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• Use ASP to solve the combinatorical search problem
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Problem statement
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Problem statement
• A sum formula is mapping, e.g. C5H5N5 ⇒ f : E→ N>0, f (C) = 5, f (H) = 5, f (N) = 5• Elements are associated with a valence, e.g. V(C) = 4, V(H) = 1, and V(N) = 3
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Molecular Graph G Representation

• Ignore the hydrogen atoms
• Atoms are nodes
• Element symbols represented by node colors
• Bonds represented by labelled edges
Properties: G is valid for f iff. . .

1. G is connected
2. count of non-hydrogen atoms matches f
3. no node degree exceeds the element’s valence
4. number of H corresponds to free binding spaces

ENUMERATION PROBLEMFor a given molecular formula f , enumerate, up to isomorphism, all valid molecular graphs for f .
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ASP encoding
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Naive implementation

• ASP is well suited to encode this problem succinctly
1 { edge(X, Y) : node(X), node(Y), X < Y }.
2 edge(Y, X) :- edge(X, Y).
3
4 reachable(1).
5 reachable(Y) :- reachable(X), edge(X, Y).
6 :- not reachable(X), node(X).
7
8 1{ edge(X, Y, 1..3) }1 :- edge(X, Y), X < Y.
9 edge(Y, X, M) :- edge(X, Y, M).

10
11 degree(N, D) :- node(N), D = #sum { C, X : edge(N, X, C) }.
12
13 :- node(N), type(N, E), degree(N, D), element(E, _, V), D > V.
14
15 :- EDGE_COUNT = #sum { M, X, Y : edge(X, Y, M), X < Y },
16 VALENCE_SUM = #sum { V*C, E : molecular_formula(E, C), element(E, _, V), E != "H" },
17 molecular_formula("H", H_COUNT), EDGE_COUNT != (VALENCE_SUM - H_COUNT)/2.
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The obstacle: symmetries

Example
C6H12O admits 211 distinct molecule structures but leads to 111,870 answer sets
• For example Hexanal
• 7 nodes⇒ 7! = 5040 many answer-sets
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Symmetry breaking: existing approaches
Automated: BreakID [Devriendt and Bogaerts, ASPOCP’16]
• Transform the grounding into colored graph

r : H1, . . . , Hℓ ← B1, . . . , Bm,¬Bm+1, . . . ,¬Bm+n

¬H1 H1

. . . . . .

¬Hl Hl

head(r) body(r)

B1 ¬B1

. . . . . .

Bm ¬Bm

¬Bm+1 Bm+1

. . . . . .

¬Bm+n Bm+n

• Use graph automorphisms to remove syntactic symmetry
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Symmetry breaking: existing approaches

Manual: Graph-based symmetry breaking [Codish et al., Constraints vol. 24, 2019]
• Partitioned simple graph, represented by adjacency matrix
• Normalization of adjacency matrix by requiring lexicographic order of rows/columns

1 sat(I, K, J) :-
2 type(I, T), type(J, T), type(K, T), type(L, T), J > I, J - I != 2,
3 edge(I, K), edge(J, L), L < K, L != I.
4 sat(I, K, J) :-
5 type(I, T), type(J, T), type(K, T), J > I, J - I != 2,
6 edge(I, K, N), edge(J, K, M), N <= M.
7
8 :- type(I, T), type(J, T), type(K, T),
9 edge(I, K), node(J), J > I, not sat(I, K, J), J - I != 2, K != J.
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Symmetry breaking: Our approach

• Inspiration: SMILES (=̂ serialization format for molecular graphs)
• Partition edges of G into tree and cycle edges T ∪̇C , s.t. (G\C) is acyclic
• G is tree representation if depth-first sequence on T is natural order
• Choices: (a) root vertex, (b) spanning tree, (c) order of visiting children
• Canonical Molecular Graph

– Determine root as central vertex– Define total order ≺ on trees– Select ≺-largest candidate

C5H5N5 Adenine
How many isomorphic graphs?
• 10 nodes⇒ 10! ≈ 3.6 Mio
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C5H5N5 Adenine
How many isomorphic treerepresentations?
(a) 10 roots
(b) 4 · 5 + 9 = 29 spanning trees
(c) 26 · 33 child sequences
→ 10 · 29 · 64 · 27 = 501, 120

N6

C5

N4

C3 N2

C1

C7

N8

C9

N10

C1

N2

C3

N4

C5

N6

C7

N8

C9

N10

Towards Mass Spectrum Analysis with ASPNils Küchenmeister 8/15



Symmetry breaking: Our approach

• Inspiration: SMILES (=̂ serialization format for molecular graphs)
• Partition edges of G into tree and cycle edges T ∪̇C , s.t. (G\C) is acyclic
• G is tree representation if depth-first sequence on T is natural order
• Choices: (a) root vertex, (b) spanning tree, (c) order of visiting children
• Canonical Molecular Graph

– Determine root as central vertex– Define total order ≺ on trees– Select ≺-largest candidate

Towards Mass Spectrum Analysis with ASPNils Küchenmeister 8/15



Symmetry breaking: Our approach

• Inspiration: SMILES (=̂ serialization format for molecular graphs)
• Partition edges of G into tree and cycle edges T ∪̇C , s.t. (G\C) is acyclic
• G is tree representation if depth-first sequence on T is natural order
• Choices: (a) root vertex, (b) spanning tree, (c) order of visiting children
• Canonical Molecular Graph

– Determine root as central vertex– Define total order ≺ on trees– Select ≺-largest candidate

C5H5N5 Adenine
How many isomorphicanswer-sets?
1. C6=13N5=C4N3C21N1=C7N8=C93N10

2. N61C5=N4C32=C21N1=C7N8=C92N10

3. N6C53C41N3=C2N1C7=1N8=C9N10=3

4. N52=C4N3=C2(N6)C11=C72N8C9=N101

• In theory unique representation, but too expensive calculation⇒ approximated implementation
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ASP implementation

1. Permutation of symbols2. Decide for # of multi-bonds and cycle markers- Degree of unsaturation3. Permutation of multi-bonds and cycle markers4. Select a main chain length and split it in left and right half5. Generate all depth-first spanning trees with root 1 (making sure not to exceed the valence)

C5H5N5 → 10 nodes

■1 ■2 ■3 ■4 ■5 ■6 ■7 ■8 ■9 ■10

Towards Mass Spectrum Analysis with ASPNils Küchenmeister 9/15



ASP implementation
1. Permutation of symbols

2. Decide for # of multi-bonds and cycle markers- Degree of unsaturation3. Permutation of multi-bonds and cycle markers4. Select a main chain length and split it in left and right half5. Generate all depth-first spanning trees with root 1 (making sure not to exceed the valence)

C5H5N5 → 10 nodes

C1 N2 C3 N4 C5 N6 C7 N8 C9 N10

Towards Mass Spectrum Analysis with ASPNils Küchenmeister 9/15



ASP implementation
1. Permutation of symbols2. Decide for # of multi-bonds and cycle markers- Degree of unsaturation

3. Permutation of multi-bonds and cycle markers4. Select a main chain length and split it in left and right half5. Generate all depth-first spanning trees with root 1 (making sure not to exceed the valence)
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• (f (C)·(V(C)−2)+f (H)·(V(H)−2)+f (N)·(V(N)−2))/2 + 1 = 6
• Choose e.g. 4 double bonds and 2 pairs of cycle-markers
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ASP implementation
1. Permutation of symbols2. Decide for # of multi-bonds and cycle markers- Degree of unsaturation3. Permutation of multi-bonds and cycle markers4. Select a main chain length and split it in left and right half5. Generate all depth-first spanning trees with root 1 (making sure not to exceed the valence)
C5H5N5 → 10 nodes
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• length of main chain ranges from 5 to 10, choose e.g. 9
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ASP implementation
1. Permutation of symbols2. Decide for # of multi-bonds and cycle markers- Degree of unsaturation3. Permutation of multi-bonds and cycle markers4. Select a main chain length and split it in left and right half5. Generate all depth-first spanning trees with root 1 (making sure not to exceed the valence)
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• length of main chain ranges from 5 to 10, choose e.g. 10
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GENMOL - ASP-based prototype implementation
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Tool demo

https://tools.iccl.inf.tu-dresden.de/genmol/
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Evaluation
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Evaluation

• To investigate our symmetry-breaking approach for enumerating chemical molecules w.r.t.

Correctness Symmetry breaking Scalability

• We compare it to...
A. BreakID(=̂ automated SBC genaretion) B. Naive ASP encoding

C. Graph-based SBC
D. Molgen(=̂ commercial tool)

• Experiments use Clingo v5.7.1
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Correctness

• 5,474 suitable chemical compounds with up to 17 atomsfrom Wikidata SPARQL

• 5,338 validated and 132 not processed within 7min timeout
• Found 3 errors in Wikidata (incorrect SMILES)
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Symmetry breaking

• Use the smallest 1,750 molecular formulas from the Wikidata data set
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⇒While GENMOL does not fully match MOLGEN, it comes closer than any other ASP-based approach
⇒ GENMOL: exact model count 51%, at most ten times more models 99%
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Scalability
• series of uniformly created molecular formulas of increasing size
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⇒ Perfect symmetry breaking for acyclic molecules
Towards Mass Spectrum Analysis with ASPNils Küchenmeister 14/15



Scalability
• series of uniformly created molecular formulas of increasing size
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⇒ Runtime better than other ASP approaches that were considered
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Conclusion

• ASP is well-suited to tackle mass spectrum analysis
→ Superior clarity (in contrast to complex, error-prone imperative implementations)
→ Additional features can easily be added, e.g. fragments, functional groups, aromatic rings, etc.

• Symmetry-breaking is vital
• Automated symmetry-breaking is not sufficient here

• MOLGEN’s performance could not be matched evenly
• Proof-of-concept: GENMOL tool + web demo

https://tools.iccl.inf.tu-dresden.de/genmol/
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Thank you for your attention!
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