
A Generalized Next-Closure Algorithm –
Enumerating Semilattice Elements

from a Generating Set

Daniel Borchmann
TU Dresden, Institute of Algebra

daniel.borchmann@mailbox.tu-dresden.de

September 11, 2012

Abstract

A generalization of the well known Next-Closure algorithm is presented, which is
able to enumerate finite semilattices from a generating set. We prove the correctness of
the algorithm and apply it on the computation of the intents of a formal context.

1 Introduction
Next-Closure is one of the best known algorithms in Formal Concept Analysis [8] to compute
the concepts of a formal context. In its general form it is able to efficiently enumerate the
closed sets of a given closure operator on a finite set. This generality might be a drawback
concerning efficiency compared to other algorithms like Close-by-One [1, 9, 11]. On the other
hand, the general formulation of Next-Closure widens its field of application. However,
there are still applications where Next-Closure might be useful, but is not applicable,
because a closure operator on a finite set is not explicitly available. One such example might
be the computation of concepts of a fuzzy formal context [3]. In those cases most often an
ad hoc variation of Next-Closure can be constructed. The aim of this paper is to provide a
generalization of Next-Closure which covers those cases, and may even go beyond them.

As it turns out, Next-Closure is not about enumerating closed sets of a closure operator,
even not on an abstract ordered set. The algorithm is merely about enumerating elements of
a certain semilattice, given as an operation together with a generating set. This observation
shall turn out to be quite natural.

It has to be noted that there have been prior attempts to generalize Next-Closure to a
more general setting [7]. But this approach is, as far as the author can tell, not related to the
one presented in this paper.

This paper is organized as follows. First of all we shall revisit the original version
of Next-Closure, together with the basic definitions. Then we present our generalized
version working on semilattices, together with a complete proof of its correctness. Then we

1

show how this generalized form is indeed a generalization of the original Next-Closure.
Additionally, we present another algorithm for enumerating the intents of a given formal
context, which is very similar to Close-by-One. Finally, we give some outlook on further
questions which might be interesting within this line of research.

2 The Next-Closure Algorithm
Before we are going to discuss our generalized form of Next-Closure, let us revisit the
original version as it is given in [6, 8]. To make our discussion a bit more consistent, we
shall allow ourselves a minor deviation from the standard description of the algorithm,
which we shall mention explicitly.

Let M be a finite set and let c : P(P) ÝÑ P(P) be a function such that

a) c is idempotent, i.e. c(c(A)) = c(A) for all A Ď M,

b) c is monotone, i.e. if A Ď B, then c(A) Ď c(B) for all A, B Ď M, and

c) c is extensive, i.e. A Ď c(A) for all A Ď M.

The mapping c is then said to be a closure operator on P. A set A Ď M is called closed (with
respect to c) if A = c(A), and the image of c is defined as

c[P(M)] := t c(A) | A Ď M u.

Without loss of generality, let M = t 1, . . . , n u for some n P N. For two sets A, B P
c[P(M)] with A ‰ B and i P M we say that A is lectically smaller than B at position i if and
only if

i = min(A ∆ B) and i P B,

where A ∆ B = (AzB)Y (BzA) denotes the symmetric difference of A and B. We shall
write A ăi B if A is lectically smaller than B at position i. Finally, we say that A is lectically
smaller than B, for A, B P c[P(M)], if A = B or A ăi B for some i P M. We shall write
A ĺ B in this case.

It has to be noted that, in contrast to our definition, the lectic order is normally defined
for all sets A, B Ď M in the very same spirit as given above. However, as we shall see, this
is not necessary, which is why we have restricted our definition to closed sets only.

Now let us define for A P c[P(M)] and i P M

A‘ i := c(t j P A | j ă i u Y t i u).

Then we have the following result.

2.1 Theorem (Next-Closure [6]) Let A P c[P(M)]. Then the next closed set A+ P c[P(M)]
after A with respect to the lectic order ĺ, if it exists, is given by

A+ = A‘ i

with i P M being maximal with A ăi A‘ i.

2

This is the original version of Next-Closure, as it is given in [6, 8]. Therein, term “next
closed set” has the obvious meaning, namely

A+ = min B P c[P(M)] | A ă B.

Our generalization now starts with the following observation: the set A‘ i can be seen
as the smallest closed set containing both t j P A | j ă i u and t i u, or equivalently, both
c(t j P A | j ă i u) and c(t i u). This means that we can rewrite A‘ i as

A‘ i = c(t j P A | j ă i u)_ c(t i u),

where X_Y is the smallest closed set containing both X, Y P c[P(M)], the supremum of X
and Y, which is simply given by X_Y = c(XYY). This observation suggests to consider
Next-Closure on abstract algebraic structures with a binary operation _ with some certain
properties, namely on semi-lattices. To do so we need a more general notion of c(t i u), since
we do not necessarily deal with subsets, and a more general notion of t j P A | j ă i u,
which likewise might not be expressible in a more general setting. Finally, we need to
find a starting point for our enumeration, which is c(H) in the original description of
Next-Closure, but may vary in other cases. Luckily, all this is possible and quite natural, as
we shall see in the next section.

3 Generalizing Next-Closure for Semilattices
The aim of this section is to present a generalization of the Next-Closure algorithm that
works on semilattices. For this recall that a semilattice L = (L,_) is an algebraic structure
with a binary operation _ which is associative, commutative and idempotent. It is well
known that by

x ďL y :ðñ x_ y = y, (x, y P L)

an order relation on L is defined in such a way that for every two elements a, b P L the
element a_ b is the least upper bound of both a and b with respect to ďL.

For the remainder of this section let L = (L,_) be an arbitrary but fixed semilattice.
Furthermore, let (xi | i P I) be an enumeration of a finite generating set t xi | i P I u Ď L of
L. Finally, let ďI be a total order on I.

3.1 Definition Let a, b P L and let i P I. Set

∆a,b := t j P I | (xj ďL a and xj ďL b) or (xj ďL a and xj ďL b) u.

We then define
a ăi b :ðñ i = min ∆a,b and xi ďL b.

Furthermore we write a ă b if a ăi b for some i P I and write a ď b if a = b or a ă b. ♦

One can see the similarity of this definition to the one of the lectic order. Here, the set
∆a,b generalizes a ∆ b and xi ďL b somehow represents the fact that i P b, or equivalently
t i u Ď b, in the special case of L = P(M) and i P M.

3

Note that if a ăi b and k P I with k ăI i, then

xk ďL a ðñ xk ďL b.

This observation is quite useful and will be used in some of the proofs later on.
The first thing we want to consider now are two easy results stating that ď is a total

order relation on L extending ďL.

3.2 Lemma The relationă is irreflexive and transitive. Furthermore, for every two elements a, b P
L with a ‰ b, it is either a ă b or b ă a.

Proof If a = b, then the set ∆a,b defined above is empty, therefore we cannot have a ăi a
for some i P I. This shows the irreflexivity of ă. Let us now consider the transitivity of
ă. For this let a, b, c P L, i, j P I and suppose that a ăi b and b ăj c. We have to show that
a ă c. Let us consider the following cases.

Case i ăI j. We have xi ďL a and xi ďL b because of a ăi b. Due to i ăI j it follows
that xi ďL c. Suppose that there exists k P I, k ăI i with xk ďL a and xk ďL c. Then if
xk ďL b we would have xk ďL a because of k ăI i, a contradiction. But if xk ďL b, then
xk ďL c because of k ăI i ăI j, again a contradiction. Thus we have shown that a ă c.

Case j ăI i. We have xj ďL b, xj ďL c because of b ăj c. Due to j ăI i it follows
that xj ďL a. Now if there were a k P I, k ăI j with xk ďL a and xk ďL c, then xk ďL b
would imply xk ďL c and xk ďL b would imply xk ďL a, analogously to the first case, a
contradiction. Hence such a k cannot exist and a ă c.

Case i = j. This cannot occur since otherwise xi ďL b, because of a ăi b, and xi ďL b,
because of b ăi c, a contradiction.

Overall we have shown that a ă c in any case and therefore ă is a transitive relation.
Finally let a, b P L with a ‰ b. Then because t xi | i P I u is a generating set, the set ∆a,b

is not empty, since otherwise a = b. With i := min ∆a,b we either have a ăi b if xi ďL b
and b ăi a otherwise. ˝

3.3 Lemma Let a, b P L with a ďL b. Then a ď b. In particular, if a ďL c and b ďL c for
a, b, c P L, then a_ b ď c.

Proof We show xi ďL a ùñ xi ďL b for all i P I. This shows b ă a, hence a ď b by
Lemma 3.2. Now if xi ďL a, then because of a ďL b we see that xi ďL b and the claim is
proven. ˝

The next step towards a general notion of Next-Closure is to provide a generalization of
‘.

3.4 Definition Let a P L and i P I. Then define

a‘ i :=
ł

jăI i
xjďLa

xj _ xi. ♦

With all these definitions at hand we are now ready to formulate and prove the promised
generalization. For this, we generalize the proof of Next-Closure as it is given in [8, page
67].

4

3.5 Lemma Let a, b P L and i, j P I. Then the following statements hold:

i) a ăi b, a ăj c, i ăI j ùñ c ăi b.

ii) a ă a‘ i if xi ďL a.

iii) a ăi b ùñ a‘ i ď b.

iv) a ăi b ùñ a ăi a‘ i.

Proof i) It is xi ďL a and due to i ăI j we get xi ďL c as well. Furthermore, xi ďL b
because of a ăi b. Now if there would exist a k P I with k ăI i such that xk ďL c, xk ďL
b, then xk ďL a because of k ăI i and xk ďL a because of k ăI i ăI j, a contradiction.
With the same argumentation a contradiction follows from the assumption that there
exists a k P I, k ăI i with xk ďL c, xk ďL b. In sum we have shown c ăi b, as required.

ii) We have xi ďL a and xi ďL a‘ i. Furthermore, for k P I, k ăI i and xk ďL a we have
xk ďL a‘ i by definition. This shows a ă a‘ i.

iii) Let a ăk b for some k P I. Then
Ž

jăI k,xjďLa xj ďL b and xk ďL b, hence with
Lemma 3.3 we get a‘ k ď b.

iv) Let a ăi b. Then xi ďL a and with (ii) we get a ă a‘ i. By (iii), a‘ i ď b. If for k P I,
k ăI i it holds that xk ďL a‘ i and xk ďL a, then we also have xk ďL a‘ i ďL b, i.e.
xk ďL b, contradicting the minimality of i. ˝

3.6 Theorem (Next-Closure for Semilattices) Let a P L. Then the next element a+ P L with
respect to ă, if it exists, is given by

a+ = a‘ i

with i P I being maximal with a ăi a‘ i.

Proof Let
a+ = mină b P L | a ă b

be the next element after a with respect to ă. Then a ăi a+ for some i P I and by
Lemma 3.5.iv we get a ăi a‘ i and with Lemma 3.5.iii we see a‘ i ď a+, hence a‘ i = a+.
The maximality of i follows from Lemma 3.5.i. ˝

To find the correct element i P I such that a+ = a ‘ i we can utilize Lemma 3.5.ii.
Because of this result, only elements i P I with xi ďL a have to be considered, a technique
which is also known for the original form of Next-Closure.

However, to make the above theorem practical for enumerating the elements of a certain
semilattice, one has to start with some element, preferably the smallest element in L with
respect to ď. This element must also be minimal in L with respect to ďL, by Lemma 3.3.
Since t xi | i P I u is a generating set of L, and a ď a _ b for all a, b P L, the minimal
elements of L with respect to ďL must be among the elements xi, i P I. So to find the first

5

element of L with respect to ď, find all minimal elements in t xi | i P I u and choose the
smallest element with respect to ď from them. But because of xi ď xj if and only if j ăI i,
one just has to take the largest index j of all minimal elements among the xi to find the
smallest element in L with respect to ď.

As a final remark for this section note that the set t xi | i P I umust always include the
_-irreducible elements of L. These are all those elements a P L that cannot be represented
as a join of other elements, or, equivalently,

t b P L | b ăL a u = H or
ł

băLa

b ăL a.

It is also easy to see that the set of _-irreducible elements of L is also sufficient, i. e. that it
is a generating set of L.

4 Computing the Intents of a Formal Context
We have seen an algorithm that is able to enumerate the elements of a semilattice from a
given generating set. We have also claimed that this is a generalization of Next-Closure,
which we want to demonstrate in this section. Furthermore, we want to give another
example of an application of this algorithm, namely the computation of the intents of a
given formal context.

Firstly, let us reconstruct the original Next-Closure algorithm from Theorem 3.6 and the
corresponding definitions. For this let M be a finite set and let c be a closure operator on
M = t 0, . . . , n´ 1 u, say. We then apply Theorem 3.6 to the semilattice P = (c[P(M)],_).
We immediately see that ďP = Ď and that ăi is the usual lectic order on P. Then the set

t c(t i u) | i P M u Y t c(H) u

is a finite generating set of P and we can define xi := c(t i u) and xn := c(H), i.e. I =
t 0, . . . , n u. For a closed set A Ď M and i P I then follows

A‘ i =
ł

jăi
xjĎA

xi _ xi

= c(
ď

jăi
xjĎA

xj)_ xi

= c(
ď

t c(t j u) | j ă i, j P A u)_ c(t i u)

= c(t j | j ă i, j P A u)_ c(t i u)
= c(t j | j ă i, j P A u Y t i u)

which is the original definition of ‘ for Next-Closure. Furthermore, it is A‘ n = A since
c(H) Ď A for each closed set A. We therefore do not need to consider xn when looking
for the next closed set, and indeed, the only reason why xn = c(H) has been included is

6

that it is the smallest closed set in P. All in all, we see that Next-Closure is a special case of
Theorem 3.6.

However, for a closure operator c on a finite set M it seems more natural to consider the
semilattice P = (c[P(M)],X), because the intersection of two closed sets of c again yields
a closed set of c. One sees thatďP = Ě. As a generating set we take the set ofX-irreducible
elements tXi | i P G u for some index set G. Let A, B P c[P(M)] and let ăG be a linear
ordering on G. Then A ă B if and only if there exists i P G such that

i = mint j P G | (Xi Ě A, Xi Ğ B) or (Xi Ğ A, Xi Ě B) u and Xi Ě B

and ‘ is just given by
A‘ i =

č

jăG i
XjĚA

Xj X Xi.

Now note that ‘ does not need the closure operator c anymore. This means that if the
computation of c is very costly and the X-irreducible elements (or a superset thereof) is
known, this approach might be much more efficient. In general, however, it is not known
how to efficiently determine the X-irreducible closed sets of c. But if c is given as the ¨2
operator of a formal context, these irreducible elements can be determined quickly [8]. We
shall describe this idea in more detail.

Let G and M be two finite sets and let J Ď GˆM. We then call the triple K := (G, M, J)
a formal context, G the objects of the formal context and M the attributes of the formal context.
For g P G and m P M we write g J m for (g, m) P J and say that object g has attribute m.

Let A Ď G and B Ď M. We then define the derivations of A and B to be

A1 := tm P M | @g P A : g J m u

B1 := t g P G | @m P B : g J m u.

Then the ¨2 operator is just the twofold derivation of a given set of attributes. It turns out
that this is indeed a closure operator, and that every closure operator can be represented
as a ¨2 operator of a suitable formal context [4, 8]. The closed sets of ¨2, i.e. all sets B Ď M
with B = B2, are called the intents of K and shall be denoted by Int(K). It is clear from
the previous remarks that (Int(K),X) is a semilattice.

The advantage of representing a closure operator is that the X-irreducible elements of
(Int(K),X) can be directly read off from the format context. As discussed in [8], the set

t t g u1 | g P G u

contains the irreducible elements we are looking for, except M (note that the order relation
on (Int(K),X) is Ě.) Furthermore, it is possible to omit certain objects g from K without
changing Int(K). Every object g P G can be omitted from K for which the set t g u1 is either
equal to M or can be represented as a proper intersection of other sets t g1 u

1, . . . , t gn u
1

for some elements g1, . . . , gn P G. It is also clear that if there exist two distinct objects g1
and g2 with t g1 u

1 = t g2 u
1, that we can remove one of them without changing Int(K).

A formal context for which no such objects exist is called object clarified and object reduced.

7

Listing 1: Compute the Next Intent of a Formal Context
define next-intent(K = (G, M, J) , A)

for g P G , descending
if t g u1 Ğ A then

let (B := A‘ g)
if @h P G, h ăG g, t h u1 Ğ A : t h u1 Ğ B then

return B
end if

end let
end if

end for
return nil

end

If K = (G, M, J) is an object clarified and object reduced formal context, then the set
t t g u1 | g P G u is exactly the set of X-irreducible intents of K, except for the set M.

The algorithm described above now takes the following form when applied to the
semilattice (Int(K),X). As index set we choose the set G of object of the given formal
context, ordered by ăG. For every object g P G we set xg := t g u1. Then the set t xg | g P
G u is a generating set of the semilattice (Int(K)ztM u,X), which we want to enumerate
(since we get the set M for free). For A being an intent of K and g P G we have

A‘ g :=
č

t h u1ĚA
hăG g

t h u1 X t g u1

and as the first intent we take M. For an intent A Ď M of K we then have to find the
maximal object g P G (with respect to ăG) such that A ăg A‘ g. This is equivalent to
g being maximal with t g u1 Ğ A and @h P G, h ăG g : t h u1 Ě A ðñ t h u1 Ě A‘ g.
However, the direction “ùñ” is clear, hence we only have to ensure

@h P G, h ăG g : t h u1 Ğ A ùñ t h u1 Ğ A‘ g.

All these considerations yield the algorithm shown in Listing 1. Of course, the derivations
of the form t g u1 should not be computed every time they are needed but rather stored
somewhere for reuse.

Let us simplify Listing 1 a bit further. If A is an intent of K, then for g P G it is true that

t g u1 Ğ A ðñ g R A1.

This is because

t g u1 Ě A ùñ t g u2 Ď A1

ùñ g P A1

8

Listing 2: Simplified version of Listing 1
0 define next-intent(K = (G, M, J) , A)
1 for g P G , descending
2 if g R A1 then
3 let (B := A‘ g)
4 if B1 X Gg Ď A1 X Gg then
5 return B
6 end if
7 end let
8 end if
9 end for

10 return nil
11 end

and

g P A1 ùñ t g u Ď A1

ùñ t g u1 Ě A2 = A,

and therefore t g u1 Ě A ðñ g P A1, i. e. t g u1 Ğ A ðñ g R A1. Using this, we can
simplify the condition

@h P G, h ăG g, t h u1 Ğ A : t h u1 Ğ B

to
@h P G, h ăG g : h P B1 ùñ h P A1

or equivalently to B1 X Gg Ď A1 X Gg, where Gg := t h P G | h ăG g u. This leads to the
algorithm of Listing 2.

Curiously enough, this algorithm is now very similar to Close-by-One. To make this
similarity more apparent, let us give a brief description of the algorithm Close-by-One. In
contrast to Next-Closure, which enumerates the intents of the formal context K, Close-by-
One enumerates the formal concepts of K. These are pairs (C, D) of sets C Ď G, D Ď M
such that C1 = D and D1 = C. The set of all formal concepts of K is denoted by B(K).
The formal concepts B(K) of K can be ordered by

(C1, D1) ď (C2, D2) ðñ C1 Ď C2(ðñ D2 Ď D1).

It turns out that the set (B(K),ď) forms a (complete) lattice, i. e. an ordered set such that
for each set of formal concepts there exists a smallest upper and a largest lower bound. This
lattice is also called the concept lattice of K.

Close-by-One now performs a depth-first search in this lattice to compute all formal
concepts of K. Following the description of [10], the main part of the work is done by the

9

Listing 3: Close-by-One [10]
0 define generate-from(K = (G, M, J) , (C, D) , `)
1 output (C, D)
2

3 if D = M or ` ą |M| then
4 return
5 end if
6

7 for m P t `, . . . , n u , ascending
8 if m R D then
9 let (E := CX tm u1 ,

10 F := E1)
11 if FXMm Ď DXMm then
12 generate-from((E, F) , m + 1)
13 end if
14 end let
15 end if
16 end for
17 end
18

19 define all-concepts(K = (G, M, J))
20 generate-from(K , (H1,H2) ,1)
21 end

function generate-from, as it is described in Listing 3. To simplify the description of this
function, we again assume that the set M of attributes of K is just the set M = t 1, . . . , n u.
Furthermore, if m P M, we define Mm := t 1, . . . , m´ 1 u.

We can now spot some similarities between the functions next-intent from Listing 2
and generate-from. The most striking similarity to note is the occurrence of the same tests
in both functions: “B1 X Gg Ď A1 X Gg” in line 4 of Listing 2, and “FXMm Ď DXMm”
in line 11 of Listing 3. If we substitute the definitions of the involved variables, these tests
get the following form:

next-intent: (AX t g u1)1 X Gg Ď A1 X Gg
generate-from: (CX tm u1)1 XMm Ď C1 XMm

So except that we consider sets of objects in the function next-intent and sets of attributes
in the function generate-from, both test conditions are the same.

Still, the functions next-intent and generate-from are very different in how they
compute the next intent and formal concept, respectively. While next-intent computes
for a given intent just a new one, the function generate-from performs a depth-first search
and enumerate all formal concepts of K.

10

5 Conclusion
We have seen a natural generalization of the Next-Closure algorithm to enumerate elements
of a semilattice from a generating set. We have proven the algorithm to be correct and
applied it to the standard task of computing the intents of a given formal context, yielding
a another algorithm to accomplish this. This algorithm turned out to have a lot of similarity
to Close-by-One.

There are still some interesting ideas one might want to look at.
Firstly, a variation of the original Next-Closure algorithm is able to compute the canonical

base of a formal context, a very compact representation of its implicational knowledge. It
would be interesting to know whether the generalization given in this paper gives more
insight into the computation, and therefore into the nature of the canonical base. This is,
however, quite a vague idea.

Secondly, the algorithm discussed above to compute the intents of a formal context
enumerates them in a certain order, which might or might not be a lectic one. Understanding
this order relation might be fruitful, especially with respect to the complexity results
obtained recently which consider enumerating pseudo-intents of a formal context in lectic
order [5].

Thirdly, there exists a variant of the Next-Closure algorithm that is able to compute
intents of a formal context up to symmetry [8, Theorem 51]. Given a set Γ of automorphisms
of a formal context, this variant is able to compute for each orbit of intents under Γ exactly
one representative. It would be interesting to know whether we can find a variant of our
generalized Next-Closure algorithm that accomplishes the same thing.

Finally, and more technically, it might be interesting to look for other applications of
our general algorithm. As already mentioned in the introduction, the enumeration of fuzzy
concepts of a fuzzy formal context might be worth investigating (and it might be interesting
comparing it to [2]).

Acknowledgments
The author is grateful for the useful comments of the anonymous reviewers, especially for
pointing out the similarity of Listing 1 to Close-by-One, which the author had overlooked.

References
[1] Simon Andrews. In-Close, a fast algorithm for computing formal concepts. In Se-

bastian Rudolph, Frithjof Dau, and Sergei O. Kuznetsov, editors, ICCS Supplementary
Proceedings, Moscow, 2009.

[2] Radim Belohlávek, Bernard De Baets, Jan Outrata, and Vilém Vychodil. Computing the
Lattice of All Fixpoints of a Fuzzy Closure Operator. IEEE T. Fuzzy Systems, 18(3):546–
557, 2010.

11

[3] Radim Belohlávek and Vilém Vychodil. Attribute Implications in a Fuzzy Setting.
In Rokia Missaoui and Jürg Schmid, editors, ICFCA, volume 3874 of Lecture Notes in
Computer Science, pages 45–60. Springer, 2006.

[4] Daniel Borchmann. Decomposing Finite Closure Operators by Attribute Exploration.
In ICFCA 2011, Supplementary Proceedings, 2011.

[5] Felix Distel. Hardness of Enumerating Pseudo-intents in the Lectic Order. In Léonard
Kwuida and Baris Sertkaya, editors, ICFCA, volume 5986 of Lecture Notes in Computer
Science, pages 124–137. Springer, 2010.

[6] Bernhard Ganter. Two basic algorithms in concept analysis. FB4-Preprint Nr. 831,
1984.

[7] Bernhard Ganter and Klaus Reuter. Finding all closed sets: A general approach. Order,
8(3):283–290, 1991.

[8] Bernhard Ganter and Rudolph Wille. Formal Concept Analysis: Mathematical Founda-
tions. Springer, Berlin-Heidelberg, 1999.

[9] Sergei O. Kuznetsov. A fast algorithm for computing all intersections of objects in
a finite semi-lattice. Automatic Documentation and Mathematical Linguistics, 27:11–21,
1993.

[10] Jan Outrata and Vilém Vychodil. Fast algorithm for computing fixpoints of galois
connections induced by object-attribute relational data. Inf. Sci., 185(1):114–127, 2012.

[11] Vilém Vychodil, Petr Krajča, and Jan Outrata. Advances in algorithms based on CbO.
In Marzena Kryszkiewicz and Sergei Obiedkov, editors, Concept Lattices and Their
Application, pages 325–337, 2010.

12

	Introduction
	The Next-Closure Algorithm
	Generalizing Next-Closure for Semilattices
	Computing the Intents of a Formal Context
	Conclusion

