
Abstract Domains for Database Manipulating
Processes

Tobias Schüler1[0009−0008−1559−133X], Stephan Mennicke2[0000−0002−3293−2940],
and Malte Lochau1[0000−0002−8404−753X]

1 University of Siegen, firstname.lastname@uni-siegen.de
2 Knowledge-Based Systems Group, TU Dresden, Dresden, Germany

stephan.mennicke@tu-dresden.de

Abstract. Database manipulating systems (DMS) formalize operations
on relational databases like adding new tuples or deleting existing ones.
To ensure sufficient expressiveness for capturing practical database sys-
tems, DMS operations incorporate as guarding expressions first-order
formulas over countable value domains. Those features impose infinite
state, infinitely branching processes thus making automated reasoning
about properties like reachability of states intractable. Most recent ap-
proaches therefore restrict DMS to obtain decidable fragments. Never-
theless, a comprehensive semantic framework capturing full DMS, yet
incorporating effective notions of data abstraction and process equiva-
lence is an open issue. In this paper, we propose DMS process semantics
based on principles of abstract interpretation. The concrete domain con-
sists of all valid databases, whereas the abstract domain employs different
constructions for unifying sets of databases being semantically equivalent
up to particular fragments of the DMS guard language. The connection
between abstract and concrete domain is effectively established by ho-
momorphic mappings whose properties and restrictions depend on the
expressiveness of the DMS fragment under consideration. We instantiate
our framework for canonical DMS fragments and investigate semantical
preservation of abstractions up to bisimilarity, being one of the strongest
equivalence notions for operational process semantics.

Keywords: database manipulating systems · abstract interpretation ·
labeled transition systems · bisimulation equivalence.

1 Introduction

Background and Motivation. Modern software systems intensively interact
with diverse environmental components which often includes one or more (re-
lational) databases. Database manipulating systems [1] (DMS) and similar ap-
proaches [7,8,4,22] characterize the operational behavior of (relational) database
systems by formalizing actions consecutively transforming the current state of
databases by adding new tuples or deleting existing ones. The action language
supported by DMS-like formalisms must be sufficiently expressive to capture

2 Schüler et al.

crucial behavioral aspects of practical database systems. To this end, those ac-
tions combine set-based add/delete operations with FOL formulas both defined
on databases over (countable) value domains [2]. The FOL part serve as guard-
ing expressions for actions which, if enabled, have the ability to further expand
and/or narrow the active domain of databases reached in the subsequent state.
However, these distinct features of DMS-like formalisms impose intrinsically
problematic properties on the underlying operational semantics. For instance,
using labeled transitions systems (LTS) [7], the resulting process model is not
only non-regular and infinite-state, but even infinitely branching as arbitrary
fresh data may be added to databases in a step. Essential correctness properties
of DMS processes like reachability of states are thus not only theoretically unde-
cidable, but also practically intractable by state-of-the-art reasoning tools. As a
pragmatic workaround, most approaches consider bounded state spaces and/or
narrow down expressiveness of DMS languages to obtain decidable fragments [1].

Contributions. In this paper, we apply the framework of abstract interpreta-
tion [9,10] to tame the LTS semantics of DMS processes. In the concrete domain,
the set of LTS states corresponds to all valid databases of a given database
schema over infinite value domains. In the abstract domain, LTS states are con-
structed by employing different abstraction operators for unifying subsets of
databases. This abstract representation enables us to effectively connect the ab-
stract and concrete domains by means of homomorphic mappings. The types
of properties of DMS processes being preserved and/or reflected by abstraction
depend on the expressiveness of the DMS fragment used in DMS actions as
well as the notion of process equivalence under consideration. We instantiate
our framework for canonical DMS fragments and investigate behavior preser-
vation of abstractions up to bisimilarity. As bisimilarity constitutes one of the
strongest equivalence notions for LTS-based process semantics, our abstraction
builds the basis for guaranteeing preservation of essential semantical proper-
ties. In this way, our framework provides a sound conceptual basis for building
effective model-checking tools for DMS process verification [10].

Extended Version. We omit the proofs for the main results due to space restric-
tions and instead refer to the extended version [24].

2 Foundations

Databases. We assume a first-order (FO) vocabulary consisting of mutually dis-
joint (countably infinite) sets of constants C, variables V, and predicates P.
Each predicate p ∈ P has an arity ar(p) ∈ N. Terms are either constants or vari-
ables, and for a list of terms t = t1, . . . , tn we denote its length by |t| = n. An
expression p(t) is an atom if p ∈ P and t is a term list, such that ar(p) = |t|. An
atom is grounded if it is variable-free and we call a finite set of ground atoms D a
database. The universe of all databases is UC. A (possibly infinite) set of ground
atoms I is an instance with the respective universe IC. Note that, UC ⊆ IC.

Abstract Domains for DMS 3

Table 1. Guard fragments, their formula shape, and their abbreviation

guard fragment abbrv. formula

normal conjuncitve guard NCG ∃y. a1 ∧ . . . ∧ am ∧ ¬b1 ∧ . . . ∧ ¬bn
projection-free NCG pf-NCG a1 ∧ . . . ∧ am ∧ ¬b1 ∧ . . . ∧ ¬bn
conjuncitve guard CG ∃y. a1 ∧ . . . ∧ am
projection-free CG pf-CG a1 ∧ . . . ∧ am
conjunction of negated atoms CNA ∀y. ¬a1 ∧ . . . ∧ ¬am

Guards. We consider FOL formulas g to serve as guards as follows:

Φ ::= p(t) t = u ¬Φ Φ ∧ Φ ∃x. Φ (1)

where p(t) is an atom, t, u are terms, and x ∈ V. The terms occurring in guard
g being variables are referred to by the set vars(g). A variable x ∈ vars(g) is
either free or bound in g, defining the set free(g)3 of free variables.

Guards as FOL Fragments. A normal conjunctive guard (NCG) is a formula

∃y. a1 ∧ . . . ∧ am ∧ ¬b1 ∧ . . . ∧ ¬bn (2)

where y is a list of variables occurring in the atoms a1, . . . , am, b1, . . . , bn. For an
NCG g of shape (2) we refer to the positive guard part by g+ = ∃y. a1 ∧ . . . ∧
am and its negated part by g− = ∃y. ¬b1 ∧ . . . ∧ ¬bn, respectively. Whenever
convenient, g+ (g−, resp.) identifies the set of atoms occurring within g, meaning
g+ = {a1, . . . , am} (g− = {b1, . . . , bn}, resp.). An NCG g with g− = ∅ is a
conjunctive guard (CG). An NCG g is safe if vars(g−) ⊆ vars(g+). Similarly,
the other guard fragments are summarized in Table 1.

Substitution. A substitution is a partial function σ : V → C mapping variables
to constants. The set of all variables for which σ is defined is denoted by dom(σ).
We call σ a substitution for guard g if vars(g) ⊆ dom(σ). Such a substitution
replaces variables of a guard by constants and, thereby, forms a guard match. For
convenience, we assume for every substitution σ and constant c ∈ C, σ(c) = c,
extending the signature of σ to V ∪ C → C. If t = t1 . . . tn is a list of terms
and σ a substitution defined for all variables in t, we denote by tσ the term
list σ(t1) . . . σ(tn). A substitution σ is a match to guard g in instance I if (a)
free(g) = dom(σ) and (b) I, σ |= g, where

– I, σ |= p(t) if p(tσ) ∈ I,
– I, σ |= t = u if tσ = uσ,
– I, σ |= ¬g if I, σ |= g does not hold,
– I, σ |= g ∧ g′ if I, σ |= g and I, σ |= g′, and
– I, σ |= ∃x. g if I, σ[x 7→ c] |= g for some c ∈ C.

3 free(r(t)) = t ∩ V, free(t = u) = {t, u} ∩ V, free(¬g) = free(g), free(g ∧ ψ) =
free(g) ∪ free(ψ), and free(∃x. g) = free(g) \ {x}.

4 Schüler et al.

Guard matches. We denote the set of all matches to guard g in instance I by
g(I). We may simply write g to identify a guard. A guard match to NCGs
g = ∃y. ψ in I is tightly connected to the existence of homomorphisms from ψ
(viewed as a set of atoms) to instance I. A function h : C∪V→ C∪V is called
a homomorphism from a set of atoms A into a set of atoms B if (a) h(c) = c for
all c ∈ C and (b) p(t1, . . . , tn) ∈ A implies p(h(t1), . . . , h(tn)) ∈ B.

Guard match, query answer and substitution. Guards and guard matches are
very similar to queries and query answers in database systems. However, whereas
query answers should be domain independent (i.e., having finitely many pos-
sible substitutions [2]), this does not necessarily hold for guard matches [1].
For instance, query ¬P (x) would have infinitely many answers and is therefore
prohibited, whereas the corresponding guard simply checks if, for instance, a
to-be-added person is not yet contained in the database.

Example 1. We consider a simplified social network (SSN) with two predicates,
(1) a unary predicate P (name) for persons currently being members of the net-
work with attributes name, and (2) a binary predicate F (name1,name2) for a
non-symmetric friendship relation from person name1 to person name2. We as-
sume all possible strings denoting names to be part of C. A database of our SSN
may be De = {P (A), P (B), P (C), F (A,B), F (B,A), F (A,C)} (with A, B and C
may be Alice, Bob and Charles). Potential guards are

– a symmetric friendship: gsf = F (x, y) ∧ F (y, x),
– a directed friendship: gdf = F (x, y) ∧ ¬F (y, x),
– a friendship from x to someone: gaf = ∃y.F (x, y), and
– no friendship: gnf = ¬F (x, y) ∧ ¬F (y, x).

On De we obtain the following guard matches:

– gsf (De) = {{x 7→ A, y 7→ B}, {x 7→ B, y 7→ A}},
– gdf (De) = {{x 7→ A, y 7→ C}},
– gsf (De) = {{x 7→ A}, {x 7→ B}}, and
– gnf (De) = {{x 7→ B, y 7→ C}, {x 7→ C, y 7→ B}, {x 7→ A, y 7→ A}, . . . }.

For instance De, {x 7→ A, y 7→ B} |= gsf holds as Alice is a friend of Bob and
Bob is a friend of Alice, whereas De, {x 7→ A, y 7→ B} |= gdf does not hold.

Database Manipulating Systems. Database manipulating systems formalize pos-
sible sequences of actions consecutively applied to database instances. Syntac-
tically, our formalization loosely follows the canonical notion of actions used in
the DMS formalism by Abdulla et al. [1]. An action consists of a guard and an
effect on the current instance. A guard specifies on which instances the action is
applicable. The effect might be deletion of atoms from the instance and adding
new atoms to the instance. Formally, the effect comprises two finite sets of atoms,
Del and Add, such that vars(Del) ⊆ free(g). Atoms in Del are determined by the
match for guard g, while Add is a collection of new atoms. Note that Del and Add

may contain variables that will be bound by (a) the guard matches and (b) by

Abstract Domains for DMS 5

arbitrary constants in case of those variables in vars(Add)\ free(g). The rationale
behind case (b) is that an action inserting atoms may depend on external stimuli
like sensor data or user input. An action act is a triple (g, Del, Add) which forms
the basis of a database manipulating system (DMS).

Definition 1 (Database Manipulating System). A database manipulating
system (DMS) is a pair S = (I0,Act) where I0 is the initial instance and Act
is a finite set of actions.

From I0, any sequence of actions act = (g, Del, Add) ∈ Act may be performed
based on substitutions σ due to matches of guard g. Note that σ specifies all
variables occurring in Del. We denote by Delσ the set obtained by replacing all
occurrences of variables x ∈ vars(Del) by σ(x). In general, for a set of atoms A
and substitution σ, Aσ is the set of atoms in which each variable x ∈ vars(A)
has been replaced by σ(x) if it is defined for σ. Set Add may contain variables
which are not in dom(σ) such that Addσ is not a proper database . To facilitate
arbitrary external inputs, we expand σ to the missing variables. Substitution σ⋆

extends σ to Add if dom(σ⋆) = Add and σ ⊆ σ⋆. Extending σ to σ⋆ completes a
step by deletions Delσ⋆ from and additions Addσ⋆ to the current instance.

Definition 2 (DMS Step). A DMS action act = (g, Del, Add) is enabled un-
der instance I and substitution σ, denoted I[act, σ⟩, if σ ∈ g(I). If I[act, σ⟩, then
an effect is an extension σ⋆ of σ to Add, producing instance I ′ = (I \ Delσ⋆) ∪
Addσ⋆. We denote the DMS step from I to I ′ via act and σ by I [act, σ⋆⟩ I ′.

Example 2. Action actadd = (true, ∅, {P (x)}) (adding a new person) is enabled
under each instance even if the person already exists in that instance. Thus, σ is
empty and σ⋆ may be, e.g., {x 7→ A}. Action actrev = (gdf , {F (x, y)}, {F (y, x)})
checks if a directed friendship exists between x and y, deletes this friendship and
adds the reversed friendship.

The formal semantics of a DMS is defined as a labeled transition system (LTS).

Definition 3 (Labeled Transition System). A labeled transition system
(LTS) is a triple T = (Q,Σ,=⇒) where q is a set of states (processes), Σ is
a set of transition labels, and =⇒⊆ Q × Σ × Q a transition relation. We denote
(q, a, q′) ∈=⇒ as q a

=⇒ q′ and write q a
=⇒ if ∃q′ ∈ Q : q

a
=⇒ q′ and q ̸ a=⇒ if not q a

=⇒.

LTS T = (Q,Σ,=⇒) is (a) finitely branching if for each q ∈ Q, the set {q′ ∈ Q |
∃a ∈ Σ : q

a
=⇒ q′} is finite, (b) image-finite if for each q ∈ Q and a ∈ Σ, the

set {q′ ∈ Q | q a
=⇒ q′} is finite, (c) finite-state if Q is finite, and (d) determin-

istic if for each state q ∈ Q and a ∈ Σ, q a
=⇒ q′ and q

a
=⇒ q′′ implies q′ = q′′.

Although LTSs may be directly associated with directed edge-labeled graphs,
comparison relations based on graph homomorphisms are too strong to capture
distinctive features of LTS processes. Instead, simulation and bisimulation rela-
tions on processes are used. Intuitively, process q simulates p if every action that
may be performed by p can be mimicked by q and the successor states again
simulate each other.

6 Schüler et al.

Definition 4 ((Bi-)Simulation). For an LTS (Q,Σ,=⇒), a binary relation
R ⊆ Q×Q is a simulation if for all (p, q) ∈ R and a ∈ Σ, p a

=⇒ p′ implies that
q′ ∈ Q exists such that q a

=⇒ q′ and (p′, q′) ∈ R. Process q ∈ Q simulates process
p ∈ Q if there is a simulation R with (p, q) ∈ R. If p simulates q by simulation
R, and q simulates p by simulation R′, then p and q are similar. Simulation R is
a bisimulation if, and only if, R−1 := {(q, p) | (p, q) ∈ R} is also a simulation.
If there is a bisimulation R, such that (p, q) ∈ R, then p and q are bisimilar.

Note, the witnesses R and R′ for similarity are not necessarily bisimulations as
possibly R−1 ̸= R′.

DMS semantics can be formalized as an LTS DMS := (UC,ActΣ,=⇒) where

=⇒ is formed by I1
⟨act,σ⟩
====⇒ I2 if, and only if, I1 [act, σ⟩ I2 (cf. Def. 2). In general,

DMS is infinitely branching, infinite-state, and deterministic.
DMS builds the basis for investigating desirable properties of all possible

processes defining a DMS. For instance, the reachability problem asks for a
given DMS and a distinguished action actx, if there is an instance Ix with
I0 =⇒ I1 =⇒ . . . =⇒ Ix such that action actx is enabled under Ix. The reach-
ability problem is undecidable for DMS [1]. The next example constitutes a
semi-decidable reachability problem.

Example 3. Given a predefined set of persons and actions for consecutively
adding and deleting friendships between arbitrary pairs of persons, do we even-
tually reach a database containing a triangle friendship between three different
persons (i.e., x a friend of y, y a friend of z and z a friend of x)? To this end, we
expand the unary predicate P (name) to a binary predicate P (name,name) and
use NCG to define a guard P (x, x)∧ P (y, y)∧¬P (x, y). ¬P (x, y) (i.e., ensuring
that x and y match different persons). This is a standard technique to avoid
̸= in first order formulas. Starting from an arbitrary database, we consider two
actions: actadd := (P (x, x)∧P (y, y)∧¬P (x, y), ∅, F (x, y)) (adding a friendship)
and actdelete := (F (x, y), F (x, y), ∅) (deleting a friendship) and ask for reach-
ability of the action actend = (∃x, y, z.F (x, y) ∧ F (y, z) ∧ F (z, x) ∧ ¬P (x, y) ∧
¬P (y, z) ∧ ¬P (z, x), ∅, ∅).

A finite solution to this problem comprises an abstract LTS with four states,
where each of those abstract states contains all subsets of databases with (1) no
friendships, (2) friendship chains of maximum length ≤ 2, (3) friendship chains
of maximum length > 2 without any triangles, and (4) at least one triangle.

In the remainder of this paper, we develop a hierarchy of abstract domains
to characterize semantic-preserving abstractions of states of DMS depending on
the expressiveness of the guard fragment used. Our approach is based on the
formal framework of abstract interpretation.

3 Principles of Abstract Interpretation

Before we present our abstract interpretation framework for DMS, we first de-
scribe its basic ingredients. Different processes assembled in DMS may share

Abstract Domains for DMS 7

similar behavior in terms of their enabled actions and subsequent processes. For
instance, let us consider a DMS action which inserts a friendship between Al-
ice and Bob, where the guard of this action consists of a conjunction of atoms
requiring Alice and Bob to exist in the database. All (i.e., countably infinitely
many) concrete states matching this guard may be aggregated into one single
abstract state. The concrete states aggregated in the subsequent abstract state
reached after performing this action then all share the inserted relationship be-
tween Alice and Bob. The way how the concrete states are aggregated into, and
reconstruction from, such an abstract state clearly depends on the guard frag-
ment used. In addition, DMS states are infinitely branching due to the ability of
DMS actions to insert any possible new value. However, in many cases, the exact
values are often not relevant for reasoning about the subsequent behavior and
can therefore be aggregated into one representative abstract value. The following
definitions are based on Dams et al. [10] and conceptualize these observations.

Lattice. Abstract interpretation provides a framework for effectively reasoning
about computational models over infinite semantic domains modeled as lattices.
By ⊓ and ⊔ we denote binary operations on sets S. The operators ⊓ and ⊔ are
monotone with respect to a partial order ≤ on S (i.e., x1, x2, y1, y2 ∈ S, x1 ≤ x2
and y1 ≤ y2 implies x1 ⊓ y1 ≤ x2 ⊓ y2 and x1 ⊔ y1 ≤ x2 ⊔ y2).
Definition 5 (Lattice). A lattice is a partially ordered set (S,≤) such that
each two-element subset {x, y} ⊆ S has (1) a unique least upper bound in S,
denoted by x ⊔ y, and (2) a unique greatest lower bound in S, denoted by x ⊓ y.
Bounded lattices are not further deployed in the following but are mentioned
here only for the sake of comprehensibility. Abstract interpretation aims at es-
tablishing connections between lattices modeling different semantic domains.

Galois Connection. By (C,⊑) we denote a concrete semantic domain where
C = 2Q comprises the set of all subsets of concrete sets of states Q of a compu-
tational model (here: DMS). By ⊑ we denotes a partial (semantic) ordering on
C (here: ⊆). By (A,⪯) we denote an abstract semantic domain where A is a set
of abstract states and ⪯ a partial (precision) ordering on A. It is crucial that
the elements of the concrete domain C are possible subsets of concrete states,
whereas the elements of the abstract domain A are singleton abstract states.
The mutual connection between concrete and abstract domain is shaped by a
pair of abstraction function α : C→ A and a concretization function γ : A→ C,
together forming a Galois connection.

Definition 6 (Galois Connection). The pair (α : C → A, γ : A → C) is a
Galois connection between lattices (C,⊑) and (A,⪯) if (1) α and γ are total and
monotone, (2) ∀C ∈ C : γ ◦ α(C) ⊒ C, and (3) ∀a ∈ A : α ◦ γ(a) ⪯ a.
Monotonicity guarantees that more precise abstractions single out fewer concrete
states and, conversely, abstracting larger sets of concrete states yields less precise
abstractions. Furthermore, (2) requires that concrete states are preserved after
reconstruction. Finally, (3) requires a form of optimality of the abstraction thus
not decreasing precision.

8 Schüler et al.

Bisimulation. Lifting (bi-)simulations to steps C a
=⇒ C ′ between sets of concrete

states, as apparent in the concrete domain, amounts to all databases q ∈ C
evolving to q′ ∈ C ′ via q

a
=⇒ q′. We refer to these as ∀-steps and adapt the

notions of (bi-)simulations accordingly.

Definition 7 (∀-(bi-)simulation). For abstract domain (A,⪯) and concrete
domain (C,⊑), a binary relation R ⊆ A×C is a ∀-simulation if for all (A, C) ∈ R
and a ∈ Act, A a

=⇒ A′ implies that there is a C ′ ∈ C such that (a) C a
=⇒ C ′

with a q ∈ C for each q′ ∈ C ′ such that q a
=⇒ q′, and (b) (A′, C ′) ∈ R and (c)

for each q ∈ C there is a q′ ∈ C ′ with q a
=⇒ q′.

If (A, C) ∈ R and R is a ∀-simulation, we say that C ∀-simulates A. By revers-
ing the conditions of ∀-simulations, we get ∀-simulations between the concrete
domain and the abstract domain (i.e., R ⊆ C×A). Naturally, a ∀-simulation R
is called a ∀-bisimulation if, and only if, R−1 is a ∀-simulation. We call A and
C ∀-bisimilar if, and only if, a ∀-bisimulation between A and C exists.

Abstract Interpretation Framework. The remainder of this paper is devoted to
a hierarchy of concrete domains (2U ,⊆) for DMS processes shaped by different
fragments of FOL as guard language, where the functions γ and α are either
based on the supremum or infimum of the corresponding abstract domains. For
a guard language L, we call a Galois connection (α, γ) an abstract interpretation
w.r.t. L if for each set of databases C ⊆ U and set of DMS actions Act using
only guards from L, α(C) and C are ∀-bisimilar.

4 Abstract Interpretation of DMS

The concrete domain is fixed: (2U ,⊆). For (possibly infinite) sets C of databases,
we effectively present six different abstractions: The first two very basic ones are
based on (set) union and intersection. The third abstraction is a (Cartesian)
combination of the two prior abstractions with the benefit of supporting a more
practical guard fragment. One caveat about these abstractions is that we have
to waive projection (i.e., existential quantification). To gain DMS actions with
more expressive guards, and thereby capture more realistic systems, we devise
abstractions for more general abstract domains. We expand our abstract domain
incorporating so-called labeled nulls as terms in abstract instances. The order
on the abstract domain is then based on homomorphisms. The three remaining
abstractions are complements of the first three, now in the more abstract domain
incorporating labeled nulls. Table 2 summarizes our results.

The rest of this section is structured as follows. First, we introduce a naive
set-based abstraction based on the set union operator on databases together
with a summary of further set-based abstractions. Resolving the issue of ne-
glecting variable projections in guards we introduce instances with labeled nulls,
on which CGs can be used without losing precision. Finally, we combine unions
and intersections to even support DMS actions with NCGs. Other abstractions
are mentioned in results only, whereas our extended paper provides further ex-
planations and proofs [24].

Abstract Domains for DMS 9

Table 2. Abstract Domains, Interpretations, and Respective Guard Fragments

abstract domain α(C) γ(I) fragment

(I,⊆)
⋃
C {D ⊆ I} CNA Theorem 1

(I,⊇)
⋂
C {I ⊆ D} pf-CG Theorem 2

(I × I,≤) (
⋂
C,

⋃
C) {I ⊆ D ∧ D ⊆ I} pf-NCG Theorem 3

(IN,→)
⊔
C {D → I} CNA Theorem 5

(IN,←)
d
C {I → D} CG Theorem 4

(IN×, IN,⪯) (
d
C,

⊔
C) {I → D ∧D → I} NCG Theorem 6

4.1 Set-Based Abstractions: The Case of Union

As a first and very basic abstraction we study
⋃
C of any set C ∈ 2U of databases.

If C is infinite,
⋃
C is infinite as well, meaning that

⋃
C is captured in I. Hence-

forth, we facilitate
⋃
C via the abstraction function α1 : 2U → I with α1(C).

α1(C) :=
⋃
C γ1(I) := {D ⊆ I | D is a database} (3)

The natural choice for the abstract domain is, thus, (I,⊆) because the more
databases C contains, the bigger the abstract instance is (cf. Def. 6 item 1). The
counterpart concretization function γ1 : I → 2U is determined by α1: While α1

forms the union of all databases contained in a set of databases C, an abstract
instance then describes all databases that are (finite) subsets of the abstract
instance. γ1(I) is defined in (3).

Databases are finite by definition, implying that if I is infinite, D ⊊ I for
every D ∈ γ1(I). The functions in (3) make up for a Galois connection.

Proposition 1. (α1, γ1) is a Galois connection.

For C ∈ 2U , we are interested in the behavioral properties of the abstraction
α1(C). Therefore, observe that for every database D ∈ C, D ⊆ α1(C). Thus,
guards asking for the absence of atoms will have the same matches on all the
databases in C as well as the abstraction α1(C).

Example 4. We analyze two guards gnf (absence of a friendship) and gsf (pres-
ence of a symmetric friendship) from example 1 on C and I with C = {{P (A),
P (B), F (A,B), F (B,A)}, {P (A), P (B), P (C)}} and I =

⋃
C = {P (A), P (B),

P (C), F (A,B), F (B,A)}. If a friendship is absent in each database of C, this
friendship is also absence in I (i.e., the union of all databases of C). If a friend-
ship is absent in I this friendship is also absent in each database of C. In contrast,
the presence of a symmetric friendship like F (A,B), F (B,A) holds for I but not
for each database in C.

The guard gnf = ∀y.¬F (x, y) ensures the absence of all friendships of a per-
son x through the universal quantifier. gnf behaves similar to gnf . The behavior
of the existential quantifier is conversely. For instance, gex = ∃x.¬P (x) holds for
each database as databases are finite but the set of all constants is infinite. In
contrast, if set C is infinite and for each constant c, P (c) is contained in some
database in C, I =

⋃
C does not satisfy gex.

10 Schüler et al.

As the examples show, α1(C) may enable DMS actions with conjunctive guards
that are not enabled by some, or any, of the concrete databases in C. Thus,
α1(C) captures the behavior of all databases in C if we choose CNA guards.

Theorem 1. (α1, γ1) is an abstract interpretation w.r.t. CNA guards.

Similarly, we obtain an abstraction framework based on intersection of all
the databases contained in set C of concrete databases.

Theorem 2. Galois connection (α2, γ2) with α2(C) :=
⋂
C and γ2(I) := {D ∈

U | I ⊆ D} is an abstract interpretation for pf-CGs.

This is a special case of Theorem 4 (cf. next subsection). Furthermore, combining
both former abstractions allows us to cover projection-free normal conjunctive
guards in DMS actions. The rationale behind this abstraction is that for an NCG
g, g+ is evaluated on the intersection component while g− is simultaneaously
evaluated on the union component of the abstraction.

Theorem 3. For α3(C) := (α1(C), α2(C)) and γ3((I∪, I∩)) := {D ∈ U | I∩ ⊆
D ⊆ I∪}, Galois connection (α3, γ3) is an abstract interpretation for pf-NCGs.

Next, we consider abstractions allowing for projections (i.e., existentially quan-
tified variables in DMS action guards) to fully capture NCGs in DMS actions.

4.2 Abstractions with Labeled Nulls: The Case of Intersection

There are two issues with the abstractions discussed so far: (a) limited expres-
siveness in guards of DMS actions (no existential quantification) and (b) (still)
infinite branching of abstract states. The reason for the latter is that abstract
instances resemble their concrete counterparts too explicitly. To resolve both is-
sues we use the well-known labeled null abstraction to get a notion of existence of
values contained in a database whose exact values are irrelevant. Finite branch-
ing is a welcome side-effect of this abstraction as well as a precise abstraction
for DMSs using CGs (including projection via existential quantification).

Labeled nulls are introduced in our framework as a countably infinite set N
(disjoint from all other term sets). As labeled nulls are proxies for the existence
of values (i.e., constants), a database, in which every occurrence of a null is
replaced by a constant (or other null), is certainly related to the instance that
uses the null. Let us denote the set of all instances using constants and labeled
nulls by IN (short for IC∪N

P). The notions of homomorphisms and guard matches
naturally extend to databases containing nulls (i.e., constants must still map to
constants, but nulls may map to nulls or constants).

Due to the nature of labeled nulls, their identity does not have the same role
as constants have. It is natural to consider IN closed under equivalence up to
homomorphisms. This means, instances I,J ∈ IN are equal, denoted I ⇆ J ,
if I → J and J → I. Note, on U equivalence up to homomorphisms coincides
with set equality. For instance {P (A)}⇆ {P (A), P (n0)} because we can map A

Abstract Domains for DMS 11

on A and n0 on A. {F (n0,n1)} → {F (n0,n0)} but {F (n0,n0)} ̸→ {F (n0,n1)}
because we can not map n0 on n0 and n0 on n1.

(IN,→) forms a lattice and, by duality, (IN,←), too. The join ⊔ of (IN,→)
is simply the union of the instances. Conversely, ⊓ is an intersection of two
instances generalizing common atoms with different constants via null assertions.
For instance, I = {P (A), P (B), F (n0,n1)} and J = {P (A), P (C), F (A,C)}
have I ⊔J = {P (A), P (B), P (C), F (n0,n1), F (A,C)} as least upper bound and
the greatest lower bound is I ⊓ J = {P (A), F (n0,n1)}.

The next two definitions describe how an action is performed in (IN,→). Let
I be an instance and act = (g, Del, Add) a DMS action. Instead of extending
guard matches σ to σ⋆ (involving some constants that are added to the instance
through variables in Add), we consider extensions of σ that insert (globally) fresh
labeled nulls for all variables in vars(Add) \ free(g).

Definition 8. Let act = (g, Del, Add) be a DMS action. For abstract instance

I ∈ IN, if σ ∈ g(I), then I ⟨act,σ⟩
====⇒ (I \ Delσ⋆) ∪ Addσ⋆ where σ ⊆ σ⋆ and for

each variable x ∈ vars(Add) \ free(g), σ⋆(x) is a fresh labeled null.

Example 5. For action actadd = (true, ∅, {P (x)}) from example 2, vars(Add) \
free(g) = {x} \ ∅ = {x} and σ⋆(x) = n. We obtain ∅ ⟨actadd,∅⟩

======⇒ {P (n)}.

Note that the action label only contains the match σ and not its extension. The
reason is that for instances I,B1,B2 and action-match pair ⟨act, σ⟩, if I ⟨act,σ⟩

====⇒
B1 and I ⟨act,σ⟩

====⇒ B2, then B1 ⇆ B2. Thus, the different target instances cannot
be distinguished in our abstract domain. This notion of steps is similar to what
the Chase does in existential rule reasoning [13]. Due to the closure of the domain
under homomorphisms, it also resembles the standard chase and the core chase to
certain extents [12]. Sets of concrete instances still proceed as originally defined
in Sect. 2. To still guarantee a resemblance between the action labels in our
abstract domain and the labels used for concrete instances (where no nulls are
involved), we introduce a notion of compatibility of action labels.

Definition 9. Action label ⟨act1, σ1⟩ is compatible to action label ⟨act2, σ2⟩,
denoted by ⟨act1, σ1⟩ ⊴ ⟨act2, σ2⟩, if act1 = act2 and σ1 ⊆ σ2.

Note that we could have reduced the action labeling to include only the guard
matches for concrete instances already. However, this simplification does not
make the branching finite. Even worse, the resulting LTS would become nonde-
terministic and looses image-finiteness at the same time.

As before, the abstraction mechanisms we study are based on greatest lower
bounds and least upper bounds of the abstract domain (IN,→). Next, we study
the intersection abstraction of C ∈ 2U with α4(C) in (4). Generalizing from
(I,⊇) we get (IN,←) as the less databases C contains, the bigger the abstract
instance becomes (cf. Def. 6 item 1). Conversely, γ4(I) in (4) for abstract instance
I ∈ IN.

α4(C) :=
l
C γ4(I) := {D ∈ U | I → D}} (4)

12 Schüler et al.

Proposition 2. (α4, γ4) is a Galois connection.

Using labeled nulls, abstract DMSs using CGs become precise abstractions
of their concrete counterparts.

Example 6. We analyze the guard gaf (does there exist a friendship from x
to someone) from example 1 on C = {{P (A), P (B), F (A,B)}, {P (A), P (C),
F (A,C)}} and I =

d
C = {P (A), F (A,n1)}. In contrast to I ′ =

⋂
C = {P (A)},

we have a friendship with nulls in I. Now we get homomorphisms hI : gaf → I
and hD : gaf → D for each D ∈ C.

Theorem 4. (α4, γ4) is an abstract interpretation for CGs.

Generalizing the Galois connection (α1, γ1) to IN yields (α5, γ5) with α5 = α1

and γ5(A) := {D ∈ UN | D → A}. As for all databases D without labeled nulls,
the existence of a homomorphism from D to A holds if, and only if, D ⊆ A, the
new domain generalizes the original result (i.e., Theorem 1) slightly, but without
further impact. After all, labeled nulls are proxies for the existence of constants,
whereas CNA guards account for the absence of atoms.

Theorem 5. Galois connection (α5, γ5) with α5(C) :=
⊔
C and γ5(I) := {D ∈

U | D → I} is an abstract interpretation for CNAs.

4.3 Combining Unions and Intersections

Although the former abstractions already capture existentially quantified vari-
ables (i.e., projections), they do not jointly support projections as well as nega-
tion. A corresponding abstraction capturing both is α6 : 2U → IN × IN with
respective concretization γ6 : IN × IN → 2U as defined in (5). The abstract
domain is (IN × IN,⪯). I1 ⪯ I2 is defined as (I⊓1 , I⊔1) ⪯ (I⊓2 , I⊔2) if and only if
I⊓1 ← I⊓2 and I⊔1 → I⊔2 . The lattice (IN × IN,⪯) is a combination of the two
lattices (IN,←) and (IN,→).

α6(C) := (
l
C,

⊔
C) γ6(I) := {I⊓ → D → I⊔} (5)

Proposition 3. (α6, γ6) is a Galois connection.

A substitution σ holds for a NCG g and an abstract state I = (I⊓, I⊔) if
the following holds: σ ∈ g(I) if σ ∈ g+(I⊓) and σ ∈ g−(I⊔).

Theorem 6. (α6, γ6) is an abstract interpretation for NCG.

Example 7. With Galois connection (α6, γ6) the guard gend := ∃x, y, z.F (x, y)
∧F (y, z)∧F (z, x)∧¬P (x, y)∧¬P (y, z)∧¬P (z, x) from action actend (example 3)
holds in the abstract and concrete domain.

Abstract Domains for DMS 13

5 Related Work

Reasoning about Database-Manipulating Processes. Most recent works
consider formal process languages for manipulating relational database in the
context of business process modeling [6].

Data manipulating systems (DMS) as considered in this paper are based
on Abdullah et al. [1]. The authors use the formalism to study boundaries of
decidability of (generally undecidable) reachability of state predicates in DMS
processes. Their approach employs a formal semantics of DMS processes based on
Petri nets and counter machines in combination with multiset-based abstraction
of databases. Thereupon, Abdullah et al. impose bounds on database schemas as
well as query evaluation to obtain decidable fragments. Calvanese et al. [7] also
consider a DMS-like language for which they define an LTS-based operational
semantics to support CTL model-checking of such systems. Similar to Abdullah
et al., bounds are imposed on the generally infinite state space to enable an
effective, yet incomplete model-checking procedure.

Cangialosi et al. [8,11] consider a DMS-like formalism called artifact-centric
(service) language to verify process properties expressed in the µ-calculus. To
obtain an effective verification procedure, the authors employ, in accordance
to our framework, homomorphism equivalence as abstraction and restrict the
process language to conjunctive queries, respectively. Bagheri et al. [4] extend
the work of Cangialosi et al. by supporting negation within first-order queries
serving as preconditions (guards) of transitions. As a consequence, processes
must be restricted to be weakly acyclic in order to ensure a finite solution.

Other works use Petri nets with data (colored Petri nets) as a DMS-like
formalism. Montali et al. [22] propose DB-nets to integrate data- and process-
related aspects of business processes. In [21], Montali et al. adopt soundness
checks (including reachability) known from workflow nets to DB-nets, where a
finite solution is ensured by employing different notions of boundedness. This
work work has recently been extended by Ghilardi et al. [14,15] to support
conjunctive queries with atomic negation and existential quantifiers.

To summarize, most works impose bounds on the state space and/or re-
strictions of guard/query languages to ensure effective reasoning about semantic
properties of DMS-like processes. However, to the best of our knowledge, none
of these works provide a comprehensive decomposition hierarchy of guard/query
expressions together with a precise characterization of corresponding semantic-
preserving abstractions.
Abstraction Techniques for Databases. Halder et al. [16,17] apply principles
of abstract interpretation in a more practical setting to define fine-grained ab-
stractions for SQL query expressions. For approximating query result sets, query-
and database-specific lattice-based abstractions are applied to value ranges of at-
tribute constraints in selection conditions. In other works, abstract interpretation
is mostly used to formalize the interface between database languages and pro-
gramming languages. Baily et al. [5] apply abstract interpretation for termination
analysis for a functional programming language performing database manipula-
tions. Similar attempts are proposed by Amato et al. [3] and Toman et al. [25]

14 Schüler et al.

to reason about the interplay between imperative programming and database
manipulating operations. However, using abstract interpretation to characterize
an implementation-independent hierarchy of database abstractions as proposed
in this paper has not yet been considered.

Besides abstract interpretation, symbolic execution techniques are also fre-
quently considered to effectively cope with large/infinite state spaces of database
systems. In these approaches, sets of databases instances are symbolically repre-
sented using logical constraints, where most recent works employ this approach
for test-data generation from/for databases [23,20,18,19]. In contrast, elaborat-
ing a hierarchy of symbolic abstractions using different fragments of propositional
logics similar to our approach, has not been investigated so far.

6 Conclusion

We proposed a hierarchy of abstract domains for representing (possibly infinite)
sets of databases instances in a final way based on the principles of abstract inter-
pretation. The resulting hierarchy is semantic-preserving up-to bisimilarity and
is shaped by different fragments of first-order logics serving as guard language
of database-manipulating processes. As a future work, our framework can be
instantiated in different ways to facilitate DMS model-checking (e.g., consider-
ing corresponding fragments of the modal µ-calculus as specification language).
To this end, a purely abstract step semantics is to be defined which allows us
to explore the abstract LTS (e.g., starting from all possible initial database in-
stances). We further plan to enrich DMS by a formal process language like Petri
nets and CCS to investigate effects as induced by constructs like guarded choice
and concurrent actions.

Acknowledgements. Stephan Mennicke has been partly supported by Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) in project num-
ber 389792660 (TRR 248, Center for Perspicuous Computing), by the Bun-
desministerium für Bildung und Forschung (BMBF, Federal Ministry of Edu-
cation and Research) under project 13GW0552B (KIMEDS), in the Center for
Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), and by BMBF
and DAAD (German Academic Exchange Service) in project 57616814 (SECAI,
School of Embedded and Composite AI).

References

1. Abdulla, P.A., Aiswarya, C., Atig, M.F., Montali, M., Rezine, O.: Complexity of
reachability for data-aware dynamic systems. In: ACSD. pp. 11–20. IEEE (2018)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases, vol. 8. Addison-
Wesley (1995)

3. Amato, G., Giannotti, F., Mainetto, G.: Data sharing analysis for a database pro-
gramming language via abstract interpretation. In: VLDB. pp. 405–415 (1993)

4. Bagheri Hariri, B., Calvanese, D., De Giacomo, G., De Masellis, R., Felli, P.: Foun-
dations of relational artifacts verification. In: BPM. pp. 379–395. Springer (2011)

https://www.perspicuous-computing.science/
https://digitalhealth.tu-dresden.de/projects/kimeds/
https://www.scads.de/
https://www.scads.de/
https://www.secai.org/
https://www.secai.org/

Abstract Domains for DMS 15

5. Bailey, J., Poulovassilis, A.: Abstract interpretation for termination analysis in
functional active databases. J. IIS 12, 243–273 (1999)

6. Calvanese, D., De Giacomo, G., Montali, M.: Foundations of data-aware process
analysis: A database theory perspective. In: PODS. pp. 1–12. ACM (2013)

7. Calvanese, D., Montali, M., Patrizi, F., Rivkin, A.: Implementing data-centric dy-
namic systems over a relational dbms. In: FDM. vol. 1378, pp. 209–212. CEUR-WS
(2015)

8. Cangialosi, P., De Giacomo, G., De Masellis, R., Rosati, R.: Conjunctive artifact-
centric services. In: ICSOC. pp. 318–333. Springer (2010)

9. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL. p.
238–252. ACM (1977)

10. Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems.
TOPLAS 19(2), 253–291 (1997)

11. De Giacomo, G., De Masellis, R., Rosati, R.: Verification of conjunctive artifact-
centric services. Intl. J. of CIS 21(02), 111–139 (2012)

12. Deutsch, A., Nash, A., Remmel, J.: The chase revisited. In: PODS. pp. 149–158.
ACM (2008)

13. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and
query answering. TCS 336(1), 89–124 (2005)

14. Ghilardi, S., Gianola, A., Montali, M., Rivkin, A.: Petri nets with parameterised
data: Modelling and verification. In: BPM. pp. 55–74. Springer (2020)

15. Ghilardi, S., Gianola, A., Montali, M., Rivkin, A.: Petri net-based object-centric
processes with read-only data. IS 107, 102011 (2022)

16. Halder, R., Cortesi, A.: Abstract interpretation for sound approximation of
database query languages. In: INFOS. pp. 1–10. IEEE (2010)

17. Halder, R., Cortesi, A.: Abstract interpretation of database query languages. CLSS
38(2), 123–157 (2012)

18. Li, C., Csallner, C.: Dynamic symbolic database application testing. In: DBTest
(2010)

19. Lo, E., Cheng, N., Hon, W.K.: Generating databases for query workloads. VLDB
Endowment 3(1-2), 848–859 (2010)

20. Marcozzi, M., Vanhoof, W., Hainaut, J.L.: A relational symbolic execution algo-
rithm for constraint-based testing of database programs. In: SCAM. pp. 179–188.
IEEE (2013)

21. Montali, M., Rivkin, A.: Model checking petri nets with names using data-centric
dynamic systems. FAOC 28(4), 615–641 (2016)

22. Montali, M., Rivkin, A.: Db-nets: On the marriage of colored petri nets and rela-
tional databases. TOPNOC pp. 91–118 (2017)

23. Pan, K., Wu, X., Xie, T.: Database state generation via dynamic symbolic execu-
tion for coverage criteria. In: DBtest. pp. 1–6 (2011)

24. Schüler, T., Mennicke, S., Lochau, M.: Abstract Domains for Database Manipu-
lating Processes. CoRR abs/2308.03466 (2023)

25. Toman, D.: Constraint databases and program analysis using abstract interpreta-
tion. In: CDB. pp. 246–262. Springer (1997)

