A Goal-Oriented Algorithm for Unification in
ELH p+ w.r.t. Cycle-Restricted Ontologies*

Franz Baader, Stefan Borgwardt, and Barbara Morawska
{baader,stefborg,morawska}@tcs.inf.tu-dresden.de

Theoretical Computer Science, TU Dresden, Germany

Abstract Unification in Description Logics (DLs) has been proposed as
an inference service that can, for example, be used to detect redundancies
in ontologies. For the DL ££, which is used to define several large biomed-
ical ontologies, unification is NP-complete. A goal-oriented NP unifica-
tion algorithm for ££ that uses nondeterministic rules to transform a
given unification problem into solved form has recently been presented.
In this paper, we extend this goal-oriented algorithm in two directions:
on the one hand, we add general concept inclusion axioms (GClIs), and
on the other hand, we add role hierarchies (#) and transitive roles (R™).
For the algorithm to be complete, however, the ontology consisting of
the GClIs and role axioms needs to satisfy a certain cycle restriction.

1 Introduction

The DL £L, which offers the constructors conjunction (M), existential restric-
tion (Ir.C), and the top concept (T), has recently drawn considerable attention
since, on the one hand, important inference problems such as the subsumption
problem are polynomial in ££, even in the presence of general concept inclusions
(GCIs) [12]. On the other hand, though quite inexpressive, ££ can be used to
define biomedical ontologies, such as the large medical ontology SNOMED CT.!
A tractable extension of £L [7], which includes role hierarchy and transitivity
axioms, is the basis of the OWL 2 EL profile of the new Web Ontology Language
OWL2.2

Unification in DLs has been proposed in [11] as a novel inference service that
can, for instance, be used to detect redundancies in ontologies. For example,
assume that one developer of a medical ontology defines the concept of a patient
with severe injury of the frontal lobe as

Ifinding.(Frontal _lobe injury M Jseverity.Severe), (1)
whereas another one represents it as
Ffinding.(Severe _injury M finding_site.Ipart_of .Frontal lobe). (2)
* Supported by DFG under grant BA 1122/14-1

! see http://www.ihtsdo.org/snomed-ct/
2 See http://www.w3.org/ TR /owl2-profiles/

These two concept descriptions are not equivalent, but they are nevertheless
meant to represent the same concept. They can obviously be made equivalent by
treating the concept names Frontal lobe injury and Severe injury as variables,
and substituting the first one by Injury M Jfinding _site.Ipart of .Frontal lobe
and the second one by Injury I dseverity.Severe. In this case, we say that the
descriptions are unifiable, and call the substitution that makes them equivalent
a unifier.

Our interest in unification w.r.t. GClIs, role hierarchies, and transitive roles
stems from the fact that these features are important for expressing medical
knowledge. For example, assume that the developers use the descriptions (3)
and (4) instead of (1) and (2):

Jfinding.3finding _site.dpart _of .Brain 1
Ifinding.(Frontal _lobe injury M Jseverity.Severe) (3)

Jstatus.Emergency M
Ffinding.(Severe _injury M finding_site.Ipart_of .Frontal lobe) (4)

The descriptions (3) and (4) are not unifiable without additional background
knowledge, but they are unifiable, with the same unifier as above, if the GCIs

Ifinding.Jseverity.Severe C dstatus.Emergency,
Frontal lobe C Jproper part of.Brain

are present in a background ontology and this ontology additionally states that
part_of is transitive and proper_part_of is a subrole of part_of.

In [8], we were able to show that unification in the DL ££ (without GCIs and
role axioms) is NP-complete. In addition to a brute-force “guess and then test”
NP-algorithm [8], we have developed a goal-oriented unification algorithm for
EL, in which nondeterministic decisions are only made if they are triggered by
“unsolved parts” of the unification problem [10], and an algorithm that is based
on a reduction to satisfiability in propositional logic (SAT) [9], which enables the
use of highly-optimized SAT solvers [14]. Whereas both approaches are clearly
better than the brute-force algorithm, none of them is uniformly better than the
other. First experiments with our system UEL [1] show that the SAT translation
is usually faster in deciding unifiability, but it needs more space than the goal-
oriented algorithm and it produces more uninteresting and large unifiers. In
fact, the SAT translation generates all so-called local unifiers, whereas the goal-
oriented algorithm produces all so-called minimal unifiers, though it may also
produce some non-minimal ones. The set of minimal unifiers is a subset of the
set of local unifiers, and in our experiments the minimal unifiers usually made
more sense in the application.

In [10] it was shown that the approaches for unification of £L-concept de-
scriptions (without any background ontology) mentioned above can easily be
extended to the case of a so-called acyclic TBox (a simple form of GCIs, which
basically introduce abbreviations for concept descriptions) as background on-
tology without really changing the algorithms or increasing their complexity.

For more general GCIs, such a simple solution is no longer possible. In [2],
we extended the brute-force “guess and then test” NP-algorithm from [8] to
the case of GCIs, which required the development of a new characterization of
subsumption w.r.t. GCIs in ££. Unfortunately, the algorithm is complete only
for general TBoxes (i.e., finite sets of GCIs) that satisfy a certain restriction
on cycles, which, however, does not prevent all cycles. For example, the cyclic
GCI dchild.Human C Human satisfies this restriction, whereas the cyclic GCI
Human C Jparent.Human does not. In [5] we provide a more practical unification
algorithm that is based on a translation into SAT, and can also deal with role
hierarchies and transitive roles, but still needs the ontology (now consisting of
GCIs and role axioms) to be cycle-restricted. In the presence of role hierarchies
(H) and transitive roles (R"), we use the name ELH + rather than L for the
logic.

Motivated by our experience that, for the case of ££ without background
ontology, the goal-oriented algorithm sometimes behaves better than the one
based on a translation into SAT, we introduce in this paper a goal-oriented
algorithm for unification in ELH .+ w.r.t. cycle-restricted ontologies.® Full proofs
of the presented results can be found in [3].

2 The Description Logics ££€ and ELH ¢

The expressiveness of a DL is determined both by the formalism for describing
concepts (the concept description language) and the terminological formalism,
which can be used to state additional constraints on the interpretation of con-
cepts and roles in a so-called ontology.

The concept description language considered in this paper is called £L£. Start-
ing with a finite set N¢ of concept names and a finite set Ng of role names,
EL-concept descriptions are built from concept names using the constructors
conjunction (C' M D), existential restriction (Ir.C for every r € Ng), and top
(T). Since in this paper we only consider £L-concept descriptions, we will some-
times dispense with the prefix £L.

On the semantic side, concept descriptions are interpreted as sets. To be
more precise, an interpretation T = (AZ,-T) consists of a non-empty domain AZ
and an interpretation function - that maps concept names to subsets of A% and
role names to binary relations over AZ. This function is inductively extended to
concept descriptions as follows:

T2 .= A%, (cnD:=c*nD*, Er.C)f :={z|3y: (z,y) erf nyec CT}

A general concept inclusion axiom (GCI) is of the form C' C D for concept
descriptions C, D, a role hierarchy axiom is of the form r C s for role names

3 A previous version of this paper, which considers unification in ££ w.r.t. cycle-
restricted ontologies, but without role hierarchies and transitive roles, has been pre-
sented in 2012 at the Description Logic workshop (see [4]).

r, s, and a transitivity axiom is of the form r o r C r for a role name r. An
interpretation Z satisfies such an axiom C C D, r C s, ror C r, respectively, iff

ctcpt, rtCst, and rfort Crf,

where o stands for composition of binary relations. An ELH +-ontology is a
finite set of such axioms. It is an £L-ontology if it contains only GCIs. An
interpretation is a model of an ontology if it satisfies all its axioms.

A concept description C' is subsumed by a concept description D w.r.t. an
ontology O (written C Cp D) if every model of O satisfies the GCI C C D. We
say that C is equivalent to D wrt. O (C =0 D) if C Cp D and D Ep C. If
O is empty, we also write C C D and C' = D instead of C Cp D and C' =¢ D,
respectively. As shown in [12,7], subsumption w.r.t. ELH 51 -ontologies (and thus
also w.r.t. ££-ontologies) is decidable in polynomial time.

Since conjunction is interpreted as intersection, the concept descriptions (C'M
D)NE and CM(DNE) are always equivalent. Thus, we dispense with parentheses
and write nested conjunctions in flat form C; M --- M C,,. Nested existential
restrictions Jry.3rs. ... 3Ir,.C will sometimes also be written as Iriry...r,.C,
where 7175 ...7, is viewed as a word over the alphabet of role names, i.e. an
element of N.

The role hierarchy induced by O is a binary relation < on Ng, which is
defined as the reflexive-transitive closure of the relation {(r,s) | » C s € O}.
Using elementary reachability algorithms, the role hierarchy can be computed
in polynomial time in the size of O. It is easy to see that r <J» s implies that
r? C % for all models Z of O. Given an ELH 1 -ontology O, we call the role
t transitive w.r.t. O if O contains the axiom t ot T ¢. If O is clear from the
context, we often omit the suffix “w.r.t. @” and call t a transitive role.

An £L-concept description is an atom if it is an existential restriction or a
concept name. The atoms of an £L-concept description C are the subdescriptions
of C' that are atoms, and the top-level atoms of C are the atoms occurring in
the top-level conjunction of C. Obviously, any &L-concept description is the
conjunction of its top-level atoms, where the empty conjunction corresponds
to T. The atoms of an £LH p+-ontology O are the atoms of all the concept
descriptions occurring in GClIs of O.

We say that a subsumption between two atoms is structural if their top-level
structure is compatible. To be more precise, following [5] we define structural
subsumption between atoms as follows: the atom C'is structurally subsumed by
the atom D w.r.t. O (C C%, D) iff one of the following holds:

1. C = D is a concept name,

2. C=3r.C'", D=3s.D',r<p s,and C' Cp D'.

3. C =3r.C', D =3s.D', and C' Cp Jt.D’ for a transitive role ¢ such that
rJotdos.

It is easy to see that subsumption w.r.t.) between two atoms implies struc-
tural subsumption w.r.t. @, which in turn implies subsumption w.r.t. @. The
unification algorithm presented below crucially depends on the following char-
acterization of subsumption:

Lemma 1. Let O be an ELH 4 -ontology and C1, . ..,Cy, Dy, ..., Dy, be atoms.
Then C1M+--MCy Eo Dy M---M Dy, iff for every j € {1,...,m}

1. there is an index i € {1,...,n} such that C; C% D; or

2. there are atoms As,...,Ax, B of O (k >0) such that
(a) AyM---MA, Co B,
(b) for everyn € {1,...,k} there isi € {1,...,n} with C; T A,, and
(c) BCS D;.

Our proof of this lemma in [3] is based on a Gentzen-style proof calculus for
subsumption w.r.t. £LH p+-ontologies, which is similar to the one developed in
[15] for subsumption w.r.t. £L-ontologies. Although this characterization looks
identical to the one given in [2] for the case of £L-ontologies it differs from that
characterization in that it uses a more general notion of structural subsumption.
Also note that the characterization of subsumption w.r.t. ££H ,+-ontologies
employed in [5] to show correctness of the the SAT translation is different from
the one given above, and it is proved using a rewriting approach rather than a
Gentzen-style proof calculus.

As mentioned in the introduction, our unification algorithm is complete only
for ELH 1 -ontologies that satisfy a certain restriction on cycles.

Definition 2. The ELH p+-ontology O is called cycle-restricted iff there is no
nonempty word w € NE and EL-concept description C' such that C Cp Jw.C.

In [5] we show that a given £LH ,-ontology can be tested for cycle-restrictedness
in polynomial time. The main idea is that it is sufficient to consider the cases
where C' is a concept name or T.

3 Unification in ELH 4

We partition the set N¢ into a set N, of concept variables (which may be
replaced by substitutions) and a set N, of concept constants (which must not be
replaced by substitutions). A substitution o maps every concept variable to an
EL-concept description. It is extended to concept descriptions in the usual way:

—o(A):=Aforall Ae N.U{T},
—o(CND):=0(C)No(D) and o(FIr.C) := Ir.c(C).

An EL-concept description C'is ground if it does not contain variables. Obviously,
a ground concept description is not modified by applying a substitution. An
ELH p+-ontology is ground if it does not contain variables.

Definition 3. Let O be an ELH p+-ontology that is ground. An ELH p+-uni-
fication problem w.r.t. O is a finite set I' = {C; CT° Dy,...,C, C’ D,}
of subsumptions between EL-concept descriptions. A substitution o is a uni-
fier of I' w.r.t. O if o solves all the subsumptions in I, i.e. if 0(C1) Co
o(D1),...,0(Cy) Co o(Dy). We say that I' is unifiable w.r.t. O if it has a
unifier.

Note that some of the previous papers on unification in DLs use equivalences
C =" D instead of subsumptions C' T’ D. This difference is, however, irrelevant
since C' =" D can be seen as a shorthand for the two subsumptions C' C° D and
D C’? C, and C C? D has the same unifiers as C N D =’ C. Also note that we
have restricted the background ontology O to be ground. This is not without
loss of generality. If O contained variables, then we would need to apply the
substitution also to its GCIs, and instead of requiring o(C;) Cp o(D;) we would
thus need to require o(C;) Eq (o) 0(D;), which would change the nature of the
problem considerably (see [6] for a more detailed discussion).

Preprocessing To simplify the description of the algorithm, it is convenient
to first normalize the ontology and the unification problem appropriately. An
atom is called flat if it is a concept name or an existential restriction of the
form 3r.A for a concept name A. The ELH 1 -ontology O is called flat if it
contains only GCIs of the form AM B C C, where A, B are flat atoms or T and
C is a flat atom. The unification problem I is called flat if it contains only flat
subsumptions of the form C; M---MC, T’ D, where n > 0 and C4,...,C,, D
are flat atoms.? Let I" be a unification problem and O an ELH . -ontology. By
introducing auxiliary variables and concept names, respectively, I" and O can
be transformed in polynomial time into a flat unification problem I/ and a flat
ELH -+ -ontology O such that the unifiability status remains unchanged, i.e., I"
has a unifier w.r.t. O iff I'"” has a unifier w.r.t. O'. In addition, if O was cycle-
restricted, then so is O’ (see [6] for details). Thus, we can assume without loss
of generality that the input unification problem and ontology are flat.

Local Unifiers The main idea underlying the “in NP” results in [8,2] is to show
that any unification problem that is unifiable has a so-called local unifier.

We denote by At the set of atoms occurring as subdescriptions in subsump-
tions in I" or axioms in O and define

Aty := AtU{3t.D' | 3s.D’ € At, t <o s, t transitive}.

Furthermore, we define the set of non-variable atoms by At,, := Aty \ N,.
Though the elements of At,, cannot be variables, they may contain variables if
they are of the form 3r.X for some role r and a variable X.

We call a function S that associates every variable X € N, with a set Sx C
At,, an assignment. Such an assignment induces the following relation >g on
N,: >g is the transitive closure of

{(X,Y) € N, x N, | Y occurs in an element of Sx}.

We call the assignment S acyclic if >g is irreflexive (and thus a strict partial
order). Any acyclic assignment S induces a unique substitution og, which can
be defined by induction along >g:

4 If n = 0, then we have an empty conjunction on the left-hand side, which as usual
stands for T.

— If X € N, is minimal w.r.t. >g, then we define og(X) := |_|D€SX D.
— Assume that o(Y) is already defined for all Y such that X >g Y. Then we
define 05(X) :=[|peg, os(D).

We call a substitution o local if it is of this form, i.e., if there is an acyclic assign-
ment S such that ¢ = og. If the unifier o of I" w.r.t. O is a local substitution,
then we call it a local unifier of I" w.r.t. O.

The main technical result shown in [2] is that any unifiable £L-unification
problem w.r.t. a cycle-restricted ontology has a local unifier. This yields the fol-
lowing brute-force unification algorithm for ££ w.r.t. cycle-restricted ontologies:
first guess an acyclic assignment .S, and then check whether the induced local
substitution og solves I'. As shown in [2], this algorithm runs in nondeterminis-
tic polynomial time. NP-hardness follows from the fact that already unification
in £L w.r.t. the empty ontology is NP-hard [8]. In [2] it is also shown why cycle-
restrictedness is needed: there is a non-cycle-restricted £L-ontology O and an
& L-unification problem I" such that I" has a unifier w.r.t. O, but it does not
have a local unifier.

4 A Goal-Oriented Unification Algorithm

The brute-force algorithm is not practical since it blindly guesses an acyclic as-
signment and only afterwards checks whether the guessed assignment induces a
unifier. We now introduce a more goal-oriented unification algorithm, in which
nondeterministic decisions are only made if they are triggered by “unsolved parts”
of the unification problem. In addition, failure due to wrong guesses can be de-
tected early. Any non-failing run of the algorithm produces a unifier, i.e., there is
no need for checking whether the assignment computed by this run really induces
a unifier. This goal-oriented algorithm generalizes the algorithm for unification
in ££ (without background ontology) introduced in [10], though the rules look
quite different because in the present paper we consider unification problems that
consist of subsumptions whereas in [10] we considered equivalences. We assume
without loss of generality that the cycle-restricted £LH p+-ontology O and the
unification problem I} are flat. Given O and I, the sets At, Aty, and At,, are
defined as above. Starting with I, the algorithm maintains a current unification
problem I" and a current acyclic assignment S, which initially assigns the empty
set to all variables. In addition, for each subsumption in I" it maintains the in-
formation on whether it is solved or not. Initially, all subsumptions are unsolved,
except those with a variable on the right-hand side. Rules are applied only to
unsolved subsumptions. A (non-failing) rule application does the following:

— it solves exactly one unsolved subsumption,
— it may extend the current assignment S, and
— it may introduce new flat subsumptions built from elements of Aty,.

Each rule application that extends Sx additionally expands I" w.r.t. X as follows:
every subsumption s € I" of the form C; M---MC, C’ X is ezpanded by adding
the subsumption C; M---MC, T’ A to I" for every A € Sx.

Eager Ground Solving:

Condition: This rule applies to s = C; M---MC, C° D if it is ground.
Action: If C1 1M --- M1 Cy, Ep D does not hold, the rule application fails. Oth-
erwise, s is marked as solved.

Eager Solving:

Condition: This rule appliestos =C1 M ---MCy 57 D if either
— thereis i € {1,...,n} such that C; =D or C; = X € N, and D € Sx, or
— D is ground and [|G Co D holds, where G is the set of all ground atoms

in {017 R Cﬂ} U UXE{Cl,“.,Cn}va Sx.
Action: Its application marks s as solved.

Eager Extension:

Condition: This rule applies to s = C1M---MNCy, C° D if thereisi € {1,...,n}
with C; = X € N, and {C1,...,Cr} \ {X} C Sx.

Action: Its application adds D to Sx. If this makes S cyclic, the rule appli-
cation fails. Otherwise, I is expanded w.r.t. X and s is marked as solved.

Figure 1. The eager rules of the unification algorithm.

Subsumptions are only added if they are not already present in I'. If a new
subsumption is added to I', either by a rule application or by expansion of I,
then it is initially designated unsolved, except if it has a variable on the right-
hand side. Once a subsumption is in I', it will not be removed. Likewise, if a
subsumption in I" is marked as solved, then it will not become unsolved later.

If a subsumption is marked as solved, this does not mean that it is already
solved by the substitution induced by the current assignment. It may be the
case that the task of satisfying the subsumption was deferred to solving other
subsumptions which are “smaller” than the given subsumption in a well-defined
sense. The task of solving a subsumption whose right-hand side is a variable is
deferred to solving the subsumptions introduced by expansion.

The rules of the algorithm consist of the three eager rules Eager Ground
Solving, Eager Solving, and Eager Extension (see Figure 1), and several nonde-
terministic rules (see Figures 2 and 3). Eager rules are applied with higher pri-
ority than nondeterministic rules. Among the eager rules, Eager Ground Solving
has the highest priority, then comes Eager Solving, and then Eager Extension.

Algorithm 4. Let I, be a flat £L-unification problem. We set I' := I and
Sx =0 for all X € N,. While I" contains an unsolved subsumption, apply the
steps (1), (2), and (3).

(1) Eager rule application: If some eager rules apply to an unsolved sub-
sumption s in I, apply one of highest priority. If the rule application fails,
then return “not unifiable”.

(2) Nondeterministic rule application: If no eager rule is applicable, let s be
an unsolved subsumption in I'. If one of the nondeterministic rules applies
to s, nondeterministically choose one of these rules and apply it. If none of
these rules apply to s or the rule application fails, then return “not unifiable”.

Decomposition 1:

Condition: This rule appliestos = C1M1---MC, E? Js.D’ if there is an index
i€{l,...,n} with C; = Ir.C" and r <o s.

Action: Its application chooses such an index i, adds the subsumption C’' C°
D’ to I', expands it w.r.t. D’ if D’ is a variable, and marks s as solved.

Decomposition 2:

Condition: This rule applies to s = C1 M- --MCy, C7 Js.D’ if there is an index
i €{l,...,n} and a transitive role ¢t with C; = Ir.C" and r <o t <o s.
Action: Its application chooses such an index i, adds the subsumption ¢’ C*
3t.D’ to I and marks s as solved.

Extension:

Condition: This rule applies to s = Cy M---MCp C° D if there is an index
i€{1,...,n} with C; € N,.

Action: Its application chooses such an i and adds D to Sc¢;. If this makes S
cyclic, the rule application fails. Otherwise, I" is expanded w.r.t. C; and s is
marked as solved.

Figure 2. The nondeterministic rules Decomposition 1 and 2 and Eztension.

(3) Eager application of Decomposition: If in the previous step one of the
rules Mutation 2 or 3 was applied, do the following for all subsumptions s’
added to I' by this rule application: If one of the rules Decomposition 1 or 2
applies to s’, nondeterministically choose one of the applicable decomposition
rules and apply it to §'.5

Once all subsumptions are solved, return the substitution ¢ induced by the
current assignment.

In step (2), the choice which unsolved subsumption to consider next is don’t
care nondeterministic. However, choosing which rule to apply to the chosen sub-
sumption is don’t know nondeterministic. Additionally, the application of non-
deterministic rules requires don’t know nondeterministic guessing.

The eager rules are mainly there for optimization purposes, i.e., to avoid
nondeterministic choices if a deterministic decision can be made. For example,
a ground subsumption, as considered in the Eager Ground Solving rule, either
follows from the ontology, in which case any substitution solves it, or it does
not, in which case it does not have a solution. This condition can be checked in
polynomial time using the polynomial time subsumption algorithm for ELH
[7]. In the case considered in the Fager Solving rule, the substitution induced
by the current assignment obviously already solves the subsumption. The Fager
Extension rule solves a subsumption that contains only a variable X and some
elements of Sx on the left-hand side. The rule is motivated by the following
observation: for any assignment S’ extending the current assignment, the induced

® Note that Decomposition 1 always applies to the new subsumptions. Whether De-
composition 2 is also applicable depends on the existence of an appropriate transitive
role ¢.

Mutation 1:

Condition: This rule appliestos =C:M---MC, 27 D if n > 1 and there are
atoms Aq,..., Ay, B of O such that A; M---M Ax Eo B holds.

Action: Its application chooses such atoms, marks s as solved, and generates
the following subsumptions:

— it chooses for each n € {1,...,k} ani € {1,...,n} and adds the subsump-
tion C; E? Ay to I,
— it adds the subsumption B C’ D to I'.

Mutation 2:
Condition: This rule applies to s = 3. X T’ D if X is a variable, D is ground,
and there are atoms 3rq1.A1,...,3rg. Ar of O such that r <p r1, ..., r <o 7,

and Jr1. Ay M ---M3rg.Ax Co D hold.
Action: Its application chooses such atoms, adds the subsumptions Jr.X C’
Iri. A, L., AP X C’ 3ry.Ag to I', and marks s as solved.

Mutation 3:

Condition: This rule applies to s = 3r.X T’ 3s.Y if X and Y are variables,
and there are atoms dri.A1,...,3rg. Ak, Ju.B of O such that r <o 71, ...,
r<ork, u <o s, and Ir1. A1 M- - M 3Irg. Ax Co Ju.B hold.

Action: Its application chooses such atoms, adds the subsumptions Jr.X C’
Iri.Aq, L., AP X ;7 Ire. Ak, Ju.B E7 ds.Y to I', and marks s as solved.

Mutation 4:
Condition: This rule applies to s = C T’ 3s.Y if C' is a ground atom or T,
Y is a variable, and there is an atom Ju.B of O such that either

— CCop Ju.B and u <o s, or
— C Cp 3t.B for a transitive role t with u <p t <o s.

Action: Its application chooses such an atom, adds the subsumption B C’ Y
to I', and marks s as solved.

Figure 3. The nondeterministic Mutation rules of the unification algorithm.

substitution ¢’ satisfies ¢/(X) = ¢/(C1) M ... Mo’ (Cy). Thus, if S% contains D,
then ¢/(X) Cp o/(D), and o’ solves the subsumption. Conversely, if ¢’ solves
the subsumption, then o/(X) Cp o/(D), and thus adding D to S% yields an
equivalent induced substitution.

The nondeterministic rules only come into play if no eager rules can be
applied. In order to solve an unsolved subsumption s = C; M ---MNC, C’ D, we
consider the two conditions of Lemma 1. Regarding the first condition, which
is addressed by the rules Decomposition 1 and 2 and Ezxtension, assume that
v is induced by an acyclic assignment S. To satisfy the first condition of the
lemma with v, the atom (D) must structurally subsume a top-level atom in
~v(Cy)M---MNv(Cy). This atom can either be of the form (C;) for an atom C;, or
it can be of the form v(C) for an atom C € S¢, and a variable C;. In the second
case, the atom C' can either already be in S¢, or it can be put into S¢, by an
application of the Extension rule. The two versions of Decomposition correspond
to the cases (2) and (3) in the definition of structural subsumption.

The Mutation rules cover the second condition in Lemma 1. For example, let
us analyze how Mutation 1 ensures that all the requirements of this condition
are satisfied. The rule guesses atoms Ay, ..., Ag, B such that A;1---MA; Co B
holds. This can be checked using the polynomial-time subsumption algorithm
for ELH p+. Whenever the second condition of Lemma 1 requires a structural
subsumption v(E) C%, v(F') to hold for a (hypothetical) unifier v of I', the rule
creates the new subsumption £ C7 F, which has to be solved later on. This way,
the rule ensures that the substitution built by the algorithm actually satisfies
the conditions of the lemma. The other mutation rules follow the same idea, but
they consider cases where only a single atom occurs on the left-hand side of the
subsumption to be solved. The reason for considering these cases separately is
that in the proof of soundness we need the newly introduced subsumptions to be
“smaller” than the subsumption that triggered their introduction. For Mutation
1 this is the case due to the smaller left-hand side (only one atom), whereas for
the other mutation rules this is not so clear. Actually, for Mutation 2 and 3, the
new subsumptions turn out to be smaller only after Decomposition is applied to
them. Mutation 4 implicitly applies a form of decomposition.

Due to the space restrictions, we cannot give more details on how to prove
that the algorithm is correct. Complete proofs of soundness, completeness and
termination can be found in [3].

Theorem 5. Algorithm 4 is an NP-decision procedure for testing solvability of
ELH g+ -unification problems w.r.t. cycle-restricted ontologies.

5 Conclusions

Above, we have presented a goal-oriented NP-algorithm for unification in ELH 5+
w.r.t. cycle-restricted ontologies. In [5], we have developed a reduction of this
problem to SAT, which is based on a characterization of subsumption different
from the one in Lemma 1. Though clearly better than the brute-force algorithm
introduced in [2], both algorithms suffer from a high degree of nondeterminism
due to having to guess true subsumptions between concepts built from atoms of
the background cycle-restricted ontology. We must find optimizations to tackle
this problem before an implementation becomes feasible.

On the theoretical side, the main topic for future research is to consider uni-
fication w.r.t. unrestricted £L£H +-ontologies. In order to generalize the brute-
force algorithm in this direction, we need to find a more general notion of locality.
Starting with the goal-oriented algorithm, one idea could be not to fail when a
cyclic assignment is generated, but rather to add rules that can break such cycles,
similar to what is done in procedures for general E-unification [16].

Another idea could be to use just the rules of our goal-oriented algorithm,
and not fail when a cyclic assignment S is generated. Our conjecture is that
then the background ontology O together with the cyclic TBox Tg := {X =
[Mees, C | X € Ny} induced by S satisfies C Coury D for all subsumptions
C C7 D in I} if an appropriate hybrid semantics [13] for the combined ontology
O U Tg is used.

All the results on unification in Description Logics mentioned in this paper
are restricted to relatively inexpressive logics that do not support all Boolean
operators. If we close ££ under negation, then we obtain the DL ALC, which
corresponds to the modal logic K [17]. Whether unification in K is decidable is
a long-standing open problem. It is only known that relatively minor extensions
of K have an undecidable unification problem [18].

References

1. Baader, F., Borgwardt, S., Mendez, J., Morawska, B.: UEL: Unification solver for
EL. In: Proc. DL’12. CEUR Workshop Proceedings, vol. 846 (2012)

2. Baader, F., Borgwardt, S., Morawska, B.: Extending unification in ££ towards
general TBoxes. In: Proc. KR’12. pp. 568-572. AAAI Press (2012), short paper.

3. Baader, F., Borgwardt, S., Morawska, B.: A goal-oriented algorithm for unifica-
tion in ELH 4+ w.r.t. cycle-restricted ontologies. LTCS-Report 12-05, TU Dresden,
Germany (2012), see http://lat.inf.tu-dresden.de/research/reports.html.

4. Baader, F., Borgwardt, S., Morawska, B.: A goal-oriented algorithm for unification
in £L w.r.t. cycle-restricted TBoxes. In: Proc. DL’12. CEUR Workshop Proceed-
ings, vol. 846 (2012)

5. Baader, F., Borgwardt, S., Morawska, B.: SAT encoding of unification in ELH i+
w.r.t. cycle-restricted ontologies. In: Proc. IJCAR’12. LNCS, vol. 7364, pp. 30—44.
Springer (2012)

6. Baader, F., Borgwardt, S., Morawska, B.: SAT encoding of unification in ELH p+
w.r.t. cycle-restricted ontologies. LTCS-Report 12-02, TU Dresden, Germany
(2012), see http://lat.inf.tu-dresden.de/research/reports.html.

7. Baader, F., Brandt, S., Lutz, C.: Pushing the ££ envelope. In: Proc. IJCAT’05. pp.
364-369. Morgan-Kaufmann (2005)

8. Baader, F., Morawska, B.: Unification in the description logic ££. In: Proc. RTA’09.
LNCS, vol. 5595, pp. 350-364. Springer (2009)

9. Baader, F., Morawska, B.: SAT encoding of unification in ££. In: Proc. LPAR’10.
LNCS, vol. 6397, pp. 97-111. Springer (2010)

10. Baader, F., Morawska, B.: Unification in the description logic ££. Log. Meth.
Comput. Sci. 6(3) (2010)

11. Baader, F., Narendran, P.: Unification of concept terms in description logics. J.
Symb. Comput. 31(3), 277-305 (2001)

12. Brandt, S.: Polynomial time reasoning in a description logic with existential re-
strictions, GCI axioms, and—what else? In: Proc. ECAT'04. pp. 298-302 (2004)

13. Brandt, S., Model, J.: Subsumption in ££ w.r.t. hybrid TBoxes. In: Proc. KI’05.
LNCS, vol. 3698, pp. 34-48. Springer (2005)

14. Gomes, C.P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability solvers. In: Hand-
book of Knowledge Representation, pp. 89-134. Elsevier (2008)

15. Hofmann, M.: Proof-theoretic approach to description-logic. In: Proc. LICS’05. pp.
229-237. IEEE Press (2005)

16. Morawska, B.: General E-unification with eager variable elimination and a nice
cycle rule. J. Autom. Reasoning 39(1), 77-106 (2007)

17. Schild, K.: A correspondence theory for terminological logics: Preliminary report.
In: Proc. IJCAT'91. pp. 466-471 (1991)

18. Wolter, F., Zakharyaschev, M.: Undecidability of the unification and admissibility
problems for modal and description logics. ACM Trans. Comput. Log. 9(4) (2008)

