{[/, i+1, l, p]}), for i < l;

b) ([/, l, l, p] : 〈Al , l〉 → 〈Al−1, l〉,{[−,1, l, p]});

4. For all p ∈S1∪S4 and 1≤ i, l ≤ n+1, l ≥ 2, add

a) ([−, i, l, p] : 〈Ai, l〉 → 〈Ai, l−1〉,{[−, i+1, l, p]}), for i < l−1;

b) ([−, l−1, l, p] : 〈Al−1, l〉 → 〈Al−1, l−1〉,g(f (p)));

5. For all p ∈S2 and 1≤ i, l ≤ n+1, add

a) ([i, l, p] : 〈Ai, l〉 → 〈Ai, l〉a,g(f (p)));

6. For all p ∈S3 and 1≤ i, l ≤ n+1, i≤ n, add

a) ([∗, i, l, i, p] : 〈Ai, l〉 → 〈Ai+1, l〉,{[∗, i+1, l, i, p]}), for i < l;

b) ([∗, l, l, i, p] : 〈Al , l〉 → 〈Al+1, l〉,{[n, i+1, l, p]});

On Pure Multi-Pushdown Automata that Perform Complete Pushdown Pops 11

7. For all p ∈S3, 1≤ l ≤ n+1 and 1 < i≤ n+1, add

a) ([n, i, l, p] : 〈Ai, l〉 → 〈Ai−1, l〉〈Ai, l〉,{[+,1, l, p]});

8. For all p ∈S3 and 1≤ i, l < n+1, add

a) ([+, i, l, p] : 〈Ai, l〉 → 〈Ai, l +1〉,{[+, i+1, l, p]}), for i < l +1;
b) ([+, l +1, l, p] : 〈Al+1, l〉 → 〈Al+1, l +1〉,g(f (p)));

9. For all p ∈S4 and 1≤ i, l ≤ n+1, add

a) ([j, i, l, p] : 〈Ai, l〉 → ε,W), W = {[/, i + 1, l, p]}) if i < l, W = {[−,1, l, p]}
otherwise.

g(p) depends on p as follows:

p = 〈r,pop〉: g(p) = {[p, l, p] : [p, l, p] ∈ lab(P)};

p = 〈r,push, i,a〉: g(p) = {[i, l, p] : [i, l, p] ∈ lab(P)};

p = 〈r,new, i〉: g(p) = {[∗, i, l, i, p] : [∗, i, l, i, p] ∈ lab(P)};

p = 〈r, join, i〉: g(p) = {[j, i, l, p] : [j, i, l, p] ∈ lab(P)}.
Consider a configuration wk$. . .$w2$w1$pw of M and the corresponding sentential

form of G, i.e., (〈A1,k + 1〉w1〈A2,k + 1〉w2 . . .〈Ak,k + 1〉wk〈Ak+1,k + 1〉,g(p)). If p =
〈r,pop〉, G simulates the computational step as follows:

(〈A1,k +1〉w1〈A2,k +1〉w2 . . .〈Ak,k +1〉wk〈Ak+1,k +1〉,{[p,k +1, p]})
⇒ (w1〈A2,k +1〉w2 . . .〈Ak,k +1〉wk〈Ak+1,k +1〉,{[/,2,k +1, p]})
⇒k (w1〈A1,k +1〉w2 . . .〈Ak−1,k +1〉wk〈Ak,k +1〉,{[−,1,k +1, p]})
⇒k (w1〈A1,k〉w2 . . .〈Ak−1,k〉wk〈Ak,k〉,g(f (p))).

If p = 〈r,push, i,a〉, G simulates the computational step as follows:

(〈A1,k +1〉w1 . . .〈Ai,k +1〉wi . . .〈Ak,k +1〉wk〈Ak+1,k +1〉,{[i,k +1, p]})
⇒ (〈A1,k +1〉w1 . . .〈Ai,k +1〉awi . . .〈Ak,k +1〉wk〈Ak+1,k +1〉,g(f (p))).

If p = 〈r,new, i〉, G simulates the computational step as follows:

(〈A1,k +1〉w1 . . .wi−1〈Ai,k +1〉wi . . .wk〈Ak+1,k +1〉,{[∗, i,k +1, i, p]})
⇒k−i+1 (. . .wi−1〈Ai+1,k +1〉wi . . .wk〈Ak+2,k +1〉,{[n, i+1,k +1, p]})
⇒ (. . .wi−1〈Ai,k +1〉〈Ai+1,k +1〉wi . . .wk〈Ak+2,k +1〉,{[+,1,k +1, p]})
⇒k+2 (〈A1,k +2〉w1 . . .wk〈Ak+2,k +2〉,g(f (p))).

If p = 〈r, join, i〉, G simulates the computational step as follows:

(〈A1,k +1〉w1 . . .wi−1〈Ai,k +1〉wi . . .wk〈Ak+1,k +1〉,{[j, i,k +1, p]})
⇒ (. . .〈Ai−1,k +1〉wi−1wi〈Ai+1,k +1〉wi+1 . . . ,{[/, i+1,k +1, p]})
⇒k−i (. . .〈Ai−1,k +1〉wi−1wi〈Ai,k +1〉wi+1 . . .wk〈Ak,k +1〉,{[−,1,k +1, p]})
⇒k (〈A1,k〉w1 . . .〈Ai−1,k〉wi−1wi〈Ai,k〉 . . .wk〈Ak,k〉,g(f (p))).

12 Tomáš Masopust and Alexander Meduna

As any derivation of G simulates a computation of M, we have L(M) = L(G).

The next lemma shows that any language generated by a programmed grammar of
index n is accepted by an (n+1)PPDA.

Lemma 9. For all n≥ 1, L n
P ⊆L n+1

{1,2,3,4}.

The main idea of the proof is to simulate a derivation of a programmed grammar, G,
of index n by a generalized (n + 1)PPDA, M, so that what G generates to the right of the
rewritten nonterminal, say Aw1Bw2Cw3⇒ Aw1B′uw2Cw3, M pushes to its corresponding
pushdown, wR

3 $wR
2 uR$wR

1 $. If G generates a string, v, to the left of the rewritten nonter-
minal, say Aw1Bw2Cw3 ⇒ Aw1vB′′w2Cw3, then M creates a new pushdown just before
the pushdown corresponding to the rewritten nonterminal, wR

3 $wR
2 $$wR

1 $, pushes vR to the
new pushdown, wR

3 $wR
2 vRwR

1 $, and joins the two pushdowns, wR
3 $wR

2 $vRwR
1 $. By this,

M puts vR to the bottom of the pushdown. In case of the first pushdown, the join operation
is replaced with the pop operation. The formal proof follows.

Proof. Let G = (N,T,P,S) be a programmed grammar of index n, for some n ≥ 1. Con-
struct a generalized (n+1)PPDA M = (Q,T,R,s) as follows.

1. Set Q = (lab(P)∪{+})×
⋃

k≤n Nk ×{0,1, . . . ,m + 1}, for m = max{k : A→ u ∈
P, occur(u,N) = k};

2. For all p : A→ u1B1u2B2 . . .ukBkuk+1 ∈ P, where ui ∈ T ∗ and B j ∈ N, for all i =
1, . . . ,k + 1, j = 1, . . . ,k, k ≥ 0, and for all 〈+,αAβ ,0〉 ∈ Q, where α,β ∈ N∗, and
l = occur(αA,N), add the following to R:

• s→ 〈〈+,S,0〉,push,1,ε〉,
• 〈〈+,αAβ ,0〉,push,1,ε〉 → 〈〈p,αB1 . . .Bkβ ,k +1〉,push, l + k−1,uR

k+1〉,

• 〈〈p,αB1 . . .Bkβ ,k +1〉,push, l + k−1,uR
k+1〉 →

〈〈p,αB1 . . .Bkβ ,k〉,push, l + k−2,uR
k 〉,

• 〈〈p,αB1 . . .Bkβ ,k〉,push, l + k−2,uR
k 〉 →

〈〈p,αB1 . . .Bkβ ,k−1〉,push, l + k−3,uR
k−1〉,

...

• 〈〈p,αB1 . . .Bkβ ,2〉,push, l,uR
2 〉 → 〈〈p,αB1 . . .Bkβ ,1〉,new, l〉,

• 〈〈p,αB1 . . .Bkβ ,1〉,new, l〉 → 〈〈p,αB1 . . .Bkβ ,1〉,push, l,uR
1 〉,

• if l = 1, add

– 〈〈p,B1 . . .Bkβ ,1〉,push,1,uR
1 〉 → 〈〈p,B1 . . .Bkβ ,0〉,pop〉,

– 〈〈p,B1 . . .Bkβ ,0〉,pop〉 → 〈〈+,B1 . . .Bkβ ,0〉,push,1,ε〉,
• if l ≥ 2, add

– 〈〈p,αB1 . . .Bkβ ,1〉,push, l,uR
1 〉 → 〈〈p,αB1 . . .Bkβ ,0〉, join, l〉,

– 〈〈p,αB1 . . .Bkβ ,0〉, join, l〉 → 〈〈+,αB1 . . .Bkβ ,0〉,push,1,ε〉.

On Pure Multi-Pushdown Automata that Perform Complete Pushdown Pops 13

We have proved that L(M) = L(G), where M is a generalized (n+1)PPDA. The proof
now follows by Lemma 1.

Let n≥ 1. Analogously as in [2, Theorem 3.1.7], we can prove that the language

Ln = {b(aib)2n−1 : i≥ 1} ∈L n
P −L n−1

P .

Lemma 10. For all n≥ 1, Ln ∈L n
{1,2,3,4}.

Informally, the automaton has n pushdowns and each but the one of them contains
aibai, for some i≥ 1. Thus, two symbols a are put to a pushdown – one to the top and one to
the bottom. Finally, the symbol b is pushed to the bottom of all n−1 pushdowns, i.e., they
contain the string aibaib. Obviously, by the operations new and pop, baib can be simulated
and compared with the prefix of the input symbol by symbol during the computation. Thus,
the automaton has read baib, and the content of each of n−1 pushdowns is aibaib, i.e., the
automaton has accepted the string baib(aib)2(n−1) = b(aib)2n−1.

Proof. If n = 1, the proof is trivial; just push baib to the pushdown. Thus, let n ≥ 2 and
M = (Q,{a,b},R,s) be an nPPDA, where Q = {0, p,q,r,s, t, f}, and R is constructed as
follows.

Phase 1.

1. s→ 〈0,push,1,b〉,

2. 〈0,push,1,b〉 → 〈0,pop〉,

3. 〈0,pop〉 → 〈p,push,1,b〉,

4. for 2≤ i < n−1,

4a. 〈p,push, i,b〉 → 〈p,push, i+1,b〉,

4b. 〈p,push,n−1,b〉 → 〈q,new,1〉,

Phase 2.

5. 〈q,new,1〉 → 〈q,push,1,a〉,

6. 〈q,push,1,a〉 → 〈q,pop〉,

7. 〈q,pop〉 → 〈s,push,1,a〉,

8. for 1≤ i < n,

8a. 〈s,push, i,a〉 → 〈r,new, i+1〉,

8b. 〈r,new, i+1〉 → 〈r,push, i+1,a〉,

8c. 〈r,push, i+1,a〉 → 〈r, join, i+1〉,

8d. 〈r, join, i〉 → 〈s,push, i,a〉, i≥ 2,

8e. 〈r, join,n〉 → 〈q,new,1〉,

8f. 〈r, join,n〉 → 〈t,new,1〉,

Phase 3.

9. 〈t,new,1〉 → 〈t,push,1,b〉,

10. 〈t,push,1,b〉 → 〈t,pop〉,

11. 〈t,pop〉 → 〈t,new,2〉,

12. for 2≤ i≤ n,

12a. 〈t,new, i〉 → 〈t,push, i,b〉,

12b. 〈t,push, i,b〉 → 〈t, join, i〉,

12c. 〈t, join, i〉 → 〈t,new, i+1〉,

Phase 4.

13. 〈t,new,n+1〉 → 〈 f ,pop〉,

14. 〈 f ,pop〉 → 〈 f ,pop〉.

14 Tomáš Masopust and Alexander Meduna

Phase 1 reads b from the input and pushes b to n− 1 pushdowns. Phase 2 repeatedly
reads a from the input and pushes a on the top and to the bottom of all n−1 pushdowns.
Phase 3 reads b from the input and pushes b to the bottom of all n−1 pushdowns. Finally,
Phase 4 pops all n−1 pushdowns. Clearly, baib has been read from the input and each of
n− 1 pushdowns contains baibai$, where the top of the pushdown is on the right. Thus,
we have L(M) = Ln.

Corollary 4. For all n≥ 1, L n
P ⊂L n+1

{1,2,3,4}.

Proof. The inclusion follows from Lemma 9 and the strictness from Lemma 10.

The following corollary summarizes the power of nPPDAs known so far.

Corollary 5. For all n≥ 1, L n
{1,2,3,4} ⊆L n+1

P ⊂L n+2
{1,2,3,4}.

Proof. It follows immediately from Lemmas 8 and 9, and the previous corollary.

Analogously, we can prove that for all n≥ 2,

Kn+1 = {ak
1ak

2 . . .ak
n+1 : k ≥ 1} ∈L n

{1,2,3,4} ,

which proves the following result.

Corollary 6. For all n≥ 2, L n
{1,2} ⊂L n

{1,2,3,4}.

Proof. Ibarra [10, Theorem 2.3] proved that Kn+1 6∈L n
R = L n

{1,2}.

Note that by the trick pushing the content of one pushdown to the bottom of the other,
we can prove that for all n≥ 1, K2n−1 ∈L n

{1,2,3,4}.

4 Conclusion

In this paper, we discussed two variants of pure multi-pushdown automata that perform
complete pushdown pops and proved two infinite language hierarchies they characterize
with respect to the number of pushdowns. The following theorem summarizes the results
of this paper.

Theorem 3. 1. LREG = L 1
{1,2} = L 1

{1,2,4} = L 1
{1,2,3} = L 1

{1,2,3,4}.

2. For all n≥ 2, L n
{1,2} = L n

{1,2,4} ⊂L n
{1,2,3} ⊆L n

{1,2,3,4}.

3. For all n≥ 1, L n
{1,2} ⊂L n+1

{1,2}.

4. For all n≥ 1, L n
{1,2,3,4} ⊂L n+2

{1,2,3,4}.

On Pure Multi-Pushdown Automata that Perform Complete Pushdown Pops 15

Moreover, note that by Corollary 3.4 in [3], Corollary of Lemma 3.1.5 in [2], and
Corollary 5, any language L ∈

⋃
∞
n=1 L n

{1,2,3,4} over a one-letter alphabet is regular.
On the other hand, this paper does not answer the question of whether the inclusions

L n
{1,2,3,4} ⊆ L n+1

{1,2,3,4}, n ≥ 1, and L n
{1,2,3} ⊆ L n

{1,2,3,4}, n ≥ 2, are proper or not. How-
ever, we conjecture that these inclusions are proper. Furthermore, one of the interesting
questions concerning this is whether the language

Mn = {wn : w ∈ {a,b}∗}

is in L n−1
{1,2,3,4}, for n ≥ 2. This is of interest because if Mn is not in L n−1

{1,2,3,4}, then it
implies that

1. Mn ∈L n
{1,2}∩ (L n

{1,2,3,4}−L n−1
{1,2,3,4}) and that

2. L n
{1,2} 6⊆L n−1

{1,2,3,4},

as it is not hard to see that Mn ∈ L n
{1,2}. Another interesting question is whether the

language Kn+1 ∈L n
{1,2,3} because if this is not true, then it implies L n

{1,2,3} ⊂L n
{1,2,3,4},

for n≥ 2. Finally, the following question is of interest from the viewpoint of descriptional
complexity: what is the power of pure multi-pushdown automata that perform complete
pushdown pops with respect to the number of states?

Acknowledgements
The authors gratefully acknowledge useful suggestions and comments of the anonymous
referees.

This work was supported by the Czech Ministry of Education under the Research Plan
No. MSM 0021630528 and the Czech Grant Agency project No. GA201/07/0005.

References
[1] Courcelle, B. On jump deterministic pushdown automata. Math. Systems Theory,

11:87–109, 1977.

[2] Dassow, J. and Păun, Gh. Regulated Rewriting in Formal Language Theory. Springer-
Verlag, Berlin, 1989.

[3] Fernau, H. and Holzer, M. Regulated finite index language families collapse. Tech-
nical report, University of Tuebingen, 1996.

[4] Fischer, P. C. Multi-tape and infinite-state automata—a survey. Commun. ACM,
8(12):799–805, 1965.

[5] Fischer, P. C. and Rosenberg, A. L. Multitape one-way nonwriting automata. J.
Comput. System Sci., 2:88–101, 1968.

16 Tomáš Masopust and Alexander Meduna

[6] Ginsburg, S., Greibach, S. A., and Harrison, M. A. One-way stack automata. J. ACM,
14:389–418, 1967.

[7] Ginsburg, S. and Spanier, E. Finite-turn pushdown automata. SIAM J. Control,
4:429–453, 1968.

[8] Greibach, S. A. Checking automata and one-way stack languages. J. Comput. System
Sci., 3:196–217, 1969.

[9] Hopcroft, J. E. and Ullman, J. D. Formal Languages and Their Relation to Automata.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1969.

[10] Ibarra, O. H. Simple matrix languages. Inform. and Control, 17(4):359–394, 1970.

[11] Meduna, A. Simultaneously one-turn two-pushdown automata. Int. J. Comp. Math.,
80:679–687, 2003.

[12] Meduna, A. Deep pushdown automata. Acta Inform., 42(8–9):541–552, 2006.

[13] Meduna, A. and Masopust, T. Self-regulating finite automata. Acta Cybernet.,
18:135–153, 2007.

[14] Sakarovitch, J. Pushdown automata with terminating languages. Languages and
Automata Symposium, RIMS 421, Kyoto University, pages 15–29, 1981.

[15] Salomaa, A. Formal languages. Academic Press, New York, 1973.

[16] Siromoney, R. On equal matrix languages. Inform. and Control, 14:135–151, 1969.

[17] Siromoney, R. Finite-turn checking automata. J. Comput. System Sci., 5:549–559,
1971.

[18] Valiant, L. The equivalence problem for deterministic finite turn pushdown automata.
Inform. and Control, 81:265–279, 1989.

[19] Wood, D. m-parallel n-right linear simple matrix languages. Util. Math., 8:3–28,
1975.

Received ...

