Review

There are many well-defined static optimisation tasks that are independent of the database:

- Query equivalence
- Containment
- Emptiness

Unfortunately, all of them are undecidable for FO queries.

Slogan: “all interesting questions about FO queries are undecidable”

Let’s look at simpler query languages.

Optimisation for Conjunctive Queries

Optimisation is simpler for conjunctive queries.

Example 10.1: Conjunctive query containment:

- $Q_1 : \exists x, y, z. R(x, y) \land R(y, z)$
- $Q_2 : \exists u, v, w, t. R(u, v) \land R(v, w) \land R(w, t)$

Q_1 finds R-paths of length two with a loop in the middle.

Q_2 finds R-paths of length three.

\implies in a loop one can find paths of any length.

$\implies Q_1 \subseteq Q_2$.

Deciding Conjunctive Query Containment

Consider conjunctive queries $Q_1[x_1, \ldots, x_n]$ and $Q_2[x_1, \ldots, x_n]$.

Definition 10.2: A query homomorphism from Q_2 to Q_1 is a mapping μ from terms (constants or variables) in Q_2 to terms in Q_1 such that:

- μ does not change constants, i.e., $\mu(c) = c$ for every constant c.
- $x_i = \mu(y_i)$ for each $i = 1, \ldots, n$.
- If Q_2 has a query atom $R(t_1, \ldots, t_m)$, then Q_2 has a query atom $R(\mu(t_1), \ldots, \mu(t_m))$.

Theorem 10.3 (Homomorphism Theorem): $Q_1 \subseteq Q_2$ if and only if there is a query homomorphism $Q_2 \rightarrow Q_1$.

\implies Decidable (only need to check finitely many mappings from Q_2 to Q_1).
Example

\[Q_1 : \exists x, y, z. R(x, y) \land R(y, z) \]
\[Q_2 : \exists u, v, w, t. R(u, v) \land R(v, w) \land R(w, t) \]

Proof of the Homomorphism Theorem

\[*\text{if} * : Q_1 \subseteq Q_2 \text{ if there is a query homomorphism } Q_2 \to Q_1. \]

1. Let \((d_1, \ldots, d_n) \) be a result of \(Q_1[x_1, \ldots, x_n] \) over database \(I \).
2. Then there is a homomorphism \(\nu \) from \(Q_1 \) to \(I \).
3. By assumption, there is a query homomorphism \(\mu : Q_2 \to Q_1 \).
4. But then the composition \(\nu \circ \mu \), which maps each term \(i \) to \(\nu(\mu(i)) \), is a homomorphism from \(Q_2 \) to \(I \).
5. Hence \(\nu(\nu(x_1)), \ldots, \nu(\nu(x_n)) \) is a result of \(Q_2[y_1, \ldots, y_n] \) over \(I \).
6. Since \(\nu(x_i) = d_i \), we find that \((d_1, \ldots, d_n) \) is a result of \(Q_2[y_1, \ldots, y_n] \) over \(I \).

Therefore, since this holds for all results \((d_1, \ldots, d_n) \) of \(Q_1 \), we have \(Q_1 \subseteq Q_2 \).

(Note: this is a slightly different formulation from the “homomorphism problem” discussed in a previous lecture, since we keep constants in queries here)

Review: CQs and Homomorphisms

If \((d_1, \ldots, d_n) \) is a result of \(Q_1[x_1, \ldots, x_n] \) over database \(I \) then:

- there is a mapping \(\nu \) from variables in \(Q_1 \) to the domain of \(I \)
- \(d_i = \nu(x_i) \) for all \(i = 1, \ldots, m \)
- for all atoms \(R(t_1, \ldots, t_m) \) of \(Q_1 \), we find \((\nu(t_1), \ldots, \nu(t_m)) \in R^I \)
 (where we take \(\nu(c) \) to mean \(c \) for constants \(c \))

\[\sim I \models Q_1[d_1, \ldots, d_n] \text{ if there is such a homomorphism } \nu \text{ from } Q_1 \text{ to } I \]

Proof of the Homomorphism Theorem

\[*\Rightarrow * : \text{there is a query homomorphism } Q_2 \to Q_1 \text{ if } Q_1 \subseteq Q_2. \]

1. Turn \(Q_1[x_1, \ldots, x_n] \) into a database \(I_1 \) in the natural way:
 - The domain of \(I_1 \) are the terms in \(Q_1 \)
 - For every relation \(R \), we have \((t_1, \ldots, t_m) \in R^{I_1} \) exactly if \(R(t_1, \ldots, t_m) \) is an atom in \(Q_1 \)
2. Then \(Q_1 \) has a result \((x_1, \ldots, x_n) \) over \(I_1 \)
3. Therefore, since \(Q_1 \subseteq Q_2 \), \((x_1, \ldots, x_n) \) is also a result of \(Q_2 \) over \(I_1 \)
4. Hence there is a homomorphism \(\nu \) from \(Q_2 \) to \(I_1 \)
5. This homomorphism \(\nu \) is also a query homomorphism \(Q_2 \to Q_1 \).
Implications of the Homomorphism Theorem

The proof has highlighted another useful fact:

The following two are equivalent:
- Finding a homomorphism from Q_2 to Q_1
- Finding a query result for Q_2 over I_1

\sim all complexity results for CQ query answering apply

Theorem 10.4: Deciding if $Q_1 \sqsubseteq Q_2$ is NP-complete.

If Q_2 is a tree query (or of bounded treewidth, or of bounded hypertree width) then deciding if $Q_1 \sqsubseteq Q_2$ is polynomial (in fact LOGCFL-complete).

Note that even in the NP-complete case the problem size is rather small (only queries, no databases)

Application: CQ Minimisation

Definition 10.5: A conjunctive query Q is minimal if:
- for all subqueries Q' of Q (that is, queries Q' that are obtained by dropping one or more atoms from Q),
- we find that $Q' \not\equiv Q$.

A minimal CQ is also called a core.

It is useful to minimise CQs to avoid unnecessary joins in query answering.

CQ Minimisation Example

A simple idea for minimising Q:
- Consider each atom of Q, one after the other
- Check if the subquery obtained by dropping this atom is contained in Q (Observe that the subquery always contains the original query.)
- If yes, delete the atom; continue with the next atom

Example 10.6: Example query $Q[v, w]$:

$\exists x, y, z. R(a, y) \land R(x, y) \land S(y, y) \land S(y, z) \land S(z, y) \land T(y, v) \land T(y, w)$

\sim Simpler notation: write as set and mark answer variables

$\{ R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, v), T(y, w) \}$

Can we map the left side homomorphically to the right side?

$R(a, y)$ $R(a, y)$ Keep (cannot map constant a)

$R(x, y)$ $R(x, y)$ Drop; map $R(x, y)$ to $R(a, y)$

$S(y, y)$ $S(y, y)$ Keep (no other atom of form $S(t, t)$)

$S(y, z)$ $S(y, z)$ Drop; map $S(y, z)$ to $S(y, y)$

$S(z, y)$ $S(z, y)$ Drop; map $S(z, y)$ to $S(y, y)$

$T(y, v)$ $T(y, v)$ Keep (cannot map answer variable)

$T(y, \bar{v})$ $T(y, \bar{v})$ Keep (cannot map answer variable)

Core: $\exists y. R(a, y) \land S(y, y) \land T(y, v) \land T(y, w)$
CQ Minimisation

Does this algorithm work?
- Is the result minimal?
 Or could it be that some atom that was kept can be dropped later, after some other atoms were dropped?
- Is the result unique?
 Or does the order in which we consider the atoms matter?

Theorem 10.7: The CQ minimisation algorithm always produces a core, and this result is unique up to query isomorphisms (bijective renaming of non-result variables).

Proof: exercise

How hard is CQ Minimisation?

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof: We reduce 3-colourability of connected graphs to this special kind of homomorphism problem. (If a graph consists of several connected components, then 3-colourability can be solved independently for each, hence 3-colourability is NP-hard when considering only connected graphs.)

Let G be a connected, undirected graph. Let $<$ be an arbitrary total order on G’s vertices.

Query Q is defined as follows:
- Q contains atoms $R(r,g)$, $R(g,r)$, $R(r,h)$, $R(b,r)$, $R(g,h)$, and $R(h,r)$ (the colouring template)
- For every undirected edge (e,f) in G with $e < f$, Q contains an atom $R(e,f)$
- For a single (arbitrarily chosen) edge (e,f) in G with $e < f$, Q contains an atom $A = R(f,e)$

Claim: G is 3-colourable if and only if there is a homomorphism $Q \rightarrow Q \setminus \{A\}$

Proof (summary): For an arbitrary connected graph G, we constructed a query Q with atom A, such that
- G is 3-colourable if and only if
- there is a homomorphism $Q \rightarrow Q \setminus \{A\}$

Since the former problem is NP-hard, so is the latter. Inclusion in NP is obvious (just guess the homomorphism).

Checking minimality is the dual problem, hence:

Theorem 10.9: Deciding if a conjunctive query Q is minimal (that is: a core) is coNP-complete.

However, the size of queries is usually small enough for minimisation to be feasible.
Summary and Outlook

Perfect query optimisation is possible for conjunctive queries
\[\rightarrow\] Homomorphism problem, similar to query answering
\[\rightarrow\] NP-complete

Using this, conjunctive queries can effectively be minimised

Coming up next:
- How to study expressivity of queries
- The limits of FO queries
- Datalog