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Abstract. We study a restriction of the classification procedure for
EL++ where the inference rule for complex role inclusion axioms (RIAs)
is applied in a “left-linear” way in analogy with the well-known procedure
for computing the transitive closure of a binary relation. We introduce
a notion of left-admissibility for a set of RIAs, which specifies when a
subset of RIAs can be used in a left-linear way without loosing conse-
quences, prove a criterion which can be used to effectively check this
property, and describe some preliminary experimental results analyzing
when the restricted procedure can give practical improvements.

1 Introduction

The description logic (DL) EL and its extension EL++ [1] provide the bases of
the OWL EL profile of the Web Ontology Language [6] and are distinguished
by having tractable worst-case complexity for the standard DL reasoning prob-
lems. The nice computational properties of EL-style reasoning procedures such
as optimal (polynomial) worst-case complexity and “pay-as-you-go” behavior, are
commonly mentioned as main reasons for the improved practical performance of
reasoners based on such procedures for large ontologies such as SNOMED CT
[2,5,3,8].

Although EL++ admits a polynomial reasoning procedure, different features
of EL++ contribute differently to the degree of this polynomial [4]. In particu-
lar, the EL++ rule for dealing with complex role inclusion axioms (RIAs) has
O(n4) time complexity, which is higher than for other rules. Even for a single
transitivity axiom, the rule can result in O(n3) inferences. Although complex
role inclusion axioms are not used as commonly as other constructors in exist-
ing ontologies such as SNOMED CT, this might change in the future as more
OWL EL ontologies emerge.

Inspired by an O(n2) algorithm for computing the transitive closure of a
binary relation, in this paper we propose a refinement of the EL++ rule for deal-
ing with complex RIAs. Our main idea is to restrict the rule so that inferences
are applied in a left-linear way, that is, only a restricted number of the “initial”
axioms can be used in all premises of the rule except for the left-most. To this
end, we (i) formulate a notion of left-admissibility describing subsets of com-
plex RIAs that can be used in a left-linear way without losing consequences,
(ii) prove a criterion for left-admissibility that can be checked in polynomial
time, and (iii) provide an experimental evaluation measuring the proportion of
left-admissible RIAs and reduction in the number of inferences for a selection of
commonly-used ontologies.



Table 1. The inference rules for ELR, with NC the set of all concept names

C0
C v C : C ∈ NC

C1
C v C′

C v D : C′ v D ∈ KB

C2
(C v Ci)

n
i=1

C v D :
n > 1dn

i=1 Ci v D ∈ KB

C3
C v C′

C v ∃R.D : C′ v ∃R.D ∈ KB

C4
C v ∃R.D D v D′

C v E : ∃R.D′ v E ∈ KB

C5
C v ∃S.D
C v ∃R.D : S v R ∈ KB

C6
(Ci−1 v ∃Ri.Ci)

n
i=1

C0 v ∃R.Cn
:
n > 1
R1 · . . . ·Rn v R ∈ KB

2 Reasoning in ELR

We first introduce a basic classification calculus for the description logic ELR
that will serve as a baseline for our study. ELR is the DL that supports only
conjunction, existential role restrictions, role hierarchies, and role inclusion ax-
ioms, each of which can be used in arbitrary general concept inclusions and role
inclusion axioms. We do not require regularity of RBoxes, and ELR can thus
be viewed as a fragment of EL++ without top, bottom, nominals, and concrete
domains. We use the following notation for role inclusion axioms.

Definition 1. A role chain ρ is an expression of the form R1 · . . . · Rn, n ≥ 0;
when n = 0 then ρ = ε is the empty role chain and when n ≥ 2 then ρ is a
complex role chain. We denote by ρ1 · ρ2 the concatenation of two role chains
ρ1 and ρ2. A (complex) role inclusion axiom (short RIA) is an expression of the
form ρ v R where ρ is a non-empty (complex) role chain and R a role. An RBox
R is a finite set of RIAs.

Table 1 shows the rules of a classification calculus for ELR, obtained by re-
stricting the calculus for EL++ [1]. The input to the rules are axioms from an
ELR knowledge base that have been normalized as in [1]. The main difference
is that we treat n-ary conjunctions/role chains in a single application of C2/C6,
corresponding to the implementation we used for experiments. Each rule of in-
ference consists of a premise, a conclusion, and possible side conditions. The
calculus derives axioms of the form C v D and C v ∃R.D based on an input
knowledge base KB, and it is sound and complete for classification in the sense
that an axiom C v D is entailed by KB if and only if the exhaustive application
of the inference rules can be used to derive C v D. This follows immediately



from the according result in [1] since it is easy to see that our rules correspond
to the inference rules in that paper: C0 corresponds to the initialization, C1 to
CR1, C2 to CR2, C3 to CR3, C4 to CR4, C5 to CR10, and C6 to CR11.

3 Linear Use of Role Inclusion Axioms

One of the simplest examples of complex RIAs is a transitivity axiom:

R ·R v R. (1)

Transitivity axioms occur in many ontologies where they are used to express hi-
erarchical relations between concepts, such as “part-of” or “child-of” hierarchies.
Let us consider an ontology containing axioms expressing a simple R-hierarchy:

Ai v ∃R.Ai+1, 1 ≤ i < n. (2)

If we apply rule C6 to these axioms, we derive exactly axioms of the form:

Ai v ∃R.Aj , 1 ≤ i < j ≤ n, (3)

using the following instances of rule C6:

Ai v ∃R.Aj Aj v ∃R.Ak

Ai v ∃R.Ak
: 1 ≤ i < j < k ≤ n. (4)

There are exactly n · (n − 1)/2 possible axioms of the form (3) and there are
exactly n · (n− 1) · (n− 2)/6 rule applications in (4). In particular, every axiom
in (3) is derived (n− 2)/3 times in average. Clearly, this demonstrates that rule
C6 can be a source of inefficiency, especially for large n.

The inferences (4) look like the computation of the transitive closure for a
binary relation, if we read C v ∃R.D as 〈C,D〉 ∈ R. Using this correspondence,
we can apply a more efficient algorithm for computing the transitive closure by
restricting the second premise in C6 to the initial axioms only. Specifically, let
us use v0 to distinguish the initial (told) axioms C v0 ∃R.D from the axioms
C v ∃R.D that are derived using inference rules. Then one can restrict rule C6

for transitivity axioms as follows:

C1 v ∃R.C2 C2 v0 ∃R.C3

C1 v ∃R.C3
: R ·R v R ∈ KB. (5)

We will call the rule (5) a left-linear rule in analogy with left-linear production
rules in context-free grammars because the conclusions of other inferences can
be used here only in the left premise. By applying (5) to the input axioms (2)
(written using v0), we obtain inferences of the following form:

Ai v ∃R.Aj Aj v0 ∃R.Aj+1

Ai v ∃R.Aj+1
: 1 ≤ i < j < n. (6)



Table 2. Left-linear inference rules for ELR

L0
C vL C

: C ∈ NC

L1
C vL C′

C vL D
: C′ v D ∈ KB

L2
(C vL Ci)

n
i=1

C vL D
:
n > 1dn

i=1 Ci v D ∈ KB

L3
C vL C′

C v0
L ∃R.D

: C′ v ∃R.D ∈ KB

L4
C vL ∃R.D D vL D′

C vL E
: ∃R.D′ v E ∈ KB

L5
C vL ∃S.D
C vL ∃R.D

: S v R ∈ R

L5
′ C v0

L ∃S.D
C v0

L ∃R.D
: S v R ∈ R

L6
(Ci−1 vL ∃Ri.Ci)

n
i=1

C0 vL ∃R.Cn
:
n > 1
R1 · . . . ·Rn v R ∈ R \ L

L6
′ C0 vL ∃R1.C1 (Ci−1 v0

L ∃Ri.Ci)
n
i=2

C0 vL ∃R.Cn
:
n > 1
R1 · . . . ·Rn v R ∈ L

It is easy to see that there are exactly (n− 1) · (n− 2)/2 rule applications in (6)
producing exactly those axioms in (3) that are not in (2), and that every such
axiom is derived exactly once. Clearly, this strategy represents an improvement
over the application of the (unrestricted) rule C6.

We use the idea above to formulate a calculus for ELR with a restricted
version of rule C6. In order to do that, we need to specify where the “initial”
axioms C v0 ∃R.D come from. Clearly, we cannot take such axioms just from the
knowledge base, since otherwise, e.g., we would not be able to derive A v ∃R.D
for KB consisting of A v ∃R.B, B v C, C v ∃R.D, and R · R v R, as we
cannot avoid using B v ∃R.D in the second premise of C6. Similarly, we need
to allow initial axioms to be produced by C5, since otherwise A v ∃R.C cannot
be derived for KB consisting of A v ∃R.B, B v ∃S.C, S v R, and R ·R v R.

The new calculus for ELR is formulated in Table 2. The calculus is para-
metrized with a distinguished subset L ⊆ R of complex RIAs. The RIAs in L
can, similar to the transitivity axiom in the example above, only be used in a
left-linear version L6

′ of rule C6. The remaining axioms from R \ L can be used
without restrictions in rule L6. The initial axioms of the form C v0

L ∃R.D are
produced by rules L3 and L5

′ . We use L in the subscripts of vL and v0

L to em-
phasize that these relations depend on L. We implicitly assume that v0

L ⊆ vL;
in particular, axioms of the form C v0

L ∃R.D can also be used as premises of
rules L4 and L6 and as the first premise of rule L6

′ . Note that if L = ∅, our new
calculus coincides with the original calculus for ELR (ignoring the distinction



Table 3. Left-linear composition of roles

E0
R v0

L R
: R ∈ NR

E1
ρ vL S
ρ vL R

: S v R ∈ R

E1
′ T v0

L S

T v0
L R

: S v R ∈ R

E2
(ρi vL Ri)

n
i=1

ρ1 · . . . · ρn vL R
:
n > 1
R1 · . . . ·Rn v R ∈ R \ L

E2
′ ρ1 vL R (Ti v0

L Ri)
n
i=2

ρ1 · T2 · . . . · Tn vL R
:
n > 1
R1 · . . . ·Rn v R ∈ L

between v0

L and vL). Clearly, the larger L is, the more restricted our rules are,
and so the less inferences are possible. Thus, in the remainder of the paper we
are concerned with the problem of finding subsets L of a given R which do not
result in lost consequences relative to the original calculus in Table 1.

4 Left-Admissible Role Inclusion Axioms

In this section we are concerned with the problem of how to determine, given a
set of complex RIAs L ⊆ R, whether the calculus in Table 2 produces the same
consequences as the original calculus in Table 1. In order to study the properties
of the calculus in Table 2 for different subsets L of R, consider the smallest
relations v0

L ⊆ vL on role chains satisfying the properties in Table 3. Note the
similarities between the rules in Table 3 and rules in Table 2. Also note that
unlike the derivation relation v0

L in Table 2, the relation v0

L in Table 3 does not
depend on L and coincides with the closure of the role hierarchy. The following
lemma can be easily proved using the correspondence between the rules L3, L5,
L5
′ , L6 and L6

′ and the rules E0, E1, E1
′ , E2 and E2

′ .

Lemma 1. For every subset L ⊆ R of complex RIAs, all concepts A and B,
and every role R, the following two conditions are equivalent:

(i) A vL ∃R.B.
(ii) There exist C0, . . . , Cn and R1 · . . . · Rn vL R such that A = C0, B = Cn,

and Ci−1 v0

L ∃Ri.Ci (1 ≤ i ≤ n).

The following properties can be proved by induction on S v0

L T :

if R v0

L S and S v0

L T , then R v0

L T , (7)
if ρ vL S and S v0

L T , then ρ vL T . (8)

The necessary and sufficient condition on L ⊆ R that guarantees that our
new calculus for ELR derives the same consequences as the original calculus,
can now be defined as follows:



Definition 2. A set of complex RIAs L ⊆ R is left-admissible for R if the
following condition holds:

if (ρi vL Ri)
n
i=1 and R1 · . . . ·Rn v R ∈ R, then ρ1 · . . . · ρn vL R. (9)

Intuitively, L ⊆ R is left-admissible if the relation vL is closed under the
unrestricted version of the rule E2 when RIAs R1 · . . . ·Rn v R can be taken not
only from R\L, but from the whole R (note the similarity of (9) and E2). Left-
admissibility thus ensures that the relation vL coincides with the unrestricted
relation v∅, i.e., the relation for L = ∅.

Example 1. Consider R consisting of the axiom

isPartOf · isProperPartOf v isProperPartOf. (10)

It is easy to show that the following relations hold for any (of the two) L ⊆ R:

isPartOf v0

L isPartOf (by E0), (11)
isProperPartOf v0

L isProperPartOf (by E0), (12)
isPartOf · isProperPartOf vL isProperPartOf (by E2 or E2

′ ). (13)

The following relation, however, holds only for L = ∅:

isPartOf · isPartOf · isProperPartOf vL isProperPartOf (by E2). (14)

When L = R, one cannot use E2
′ to produce (14) from (11) and (13) using (10).

Therefore L = R is not left-admissible for R according to Definition 2.
Now suppose R is extended with the transitivity axiom

isPartOf · isPartOf v isPartOf. (15)

Then, similarly, for any L ⊆ R we have

isPartOf · isPartOf vL isPartOf (by E2 or E2
′ ). (16)

And now (14) can be produced from (16) and (12) using (10) for any L ⊆ R. In
fact, one can show that any L ⊆ R will be left-admissible for the extended R.

Theorem 1. Let KB be a knowledge base with RBox R, and L ⊆ R be left-
admissible for R. Then C v D is derivable by rules in Table 1 using KB iff
C vL D is derivable by rules in Table 2 using KB.

Proof. The “if” direction of the theorem is straightforward since each rule in
Table 2 is a restriction of a corresponding rule in Table 1.

To prove the “only if” direction, assume to the contrary that there exists C v
D derivable by rules in Table 1 such that C 6vL D. Without loss of generality,
C v D is produced by some rule in Table 1 from some premises Ci v Di,
0 ≤ i < n, n ≥ 0, such that Ci vL Di. We obtain contradiction by considering
all possible cases for such a rule.



The only non-trivial case is an application of the rule C6 since all other rules
have a direct counterpart in Table 2. In this case Di−1 = ∃Ri.Ci (1 ≤ i ≤ n),
C = C0, D = ∃R.Cn and R1 · . . . ·Rn v R ∈ R. By case (i)⇒ (ii) of Lemma 1
applied to each Ci−1 vL ∃Ri.Ci, there exist C

j−1
i v0

L ∃R
j
i .C

j
i (1 ≤ j ≤ mi) such

that C0
i = Ci−1, Cmi

i = Ci and R1
i · . . . ·R

mi
i vL Ri. Define ρi := R1

i · . . . ·R
mi
i .

Since ρi vL Ri (1 ≤ i ≤ n),R1·. . .·Rn v R ∈ R, and L is left-admissible, we have
ρi · . . . · ρn vL R. By case (i)⇐ (ii) of Lemma 1 for ((Cj−1

i v0

L ∃R
j
i .C

j
i )

mi
j=1)

n
i=1

using ρi · . . . · ρn vL R we obtain C = C0 = C0
1 vL ∃R.Cmn

n = ∃R.Cn = D,
which contradicts C 6vL D. This proves the theorem. ut

5 Recognizing Left-Admissibility

It is difficult in general to verify the conditions of left-admissibility formulated
in Definition 2 since this requires checking property (9) for a potentially infinite
number of role chains ρi. In this section we give an equivalent formulation for
left-admissibility, which can be checked in polynomial time.

We start with the following sufficient condition for left-admissibility:

Lemma 2. Let L ⊆ R be sets of complex RIAs that satisfy the property:

if ρ v S ∈ R and ρ1 · S · ρ2 vL R, then ρ1 · ρ · ρ2 vL R. (17)

Then L is left-admissible for R.

Proof. We first show that (17) implies the following stronger property:

if ρ vL S and ρ1 · S · ρ2 vL R, then ρ1 · ρ · ρ2 vL R. (18)

The proof of (18) is by induction on the derivation of ρ vL S. In the base case
E0 we have ρ = S and the claim ρ1 ·S ·ρ2 vL R is part of the precondition. In all
other cases E1–E2

′ there exist (σi vL Si)
n
i=1, n ≥ 1 such that ρ = σ1 · . . . ·σn and

S1 · . . . · Sn v S ∈ R. By (17) ρ1 · S1 · . . . · Sn · ρ2 vL R. Now use the induction
hypothesis (18) for each σi vL Si to iteratively expand the left-hand side of
ρ1 ·S1 · . . . ·Sn ·ρ2 vL R to obtain the claim ρ1 ·ρ ·ρ2 = ρ1 ·σ1 · . . . ·σn ·ρ2 vL R.

To finish the proof of the lemma, we now show that (18) implies (9). To
this end, consider any (ρi vL Ri)

n
i=1 and R1 · . . . · Rn v R ∈ R. We must

prove that ρ1 · . . . · ρn vL R. For this, note that R1 · . . . · Rn v R ∈ R implies
R1 · . . . · Rn vL R, and use (18) for each ρi vL Ri to iteratively expand the
left-hand side of R1 · . . . ·Rn vL R to obtain the desired ρ1 · . . . · ρn vL R. ut

The following lemma formulates some useful closure properties of the relation
vL, which hold for arbitrary L:

Lemma 3. Let L ⊆ R be sets of RIAs. If ρ1 vL S1, (Ti v0

L Si)
n
i=2, n ≥ 1, and

S1 · . . . · Sn vL R, then ρ1 · T2 · . . . · Tn vL R.

Proof. Let ρ = ρ1 · T2 · . . . · Tn. We will show ρ vL R by induction on the
derivation of S1 · . . . · Sn vL R.



E0: n = 1 and S1 = R. The claim ρ1 vL R is part of the precondition.
E1: S1 · . . . · Sn vL S and S v R ∈ R. By the induction hypothesis ρ vL S from

which ρ vL R follows by E1.
E1
′ : Analogous to the case of E1.

E2: S1 · . . . ·Sn = σ1 · . . . ·σm, m > 1, (σi vL Ri)
m
i=1 and R1 · . . . ·Rm v R ∈ R\L.

Let si and ei be the start and the end indices of σi in S1 · . . . · Sn. By the
induction hypothesis ρ1 · T2 · . . . · Te1 vL R1 and (Tsi · . . . · Tei vL Ri)

m
i=2,

from which ρ vL R follows by E2.
E2
′ : S1 · . . . · Sk vL R1, k ≥ 1, (Si+k−1 v0

L Ri)
m
i=2, m > 1, k +m = n + 1 and

R1 · . . . · Rm v R ∈ L. By the induction hypothesis ρ1 · T2 · . . . · Tk vL R1.
By (7) we have (Ti+k−1 v0

L Ri)
m
i=2. Then ρ vL R follows by E2

′ . ut

We are now ready to formulate our main criterion for left-admissibility:

Theorem 2. A subset L ⊆ R of complex RIAs is left-admissible for an RBox
R if and only if the following property holds:

if ρ v S1 ∈ R, S1 v0

L S2 and ρ1 · S2 · ρ2 v R ∈ L, then ρ1 · ρ · ρ2 vL R. (19)

Proof. The “only if” direction of the theorem can be easily shown using Defini-
tion 2 since ρ v S1 ∈ R and S1 v0

L S2 imply ρ vL S2.
To show the “if” direction, we first prove the following strengthening of (19):

if ρ v S1 ∈ R, S1 v0

L S2 and ρ1 · S2 · ρ2 vL R, then ρ1 · ρ · ρ2 vL R. (20)

The proof of (20) is by induction on the derivation of ρ1 · S2 · ρ2 vL R.

E0: S2 = R and ρ1 = ρ2 = ε. Then (20) follows from (8).
E1: ρ1 ·S2 ·ρ2 vL S and S v R ∈ R. By the induction hypothesis ρ1 ·ρ ·ρ2 vL S,

from which ρ1 · ρ · ρ2 vL R follows by E1.
E1
′ : Analogous to the case of E1.

E2: ρ1 · S2 · ρ2 = σ1 · . . . · σn, (σi vL Ri)
n
i=1 and R1 · . . . · Rn v R ∈ R \ L. Let

k be such that S2 occurs in σk, that is σ1 · . . . · σk−1 = ρ′1, σk = ρ′′1 · S2 · ρ′′2 ,
σk+1 · . . . ·σn = ρ′2 and ρ1 = ρ′1 ·ρ′′1 , ρ2 = ρ′′2 ·ρ′2. By the induction hypothesis
ρ′′1 ·ρ·ρ′′2 vL Rk, from which ρ1·ρ·ρ2 = σ1·. . .·σk−1·ρ′′1 ·ρ·ρ′′2 ·σk+1·. . .·σn vL R
follows by E2.

E2
′ : ρ1 ·S2 ·ρ2 = σ1 ·T2 ·. . .·Tn, σ1 vL R1, (Ti v0

L Ri)
n
i=2 and R1 ·. . .·Rn v R ∈ L.

If S2 occurs in σ1, then this is analogous to the case of E2. Otherwise, let k
be such that σ1 · T2 · . . . · Tk−1 = ρ1, Tk = S2 and Tk+1 · . . . · Tn = ρ2. By (7)
S1 v0

L Rk. By (19) applied to ρ v S1 ∈ R, S1 v0

L Rk and R1 · . . . ·Rn vL R
we obtain R1 · . . . · Rk−1 · ρ · Rk+1 · . . . · Rn vL R, from which ρ1 · ρ · ρ2 =
σ1 · T2 · . . . · Tk−1 · ρ · Tk+1 · . . . · Tn vL R follows by Lemma 3.

Having proved (20), condition (17) now follows by taking S1 = S2 = S in
(20) and using rule E0 to derive S v0

L S. Therefore L is left-admissible for R. ut

Condition (19) in Theorem 2 can be checked in polynomial time in the size
of R. Indeed, there are only polynomially many possible instances of the precon-
dition in (19). For every such precondition, the property ρ1 · ρ · ρ2 vL R can be



checked in polynomial time by, e.g., applying Lemma 1: ρ1 · ρ · ρ2 vL R holds iff
C0 vL ∃R.Cn is derivable from (Ci−1 v0

L ∃Ri.Ci)
n
i=1, whereR1·. . .·Rn = ρ1·ρ·ρ2.

Theorem 2 can help checking if a given set L is left-admissible, but does not
explain how to find such a set without exhaustively checking al possible subsets
of R. The following sufficient condition will help us quickly find a suitable left-
admissible set of RIAs in practice:

Theorem 3. For a set of RIAs R let L(R) be the set of exactly those complex
RIAs σ v R ∈ R that satisfy the following condition for all ρ, ρ1, ρ2, S1, S2:

if ρ v S1 ∈ R, S1 v0

R S2 and ρ1 · S2 · ρ2 = σ, then ρ1 · ρ · ρ2 vR R. (21)

Then L(R) is left-admissible for R.

Proof. Note that the relations vL are anti-monotonic in L, that is for L1 ⊆ L2

we have vL1 ⊇ vL2 . Let L = L(R). Since L ⊆ R, we have vL ⊇ vR, and, since
v0

L does not depend on L, we have v0

L = v0

R. Now it is easy to show that L
satisfies (19): Suppose ρ v S1 ∈ R, S1 v0

L S2 and ρ1 · S2 · ρ2 v R ∈ L. Then
v0

L = v0

R implies S1 v0

R S2, so ρ1 · ρ · ρ2 vR R by (21). Then vL ⊇ vR implies
ρ1 · ρ · ρ2 vL R, so (19) holds. Therefore L = L(R) is left-admissible for R by
Theorem 2. ut

6 Experimental Evaluation

In this section we present the results of an experimental comparison of applying
the calculi in Sections 2 and 3 to several commonly considered EL ontologies that
contain complex RIAs, and discuss whether and to which extent our optimized
treatment of RIAs can improve the performance of reasoning in practice.

To evaluate the proposed algorithms, we have implemented the calculi de-
scribed in Sections 2 and 3 in a prototype Java-based reasoner ELK.1 All exper-
iments were conducted using Java 1.6 on a 2.5 GHz quad core CPU with 4GB
RAM running Fedora 13 Linux.

Our test ontology suite includes GO,2 FMA-lite,3 and an OWL EL version
of GALEN.4 These ontologies contain only (left-admissible) RIAs of the form
R v S and R · R v R. In order to test which proportion of complex RIAs in
realistic ontologies is left-admissible, we additionally considered the two latest
versions of GALEN,5 namely GALEN7 and GALEN8, which contain RIAs of
the form R v S, R ·S v R, and S ·R v R. We reduced these ontologies to ELR
by removing all axioms for role functionalities and role inverses and replacing
all datatypes by fresh atomic concepts. It is worth noting that the RIAs in
GALEN7 and GALEN8 do not satisfy the regularity restrictions of OWL 2 [7]
1 http://code.google.com/p/elk-reasoner/
2 obtained from http://lat.inf.tu-dresden.de/~meng/toyont.html
3 obtained from http://www.bioontology.org/wiki/index.php/FMAInOwl
4 obtained from http://condor-reasoner.googlecode.com/
5 obtained from http://www.opengalen.org/sources/sources.html

http://code.google.com/p/elk-reasoner/
http://lat.inf.tu-dresden.de/~meng/toyont.html
http://www.bioontology.org/wiki/index.php/FMAInOwl
http://condor-reasoner.googlecode.com/
http://www.opengalen.org/sources/sources.html


Table 4. Ontology metrics and experimental results

GO FMA-lite OWL GALEN GALEN7 GALEN8

Number of normalized input axioms

A v B 28,896 121,708 71,366 92,749 588,806dn
i=1Ai v B,n ≥ 2 0 0 11,561 12,097 122,527

A v ∃R.B 1,796 12,355 14,115 15,105 106,065
∃R.A v B 0 0 7,549 7,973 93,241
R v S 0 3 958 972 996
R1 ·R2 v R3 ∈ R 1 1 58 385 385
R1 ·R2 v R3 ∈ L 1 1 58 183 183

Number of derived axioms

A v B 206,205 1,035,527 1,119,636 1,770,895 11,462,383
A v ∃R.B 33,985 867,209 2,282,471 3,299,376 24,998,147

Number of rule applications

C0/L0 19,468 78,977 25,963 30,534 202,664
C1/L1 241,834 958,754 1,396,379 2,917,625 15,900,712
C2/L2 0 0 259,654 372,780 2,639,688
C3/L3 21,994 114,724 339,880 446,980 3,780,076
C4/L4 0 0 949,148 1,316,768 17,217,292
C5/L5+L5

′ 0 96,891 2,023,828 2,903,821 21,988,137
C6 34,753 5,807,992 275,248 1,264,208 11,867,857
L6+L6

′ 19,756 1,186,733 216,982 1,087,328 8,728,711

and, for this reason, no OWL reasoner can handle them in the unreduced form.
We have excluded SNOMED CT from our experiments for the reason that the
only complex RIA it contains is redundant for classification in the sense that
rule C6 is never applied on this ontology.

In our experiments, we first normalized all test ontologies using structural
transformation, and applied Theorem 3 to identify left-admissible sets of RIAs.
Table 4 presents statistics on the number of axioms of each type and the num-
ber of left-admissible RIAs for each of the tested ontologies. For GALEN7 and
GALEN8, which contain identical complex RIAs, we found a left-admissible sub-
set containing 183 out of the total 385 complex RIAs. In this case, we additionally
checked that adding any one of the remaining complex RIAs to the previously
found 183 violates the conditions of Theorem 2, showing that the left-admissible
subset of RIAs we found is maximal. For the remaining ontologies, the full set
of RIAs is left-admissible since transitivity axioms are the only kind of complex
RIA. In general, the computation of left-admissible RIAs had no relevant impact
on overall performance, running in less than 0.5 seconds in all cases.

For each of the tested ontologies, we computed the saturation under the infer-
ence rules of Table 1 and Table 2. Table 4 presents the total number of different
conclusions of each type, and the total number of inferences for each rule. In
accordance with Theorem 1, both approaches produce the same conclusions. For
this reason, the number of applications of each rule C0–C5 coincides with the



corresponding number for rules L0–L5
′ . Differences between the two approaches

are found in the number of applications of C6 on the one hand, and the com-
bined number of applications of L6 and L6

′ on the other hand. As can be seen
from the results, the effect of our optimization strongly depends on the input
ontology, with the largest relative reductions obtained for FMA-lite and GO,
and less significant reductions for all versions of GALEN.

Although the reduction in the number of rule application is significant for
FMA-lite and GO, this, surprisingly, did not translate to a significant reduction
in the running time for our prototype implementation. For FMA-lite, for exam-
ple, the running time is reduced just from 7.2 to 6.1 seconds (15.3%), which is
less than expected for more than 65% reduction in the number of inferences. For
other ontologies the reduction in the running time was even less measurable.

One possible explanation for this effect is that a rule application producing
a new consequence costs more than a rule application producing a previously
derived consequence because the first requires a (relatively expensive) memory
allocation. Since our optimized procedure derives exactly the same conclusions,
it reduces only the number of inferences of the second kind. Nevertheless, our
optimization can give improvement in some cases and should not be difficult to
implement (at least for transitivity) in any reasoner based on the original EL
calculus [1], such as in CEL/jCEL [2] or Snorocket [5].
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