SEMANTIC COMPUTING

Lecture 3: Natural Language Processing and Language Modeling

Dagmar Gromann
International Center For Computational Logic

TU Dresden, 2 November 2018
Overview

- NLP pipeline continued
- NLP applications
- Language Modeling
NLP pipeline continued
Basic NLP pipeline - Syntactic Analysis

Input: Apple took its annual spring event to Chicago this year.

Tokenization
Apple / took / its / annual / spring / event / to / Chicago / this / year

Part-of-Speech Tagging

Apple
took
its
annual
spring
event
to
Chicago
this
year

Lemmatization

Apple
take
its
annual
spring
event
to
Chicago
this
year

Dependency Parsing

Apple
took
its
annual
spring
event
to
Chicago
this
year

Examples generated with the Stanford Core NLP toolset (http://corenlp.run/).

Dagmar Gromann, 2 November 2018
Semantic Computing
Basic NLP pipeline - Semantic Analysis

Input: Apple took its annual spring event to Chicago this year.

Named Entity Recognition

Relation Extraction

Coreference Resolution

Sentiment Analysis

Examples generated with the Stanford Core NLP toolset (http://corenlp.run/).

Dagmar Gromann, 2 November 2018
Named Entity Recognition

Subtask of information extraction that locates and classifies named entities, i.e., a real-world object that can be denoted with a proper name - person, organization, location, products, etc.

```python
from nltk.tag.perceptron import PerceptronTagger
tagger = PerceptronTagger()

sent = "Apple took its annual spring event to Chicago this year."
tags = tagger.tag(nltk.word_tokenize(sent))
sent = nltk.ne_chunk(tags, binary=True) #
print(sent)
```

```
(S
  (NE Apple/NNP)
  took/VBD
  its/PRP$
  annual/JJ
  spring/NN
  event/NN
to/TO
  (NE Chicago/NNP)
  this/DT
  year/NN
  ./.)
```
Relation Extraction from Text

Also a subtask of information extraction with two main processes:

1. **extraction of entities (NER)**
 - People, organizations, locations, times, dates, prices, etc.

2. **extraction of relations between those entities**
 - Located in, employed by, part of, etc.

How?

- lexico-syntactic patterns (X is_a Y: “A dog is_a mammal.”)
- patterns and rules (PERSON [be]? (born) PREP PLACE, “Trump was born in New York City.”)
- Machine learning (supervised, unsupervision,...)
- Deep learning (all potential architectures)
Code Example Relex

Running Stanford CoreNLP from the command line.¹

```
java -cp "*" -Xmx2g edu.stanford.nlp.pipeline.StanfordCoreNLP
-analyzers tokenize,ssplit,pos,lemma,ner,parse,relation -file input.txt
Java 9: java --add-modules java.se.ee
Alternative: java -mx2g -cp "*" edu.stanford.nlp.naturalli.OpenIE
```

```
<MachineReading>
  <entities>
    <entity id="EntityMention-1">LOCATION
      <span start="0" end="1"/>
      <probabilities/>
    </entity>
    <entity id="EntityMention-2">0
      <span start="1" end="2"/>
      <probabilities/>
    </entity>
    <entity id="EntityMention-3">0
      <span start="5" end="6"/>
      <probabilities/>
    </entity>
  </entities>
  <relations/>
</MachineReading>
```

Alternative: TU Dresden is located in Germany

¹https://stanfordnlp.github.io/CoreNLP/cmdline.html
Coreference Resolution

Coreference resolution is the task of identifying all expressions (mentions) in a text that refer to the same real-world entity, such as

“She has not told her friend about that story because it is too embarrassing for her.”
Running StanfordCoreNLP from the command line.

“She has not told her friend about that story because it is too embarrassing for her.”

```
java -cp "*" -Xmx3g edu.stanford.nlp.pipeline.StanfordCoreNLP
 -annotators tokenize,ssplit,pos,lemma,ner,parse,dcoref -file input.txt
Java 9: java --add-modules java.se.ee
```

1https://stanfordnlp.github.io/CoreNLP/cmdline.html
Sentiment Analysis

Computational study of opinions, sentiments, evaluations, attitudes, affects, emotions, etc. found in text. Also called opinion mining.

- Polarity detection: positive, negative, neutral or on a scale of 1 to 5 how positive, negative or neutral
- Valence detection: valence is the "goodness" or "badness" of an emotion, which means it takes sentiment intensity into account (e.g. 0.83 negative on a scale from 0 to 1)
- Objectivity: how objective or subjective is a statement?
- Emotion classification: anger, fear, sadness, joy, etc.
- Stance classification: for or against a position
Sentiment Analysis - Example

Massive business value for all sentiment analysis applications - complaint management, product improvement, word-of-mouth marketing analysis, brand awareness, etc.

Movie reviews
- “Get off the screen.” 📽️
- “I watched the screening tonight and I really loved it.” 🎥

Product rating
- ★★★★★“The echo dot turned Alexa into a douchebag salesman.”
- ★★★★☆“A fun gadget, but the jury is still out on how useful it actually is.”
- ★★★★★★“The Smartest of Them All!!!”
Sentiment Analysis on Twitter

Twitter analysis

Measurement of the collective mood state based on large-scale Twitter feeds analysis and its correlation to the value of the Dow Jones Industrial Average (DJIA) over time.

Comparison: presidential election and Thanksgiving (as baseline)
SenticNet: Concept-Level Sentiment Analysis

Basic Code Example using NLTK Vader

VADER = Valence Aware Dictionary and sEntiment Reasoner

```python
from nltk.sentiment.vader import SentimentIntensityAnalyzer

sia = SentimentIntensityAnalyzer()

sentences = ['Get off the screen.', 'I watched the screening tonight and I really loved it.', 'The Smartest of Them All', 'Very bad movie!']

for sentence in sentences:
    print(sentence)
    ss = sia.polarity_scores(sentence)
    for k in sorted(ss):
        print('{0}: {1}, '.format(k, ss[k], end=''))

Get off the screen.
compound: 0.0, neg: 0.0, neu: 1.0, pos: 0.0
I watched the screening tonight and I really loved it.
compound: 0.6361, neg: 0.0, neu: 0.625, pos: 0.375
The Smartest of Them All
compound: 0.6124, neg: 0.0, neu: 0.5, pos: 0.5
Very bad movie!
compound: -0.623, neg: 0.671, neu: 0.329, pos: 0.0
```
NLP tasks

Each of the presented processing steps in the NLP pipeline is a whole research field in its own right with many different approaches to tackle its core problems. Some more:

- **Word Sense Disambiguation**: identify the correct sense of a word in a context, e.g. Tutorial 1 Exercise on WordNet
- **Semantic Role Labeling (shallow parsing)**: assigning labels to elements of a sentence that indicate their role, e.g. agent, goal, means. Demo: Curator
- **Spelling correction**: automatically correct spelling mistakes
- **Many more...**
Language Modeling
Prediction

Humans are incredibly good at predicting:
 • Once upon a ?
 • And the haters gonna hate, Baby, I’m just gonna?
 • Don’t stop me know, I’m having ?
 • Shall I compare thee to ?
Prediction

Humans are incredibly good at predicting:

- Once upon a time
- And the haters gonna hate, Baby, I’m just gonna shake
- Don’t stop me know, I’m having such a good time
- Shall I compare thee to a summer’s day

What comes before “computing”?

Grid computing 207011
parallel computing 101732
performance computing 229510
etc.

We can predict the next word given its history using language models. Source: http://norvig.com/ngrams/count_2w.txt
Language Modeling

Specify a language model that learns from examples rather than specifying the rules of a language using formal grammar.

Language Model

Models that assign probabilities to sequences of words are called language models: \(P(w_1, w_2, w_3, \ldots, w_n) \)

Useful in real-world applications, for example:

- machine translation

 \(P(I \text{ didn't do anything}) > P(I \text{ didn't do nothing}) \)

- speech recognition

 \(P(I \text{ ramble}) > P(I \text{ Rambo}) \)

- spelling correction

 \(P(\text{Please pay before exiting}) > P(\text{Please pai before existing}) \)
Traditional Language Models

Probability is usually conditioned on a window of n previous words:

- We can calculate the probability of a sentence by calculating the joint probability of each element in the sentence:
 \[P(S) = P(w_1, w_2, \ldots w_n) \]

- **Chain rule:** Any member of a joint distribution of random variables can be calculated using conditional probabilities:
 \[P(S) = P(w_1), P(w_2|w_1)P(w_3|w_1, w_2)\ldots P(w_n|w_1, \ldots, w_{n-1}) \]

- **Markov assumption:** only the last \(n \) words are considered in the history and can be utilized to approximate the probability
 \[P(w_1, \ldots, w_m) \approx \prod_{i=1}^{m} P(w_i|w_i-(n-1), \ldots, w_i) \]
N-Gram Models

The simplest type of language model is the N-gram model. The \(N \) specifies the number of swords in a sequence: 2-gram (bigrams), 3-gram (trigrams), etc.

- to estimate the probabilities for **unigrams** (probabilities only depend on the probability of the word):
 \[
p(w_1) = \frac{\text{count}(w_1)}{\sum_w \text{count}(w)}
\]

- to estimate the probabilities for **bigrams** (conditioning on one previous word):
 \[
p(w_2|w_1) = \frac{\text{count}(w_1,w_2)}{\text{count}(w_1)}
\]

- to estimate the probabilities for **trigrams** (conditioning on two previous words):
 \[
p(w_3|w_1, w_2) = \frac{\text{count}(w_1,w_2,w_3)}{\text{count}(w_1,w_2)}
\]

This is why those models are usually today referred to as **count-based models**.
Example

<s>I live in Dresden</s>
<s>Dresden is a city</s>
<s>I do not like pigeons in the city</s>

- Unigram? $P(\text{live}) = \frac{1}{22} = 0.04$
- Bigram? $P(\text{Dresden}|<\text{s}>) = \frac{1}{3} = 0.33$
- Trigram? $P(\text{Dresden}|\text{live in}) = \frac{1}{2} = 0.5$
In practice

- Trigrams are more common than bigrams
- Log probabilities are used to avoid underflow (the more probabilities we multiply, the smaller the product)
- Model based on frequency counts only do not perform well on unseen items. Instead:
 - **back-off** (e.g. if 4-gram not found, use 3-gram, etc.)
 - **Laplace smoothing** (add-one: \(p(w_2|w_1) = \frac{\text{count}(w_1,w_2)+1}{\text{count}(w_1)+\text{Vocab}} \))
- Computation: Recent example of a Kneser-Ney language model training was 140 GB Ram in 2.8 days for one model of 128 billion tokens
Bigram Model in Python

```python
from nltk.corpus import reuters
from nltk import bigrams
from collections import Counter, defaultdict

first_sentence = reuters.sents()[0]
print(first_sentence)
#Output: ['ASIAN', 'EXPORTERS', 'FEAR', 'DAMAGE', 'FROM', 'U', '.', 'S', ...]
print(list(bigrams(first_sentence, pad_left=True, pad_right=True)))
#Output: [(None, 'ASIAN'), ('ASIAN', 'EXPORTERS'), ('EXPORTERS', 'FEAR'), ...]

model = defaultdict(lambda: defaultdict(lambda: 0))
#Generate a dictionary of counts
for sentence in reuters.sents():
    for w1, w2 in bigrams(sentence, pad_right=True, pad_left=True):
        model[w1][w2] += 1

print(model['the']['economists'])
# Output: "economists" follows "the" 8 times
print("Example why padding is useful", model[None]['The'])
# Output: "The" starts a sentence 8839 times
```
Bigram Model in Python - continued

```python
#Transform counts into probabilities
for w1 in model:
    total_count = float(sum(model[w1].values()))
    for w2 in model[w1]:
        model[w1][w2] /= total_count

print(model['the']['economists'])  #0.00013733669808243634
print(model[None]['The'])  #0.16154324146501936
```
Evaluation

Main two evaluation methods for most computational linguistic models:

- **Extrinsic evaluation**: measure how much a specific application improves by using your model as compared to the standard baseline (time-consuming!)

- **Intrinsic evaluation**: measure the quality of the model independent of any application

For the intrinsic evaluation, the corpus is split into a:

- Training set: data used to train the model
- Test set: data used to test the trained model using a specific accuracy measure

The model that more accurately predicts the test set is the better model.
Review of Lecture 3

- What is Named Entity Recognition?
- Which two processes are needed for relation extraction?
- What is sentiment analysis?
- What is the difference between emotion classification and polarity detection?
- What is a language model?
- How can the chain rule and the Markov assumption be used in a language model? What are they?
- What happens when we want to compute a bigram that a model has not seen before?
- How can a language model be evaluated?