
Rushing and Strolling among Answer Sets – Navigation Made Easy

Johannes Klaus Fichte1, Sarah Alice Gaggl2, Dominik Rusovac2

1 Research Unit Database and Artificial Intelligence, TU Wien, Austria
2 Logic Programming and Argumentation Group, TU Dresden, Germany

johannes.fichte@tuwien.ac.at, sarah.gaggl@tu-dresden.de, dominik.rusovac@tu-dresden.de

Abstract
Answer set programming (ASP) is a popular declarative pro-
gramming paradigm with a wide range of applications in ar-
tificial intelligence. Oftentimes, when modeling an AI prob-
lem with ASP, and in particular when we are interested be-
yond simple search for optimal solutions, an actual solution,
differences between solutions, or number of solutions of the
ASP program matter. For example, when a user aims to iden-
tify a specific answer set according to her needs, or requires
the total number of diverging solutions to comprehend prob-
abilistic applications such as reasoning in medical domains.
Then, there are only certain problem specific and handcrafted
encoding techniques available to navigate the solution space
of ASP programs, which is oftentimes not enough. In this pa-
per, we propose a formal and general framework for interac-
tive navigation toward desired subsets of answer sets analo-
gous to faceted browsing. Our approach enables the user to
explore the solution space by consciously zooming in or out
of sub-spaces of solutions at a certain configurable pace. We
illustrate that weighted faceted navigation is computationally
hard. Finally, we provide an implementation of our approach
that demonstrates the feasibility of our framework for incom-
prehensible solution spaces.

Introduction
Answer set programming (ASP) is a declarative program-
ming paradigm, which has its roots in logic programming
and nonmonotonic reasoning. It is widely used for knowl-
edge representation and problem solving (Brewka, Eiter, and
Truszczyński 2011). In ASP, a problem is encoded as a set
of rules (logic program) and is evaluated under stable model
semantics (Gelfond and Lifschitz 1988, 1991), using solvers
such as clingo (Gebser et al. 2011, 2014), WASP (Alviano
et al. 2015) or DLV (Alviano et al. 2017). Then, answer sets
represent solutions to the modeled problem.

Oftentimes when modeling with ASP, the number of so-
lutions of the resulting program can be quite high. This is
not necessarily a problem when searching for a few solu-
tions, e.g., optimal solutions (Gebser, Kaminski, and Schaub
2011; Alviano and Dodaro 2016a) or when incorporating
preferences (Brewka 2004; Brewka et al. 2015; Alviano,
Romero, and Schaub 2018). However, there are many sit-
uations where reasoning goes beyond simple search for one

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

answer set, for example, planning when certain routes are
gradually forbidden (Son et al. 2016), finding diverging
solutions (Everardo 2017; Everardo et al. 2019), reason-
ing in probabilistic applications (Lee, Talsania, and Wang
2017), or debugging answer sets (Oetsch, Pührer, and Tom-
pits 2018; Gebser et al. 2008).

Now, if the user is interested in more than a few solutions
to gradually identify specific answer sets, tremendous so-
lution spaces can easily become infeasible to comprehend.
In fact, it might not even be possible to compute all solu-
tions in reasonable time. Examples where we easily see large
solution spaces are configuration problems (Soininen and
Niemelä 1999; Soininen et al. 2001; Tiihonen et al. 2003),
such as PC configuration, and planning problems (Dimopou-
los, Nebel, and Koehler 1997; Lifschitz 1999; Nogueira et al.
2001). Consider the following example.
Example 1. Consider an online shopping situation where
we have a knowledge base on clothes and some rules speci-
fying which combinations would suit well or not.{

{outfit(X,Y) :clothes(X,Y)};
← outfit(X,Y 1),

outfit(X,Y 2), Y 1 6= Y 2;

occasion(vancouver)← outfit(jacket, . . .);
occasion(conference)← outfit(suit, Y), Y 6= yellow;

occasion(wistler)← outfit(boots, . . .) . . .
}

Together with input facts from a clothes database like
clothes(jacket,blue); clothes(shirt,red); . . . one easily ob-
tains more than a million answer sets. As we plan to travel
to a conference in Vancouver, we want to find suitable out-
fits for this occasion. Say we zoom in on outfits including
shorts, which leads to a rather small, but still incomprehen-
sible sub-space of solutions. Say we want to inspect the most
different outfits still remaining, then we aim to choose poten-
tial parts of our outfit that provide us with most diverse so-
lutions. Now, we are almost good to go, seeking to find some
final additions to our outfit quickly.
Our example illustrates that different solutions in ASP pro-
grams can easily be hard to comprehend. Problem specific,
handcrafted encoding techniques to navigate the solution
space can be quite tedious.

Instead, we propose a formal and general framework for
interactive navigation toward desired subsets of answer sets

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

5651

analogous to faceted browsing in the field of information
retrieval (Tunkelang 2009). Our approach enables solution
space exploration by consciously zooming in or out of sub-
spaces of solutions at a certain configurable pace. To this
end we introduce absolute and relative weights to quantify
the size of the search space when reasoning under assump-
tions (facets). We formalize several kinds of search space
navigation as goal-oriented and explore modes, and system-
atically compare the introduced weights regarding their us-
ability for operations under natural properties splitting, re-
liability, preserving maximal sub-spaces (min-inline), and
preserving minimal sub-spaces (max-inline). In addition, we
illustrate the computational complexity for computing the
weights. Finally, we provide an implementation on top of the
solver clingo demonstrating the feasibility of our frame-
work for incomprehensible solution spaces.

Related Work. Alrabbaa, Rudolph, and Schweizer (2018)
proposed a framework in which solutions are systematically
pruned with respect to facets (partial solutions). While this
allows one to move within the answer set space, the user has
absolutely no information on how big the effect of activat-
ing a facet is in advance, similar to assumptions in propo-
sitional satisfiability (Eén and Sörensson 2003). We go far
beyond and characterize the weight of a facet. This is useful
to comprehend the effect of navigation steps on the size of
the solution space. Additionally, this allows for zooming into
or out of the solution space at a configurable pace. Debug-
ging in answer sets has widely been investigated (Oetsch,
Pührer, and Tompits 2018; Dodaro et al. 2019; Vos et al.
2012; Shchekotykhin 2015; Gebser et al. 2008). However,
we do not aim to correct ASP encodings. All answer sets
which are reachable within the navigation are “original” an-
swer sets, thus the adaptions we make during the naviga-
tion to the program, do not change the set of answer sets of
the initial program. Justifications, which describe the sup-
port for the truth value of each atom, have been studied
as a tool for reasoning and debugging (El-Khatib, Pontelli,
and Son 2005). Probabilistic reasoning frameworks for logic
programs were developed such as LPMLN (Lee, Talsania, and
Wang 2017), which define notions of probabilities in terms
of relative occurrences of stable models and their weights.
Computing these probabilities (unless restricted to decision
versions in terms of being different from zero) relates to
counting probabilities under assumptions. Considering rel-
ative occurrences of stable models of weight one relates
to search space exploration. However, probabilistic frame-
works primarily address modeling conflicting information
and reason about them. We assume large solution spaces and
aim for navigating dynamically in the solution space.

Background
First, we recall basic notions of ASP, for further details on
ASP we refer to standard texts (Calimeri et al. 2020; Gebser
et al. 2012).

Answer Set Programming. By A(Π) we denote the set
of (non-ground) atoms of a program Π. A literal is an atom
α ∈ A(Π) or its default negation, which refers to the

absence of information, denoted by ∼α. An atom α is a
predicate p(t0, . . . , tn) of arity n ≥ 0 where each ti for
0 ≤ i ≤ n is a term, i.e., either a variable or a constant.
We say an atom α ∈ A(Π) is ground if and only if α is
variable-free. By Grd(A(Π)) we denote ground atoms. A
(disjunctive) logic program Π is a finite set of rules r of
the form α0 | . . . |αk ← αk+1, . . . , αm,∼αm+1, . . . ,∼αn
where 0 ≤ k ≤ m ≤ n and each αi ∈ A(Π)
for 0 ≤ i ≤ n. For a rule r we denote the head by
H(r) := {α0, . . . , αk}, the body B(r) consists of the posi-
tive bodyB+(r) := {αk+1, . . . , αm}, and the negative body
B−(r) := {αm+1, . . . , αn}. If B(r) = ∅, we omit ←. A
rule r where H(r) = ∅ is called integrity constraint and
avoids that B(r) is evaluated positively. By grd(r) we de-
note the set of ground instances of some rule r, obtained by
replacing all variables in r by ground terms. Accordingly,
Grd(Π) :=

⋃
r∈Π grd(r) denotes the ground instantiation

of Π. Without any explicit contrary indication, throughout
this paper, we use the term (logic) program to refer to ground
disjunctive programs where A(Π) = Grd(A(Π)). An inter-
pretation X ⊆ A(Π) satisfies a rule r ∈ Π if and only if
H(r)∩X 6= ∅ whenever B+(r) ⊆ X and B−(r)∩X = ∅.
X satisfies Π, if X satisfies each rule r ∈ Π. An interpre-
tation X is a stable model (also called answer set) of Π
if and only if X is a subset-minimal model satisfying the
Gelfond-Lifschitz reduct of Π with respect to X , defined as
ΠX := {H(r) ← B+(r) | X ∩ B−(r) = ∅, r ∈ Π}.
By AS(Π) we denote the answer sets of Π. For computing
facets, we rely on two notions of consequences of a program,
namely, brave consequences BC(Π) :=

⋃
AS(Π) and cau-

tious consequences CC(Π) :=
⋂
AS(Π).

Faceted Navigation. Faceted answer set navigation is
characterized as a sequence of navigation steps restricting
the solution space with respect to partial solutions. Those
partial solutions, called facets, correspond to ground atoms
of a program Π that are not contained in each solution. We
denote the facets of Π by F(Π) := F+(Π) ∪F−(Π) where
F+(Π) := BC(Π) \ CC(Π) denotes inclusive facets and
F−(Π) := {α | α ∈ F+(Π)} denotes exclusive facets of Π.
We say an interpretation X ⊆ A(Π) satisfies an inclusive
facet f ∈ F+(Π), if f ∈ X , which we denote by X |= f ,
and it satisfies an exclusive facet f ∈ F−(Π), if f 6∈ X .

A navigation step is a transition from one program to an-
other, obtained by adding some integrity constraint that en-
forces the atom refered to by some inclusive or exclusive
facet to be present or absent, respectively, throughout an-
swer sets. By ic(f) we denote the function that translates
a facet f ∈ {α, α} ⊆ F(Π) into a singleton program that
contains its corresponding integrity constraint:

ic(f) :=

{
{← ∼α}, if f = α;

{← α}, otherwise.

Accordingly, a navigation step from Π to Π′ is obtained by
modifying Π such that Π′ = Π ∪ ic(f). Faceted naviga-
tion with respect to some program Π is possible as long as
F(Π) 6= ∅. Alrabbaa, Rudolph, and Schweizer (2018) estab-
lished that if f ∈ F(Π), then Π′ := Π ∪ ic(f) is satisfiable
and AS(Π′) = {X ∈ AS(Π) | X |= f}. When referring to

5652

{{a, e}, {b, c, e}, {b, d, e}}

{{a, e}}

〈a〉

{{b, c, e}, {b, d, e}}

{{b, c, e}}

〈a, c〉

〈a, c, a〉

〈a, b〉

{{b, d, e}}

〈a, c〉

〈a〉

Figure 1: Goal-oriented and free navigation on program Π1.

AS(Π) as a solution space, we refer to the topological space
induced by 2AS(Π) on AS(Π). Thus, answer set navigation
means choosing among subsets of answer sets.

Routes and Navigation Modes
We introduce routes as a notion for characterizing sequences
of navigation steps.
Definition 1. A route δ is a finite sequence 〈f1, . . . , fn〉 of
facets fi ∈ F(Π) s.t. 0 ≤ i ≤ n ∈ N, denoting n arbitrary
navigation steps over Π. We say δ is a subroute of δ′, denoted
by δ v δ′, whenever if fi ∈ δ, then fi ∈ δ′. We define
Πδ := Π ∪ ic(f1) ∪ · · · ∪ ic(fn). By ∆Π we denote all
possible routes over AS(Π), including the empty route ε.
It is easy to see that any permutation of navigation steps
of a fixed set of facets always leads to the same solutions.
In general, different routes may lead to the same subset
of answer sets. We say two routes δ, δ′ ∈ ∆Π are equiv-
alent if and only if AS(Πδ) = AS(Πδ′). To ensure sat-
isfiable programs, we aim to select so called safe routes.
By ∆Π

s := {δ ∈ ∆Π | AS(Πδ) 6= ∅} we define safe
routes over AS(Π). Once an unsafe route is taken, some
sort of redirection, which relates to the notion of correc-
tion sets (Alrabbaa, Rudolph, and Schweizer 2018), i.e., a
route obtained by retracting conflicting facets, is required
to continue navigation. For a program Π, δ ∈ ∆Π and
f ∈ F(Π), we denote all redirections of δ with respect to
f by R(δ, f) := {δ′ v δ | f ∈ δ′,AS(Πδ′) 6= ∅} ∪ {ε}.
The following example illustrates faceted navigation.
Example 2. Consider program Π1 = {a | b; c | d ← b; e}.
It is easy to observe that the answer sets are AS(Π1) =
{{a, e}, {b, c, e}, {b, d, e}}. Thus, we can choose from facets
F(Π1) = {a, b, c, d, a, b, c, d}. As illustrated in Figure 1, if
we activate facet a we land at AS(Π

〈a〉
1) = {{a, e}}. Acti-

vating b on 〈a〉 gives AS(Π
〈a,b〉
1) = ∅. To redirect 〈a, b〉 we

can choose fromR(〈a, b〉, b) = {〈b〉}.
We consider two more notions for identifying routes that
point to a unique solution. A set of facets is a delimitation, if
any safe route constructible thereof leads to a unique answer
set. This means that any further step would lead to an unsafe
route.
Definition 2. Let Π be a program and F, F ′ ⊆ F(Π) s.t.
F := {f1, . . . , fn}. We define τ(F) as all permutations of
δ := 〈f1, . . . , fn〉 and say F is delimiting w.r.t. Π, if τ(F) ⊆

∆Π
s and ∀F ′ ⊃ F : τ(F ′) 6⊆ ∆Π

s . By DF(Π) ⊂ 2F(Π) we
denote the set of delimitations over F(Π).

We call a route consisting of delimiting facets maximal safe.

Definition 3. Let Π be a program, F ⊆ F(Π) and δ ∈
τ(F) ⊆ ∆Π. We call δ maximal safe, if and only if F ∈
DF(Π). By ∆Π

ms we denote the set of maximal safe routes
in AS(Π).

In fact, each delimitation corresponds to a unique solution.

Lemma 1 (?1). Let Π be a program, F ⊆ F(Π) and δ ∈
τ(F) ⊆ ∆Π. If δ ∈ ∆Π

ms , then |AS(Πδ)| = 1.

Theorem 1 (?). |AS(Π)| = |DF(Π)|.
As mentioned, using routes and facets, there are several

ways to explore solutions. A navigation mode is a function
that prunes the solution space according to a search strategy
that involves routes and facets.

Definition 4. Let Xi ∈ 2∆Π ∪ 2F(Π) where 0 ≤ i ≤ n ∈ N.
A navigation mode is a function ν : X0×· · ·×Xn → 2AS(Π)

that maps an n-ary Cartesian product over subsets of routes
over Π and facets of Π to answer sets of Π.

The idea of free and goal-oriented navigation was men-
tioned by Alrabbaa, Rudolph, and Schweizer (2018). While
free navigation follows no particular strategy, during goal-
oriented navigation, we narrow down the solution space.
Next, we formalize the goal-oriented navigation mode.

Definition 5. We define the goal-oriented navigation mode
νgo : ∆Π

s ×F(Π)→ 2AS(Π) by:

νgo(δ, f) :=

{
AS(Π〈δ,f〉), if f ∈ F(Πδ);

AS(Πδ), otherwise.

As illustrated in Figure 1, while during goal-oriented navi-
gation (indicated by solid lines) the space is being narrowed
down, until some unique solution (indicated by underscores)
is found, in free mode (indicated by both dashed and solid
lines) unsafe routes are being redirected, as illustrated on
route 〈a, b〉where a is retracted. We call the effect of narrow-
ing down the space zooming in, the inverse effect zooming
out and any effect where the number of solutions remains
the same, slide effect, e.g., activating a on route 〈a, c〉.

Weighted Faceted Navigation
During faceted navigation, we can zoom in, zoom out or
slide. However, we are unaware of how big the effect of acti-
vating a facet will be. Recall that different routes can lead to
the same unique solution. The activation of some facet may
lead to a unique solution more quickly or less quickly than
the activation of another facet, which means that during nav-
igation one has no information on the length of a route. Our
framework provides an approach for consciously zooming
in on solutions. Introducing weighted navigation, we char-
acterize a navigation step with respect to the extent to which
it affects the size of the solution space, thereby we can navi-
gate toward solutions at a configurable “pace” of navigation,

1Statements marked by “?” are proven in the extended version:
arXiv:2112.07596

5653

which we consider to be the extent to which the current route
zooms into the solution space.

The kind of parameter that allows for configuration is
called the weight of a facet. Weights of facets enable users
to inspect effects of facets at any stage of navigation, which
allows for navigating more interactively in a systematic way.
Any weight or pace is associated with a weighting function
that can be defined in various ways, specifying the number
of program-related objects, e.g., answer sets.
Definition 6. Let Π be a program, δ ∈ ∆Π, f ∈ F(Π)
and δ′ ∈ R(δ, f). We call # : {Πδ | δ ∈ ∆Π} → N a
weighting function, whenever #(Πδ) > 0, if |AS(Πδ)| ≥ 2.
The weight ω# of f w.r.t. #, Πδ and δ′ is defined as:

ω#(f,Πδ, δ′) :=

#(Πδ)−#(Πδ′), if 〈δ, f〉 6∈ ∆Πδ

s

and δ′ 6= ε;

#(Πδ)−#(Π〈δ,f〉), otherwise.

The pace indicates the zoom-in effect of a route with respect
to a weighting function.
Definition 7. Let Π be a program s.t. |AS(Π)| ≥ 2 and
δ ∈ ∆Π

s . We define the pace P#(δ) of δ w.r.t. # as P#(δ) :=
(#(Π)−#(Πδ))/#(Π).

Before we instantiate weights with actual weighting func-
tions, we identify desirable properties of weights. Most im-
portantly, weights should indicate zoom-in effects of facets
on safe routes, i.e., a weight should identify which facets
lead to a proper sub-space of answer sets.
Definition 8. We call a weight ω# safe-zooming, whenever
if f ∈ F(Πδ), then ω#(f,Πδ, ε) > 0 for δ ∈ ∆Π

s .
Essentially, whenever a weight is safe-zooming it is useful to
to inspect zoom-in effects during goal-oriented navigation.
Definition 9. We call a weight ω# splitting, if #(Πδ) =
ω#(α,Πδ, δ′) + ω#(α,Πδ, δ′) for δ, δ′ ∈ ∆Π

s and α, α ∈
F(Πδ).
Splitting weights are useful during goal-oriented navigation,
as any permissible route δ in νgo is safe and if #(Πδ) and
the weight of a facet f ∈ F(Πδ) for δ ∈ ∆Π

s are known, we
can compute the weight of the respective inverse facet f ′ ∈
F(Πδ) arithmetically and thus avoid computing #(Π〈δ,f

′〉).
Definition 10. We call a weight ω# reliable, whenever
ω#(f,Πδ, ε) = #(Πδ) if and only if 〈δ, f〉 6∈ ∆Π

s for
δ ∈ ∆Π and f ∈ F(Π).
The benefit of reliable weights, on the other hand, is that
they indicate unsafe routes. Hence, reliability can be ignored
during goal-oriented navigation, but appears to be useful
during free navigation.

As we are focused on narrowing down the solution space,
we want to know, whether the associated weighting func-
tion # of a weight detects maximal or minimal, respectively,
zoom-in effects on safe routes.
Definition 11. For a program Π, δ ∈ ∆Π and f ∈ F , then:
(i) f is maximal weighted, denoted by f ∈ maxω#

(Πδ), if
∀f ′ ∈ F(Πδ) : ω#(f,Πδ, ε) ≥ ω#(f ′,Πδ, ε); and (ii) f
is minimal weighted, denoted by f ∈ minω#

(Πδ), if ∀f ′ ∈
F(Πδ) : ω#(f,Πδ, ε) ≤ ω#(f ′,Πδ, ε).

A weight is min-inline, if every minimal weighted facet
leads to a maximal sub-space of solutions. Analogously, a
weight is max-inline, if every maximal weighted facet leads
to a minimal sub-space.

Definition 12. Let Π be a program, δ ∈ ∆Π
s and f ∈

F(Πδ). We call a weight ω# (i) min-inline, whenever f ∈
minω#

(Πδ) if and only if for all f ′ ∈ F(Πδ)\minω#
(Πδ) :

|AS(Π〈δ,f〉)| > |AS(Π〈δ,f
′〉)|; and (ii) max-inline, when-

ever f ∈ maxω#
(Πδ) if and only if for all f ′ ∈ F(Πδ) \

maxω#
(Πδ) : |AS(Π〈δ,f〉)| < |AS(Π〈δ,f

′〉)|.
Below, we introduce the absolute weight of a facet, which

counts answer sets, and two so called relative weights, which
seek for approximating the number of solutions to compare
sub-spaces with respect to their actual size, while avoiding
counting.

Absolute Weight
The most natural weighting function to identify the effect of
a navigation step is based on the number of answer sets on
a route. The absolute weight of a facet f is defined as the
number of solutions by which the solution space grows or
shrinks due to the activation of f .

Definition 13. The absolute weight ω#AS is defined by
#AS : Πδ 7→ |AS(Πδ)|.
Example 3. Let us inspect Figure 1 and the program Π1

from Example 2. As stated by ω#AS(a,Π
〈a,c〉
1 , 〈a〉) = 0,

activating a on 〈a, c〉 induces a slide. ω#AS(a,Π
〈a〉
1 , 〈b〉) =

−1. This tells us that navigating toward b on 〈a〉 zooms out
by one solution. In contrast, ω#AS(b,Π

〈c〉
1 , 〈a〉) = 1 means

that we zoom in by one solution.

By definition, the absolute weight directly reflects the effect
of a navigation step and satisfies all introduced properties.

Theorem 2 (?). The absolute weight ω#AS is safe-zooming,
splitting, reliable, min-inline, and max-inline.

Unfortunately, computing absolute weights is expensive.

Lemma 2 (?). Outputting the absolute weight ω#AS for a
given program Π and route δ is # · coNP-complete.

Relative Weights
Since computing absolute weights is computationally ex-
pensive (Lemma 2), we aim for less expensive methods that
still retain the ability to compare sub-spaces with respect to
their size. Therefore, we investigate two relative weights.

Facet Counting. One approach to manipulating the num-
ber of solutions and to keeping track of how the number
changes over the course of navigation, is to count facets.

Definition 14. The facet-counting weight ω#F is defined by
#F : Πδ 7→ |F(Πδ)|.

Next, we establish a positive result in terms of complexity.
Recall ∆P

3 ⊆ PH ⊆ P#P (Stockmeyer 1976; Toda 1991).

Lemma 3 (?). Outputting the facet-counting weight ω#F
for a given program Π and route δ is in ∆P

3 .

5654

Hence, assuming standard theoretical assumptions, counting
facets is easier than counting solutions. However, below we
show that counting facets has deficiencies, when it comes to
comprehending the solution space regarding its size.
Lemma 4 (?). |AS(Π)| ≤ 1 if and only if |F(Π)| = 0.
From Lemma 4 and the fact that for program Π1 from
Example 2 we have ω#F (c,Π

〈a〉
1 , ε) = |F(Π

〈a〉
1)|, but

〈a, c〉 ∈ ∆Π1
s , we conclude that ω#F is not reliable. Further-

more, since therefore ω#F (c,Π
〈a〉
1 , ε) + ω#F (c,Π

〈a〉
1 , ε) 6=

|F(Π
〈a〉
1)|, ω#F is not splitting either.

Corollary 1. The facet-counting weight ω#F is not reliable
and not splitting.

The reason for ω#F not distinguishing between one and
no solution is that we can interpret it as an indicator for how
the diversity or similarity, respectively, of solutions changes
by activating a facet. Accordingly, whenever a step leads to
one or no solution, the thereby reached sub-space contains
least-diverse or most-similar solutions, respectively.
Example 4. Again consider Π1 from Example 2. While for
the absolute weights of a and c we have ω#AS(a,Π1, ε) =
1 = ω#AS(c,Π1, ε), their respective relative weights differ
with ω#F (a,Π1, ε) = 4 and ω#F (c,Π1, ε) = 2. The reason
is that even though |AS(Π

〈a〉
1)| = |AS(Π

〈c〉
1)|, by activating

c we can still navigate toward F(Π
〈c〉
1) = {a, b, d, a, b, d},

but activating a, we can only navigate toward F(Π
〈a〉
1) =

{c, d, c, d}, i.e., answer sets that contain b.
In other words, while #F indicates how “far apart” solu-
tions are, ω#F indicates to what amount the solutions con-
verge due to navigation steps.
Theorem 3 (?). Weight ω#F is safe-zooming.
Due to Theorem 3, we know that #F can be used to deter-
mine the pace of safe navigation. In fact the facet-counting
pace P#F emphasizes that ω#F is not directly related to the
size of the solution space.
Example 5. Consider Π1 from Example 2. While
|AS(Π

〈c〉
1)| = 2 and |AS(Π1)| = 3, which means that acti-

vating c on Π1 we lose 1 of 3 solutions so that P#AS(〈c〉) =
1/3, we have P#F (〈c〉) = 1/4.
From Lemma 4, we immediately conclude:
Corollary 2. Pω#F (δ) = 1 if and only if δ ∈ ∆Π

ms . In
contrast, for all δ ∈ ∆Π

s we have P#AS(δ) ≤ |AS(Π)|−1
|AS(Π)| .

Corollary 2 states that, in contrast to P#AS , the facet count-
ing pace Pω#F detects whether users sit on a unique solu-
tion. More importantly it is the better option to find a viable
implementation of the pace of navigation for our framework.
While in that sense using the relative weight ω#F is benefi-
cial, unfortunately it is not min-inline.
Example 6. We consider Π2 = {a | b | c; d | e ← b; f ←
c} where AS(Π2) = {{a}, {b, d}, {b, e}, {c, f}}. While
a ∈ minω#F (Π2) and c 6∈ minω#F (Π2), we have

|AS(Π
〈a〉
2)| = |AS(Π

〈c〉
2)|. Hence, the relative weight ω#F

is not min-inline.

We suspect that the property max-inline is not satisfied by
the weight ω#F as we observed in our experiments that
the activation of some facets, which had no maximal ω#F
weight, lead to smaller answer set spaces than the activation
of facets which had maximal ω#F weight. An actual coun-
terexample is still open.

Supported Model Counting. Another approach to com-
paring sub-spaces with respect to their size, while avoiding
answer set counting, is to count supported models. An in-
terpretation X is called supported model (Apt, Blair, and
Walker 1988; Alviano and Dodaro 2016b) of Π if X satis-
fies Π and for all α ∈ X there is a rule r ∈ Π such that
H(r) ∩ X = {α}, B+(r) ⊆ X and B−(r) ∩ X = ∅. By
S(Π) we denote the supported models of Π. It holds that
AS(Π) ⊆ S(Π) (Marek and Subrahmanian 1992), but the
converse does not hold in general. We define supp weights,
by which in short we refer to supported model counting
weights, accordingly as follows.
Definition 15. The supp weight ω#S is defined by #S :
Πδ 7→ |S(Π)|.
The positive dependency graph of program Π is G(Π) :=
(A(Π), {(α1, α0) | α1 ∈ B+(r), α0 ∈ H(r), r ∈ Π}).
Π is called tight, if G(Π) is acyclic. If Π is tight, then its
supported models and answer sets coincide (Fages 1994).
Corollary 3. If Π is tight, then for all f ∈ F(Πδ) we have
that ω#AS(f,Πδ, δ′) = ω#S(f,Πδ, δ′).
Due to the fact that unsatisfiable programs may have sup-
ported models (Marek and Subrahmanian 1992), ω#S is not
reliable. Moreover the following example shows that ω#S is
neither min-inline, nor max-inline.
Example 7. We consider Π3 = {a; b← a,∼c; c← ∼b,∼
d; d ← d} with S(Π3) = {{a, b}, {a, c}, {a, b, d}} and
AS(Π3) = {{a, b}, {a, c}}. The facets of Π3 are given by
F(Π3) = {b, c, b, c}. Then, the facets b and c both have supp
weight 1 and thus are minimal weighted, and the facets c and
b have supp weight 2 and thus are maximal weighted. As
|AS(Π

〈b〉
3)| = |AS(Π

〈c〉
3)| = 1 we see that both the minimal

and the maximal weighted facets w.r.t. supp weights have the
same number of answer sets. Hence, ω#S is neither min-
inline, nor max-inline.
Although ω#S does not satisfy min-inline and max-inline, it
shares some properties with ω#AS and ω#F .

Lemma 5 (?). For program Π and δ ∈ ∆Π
s , if f ∈ F(Πδ),

then S(Π〈δ,f〉) = {X ∈ S(Πδ) | X |= f} ⊂ S(Πδ).
Theorem 4 (?). Weight ω#S is safe-zooming and splitting.
Computing supp weights is computationally easier.
Lemma 6 (?). Outputting the supp weight ω#S for a given
program Π and route δ is #P-complete.
However, recalling Lemma 3, note that counting facets is
still the least expensive method.

In summary, we can characterize and compare the intro-
duced weights as given in Table 1. Every weight has its ad-
vantages that should be used to leverage performance, or
characterize the solution space and its sub-spaces. While

5655

saf rel spl min max

ω#AS 3 3 3 3 3
ω#F 3 7 7 7 ?
ω#S 3 7 3 7 7

Table 1: Comparing weights regarding saf: is safe-
zooming, spl: is splitting, rel: is reliable, min: is min-
inline and max: is max-inline.

counting solutions is the most desirable choice, computing
ω#AS is hard. Our results show that, when narrowing down
the space by strictly pruning the max./min. number of solu-
tions, at least for tight programs, ω#S is the best choice, as
it coincides with ω#AS while remaining less expensive. In
general, in contrast to ω#AS , relative weights come with dif-
ferent use cases regarding their interpretation. Even though
ω#F has deficiencies, it satisfies the most essential property,
namely being safe-zooming, and provides information on
the similarity/diversity of solutions with respect to a route.
To conclude, while facet-counting is the most promising
method for distinguishing zoom-in effects of facets regard-
ing computational feasibility, counting supported models of
tight programs is precise about zoom-in effects.

Weighted Navigation Modes
In the following, we introduce two new navigation modes,
called strictly goal-oriented and explore. They can be un-
derstood as special cases of goal-oriented navigation.
Definition 16. Let Π be a program, δ ∈ ∆Π

s and f ∈ F(Π).
The strictly goal-oriented mode ν#

sgo and the explore mode
ν#
expl are defined by:

ν#
sgo(δ, f) :=

{
AS(Π〈δ,f〉), if f ∈ maxω#

(Πδ);

AS(Πδ), otherwise.

ν#
expl(δ, f) :=

{
AS(Π〈δ,f〉), if f ∈ minω#

(Πδ);

AS(Πδ), otherwise.

Corollary 4. ν#
sgo and ν#

expl avoid unsafe routes, hence we
can use the restriction ω#|X of ω# where X := {(f, δ, ε) |
f ∈ F(Π), δ ∈ ∆Π

s }.
While in strictly goal-oriented mode the objective is to
“rush” through the solution space, navigating at the highest
possible pace in order to reach a unique solution as quick as
possible, explore mode keeps the user off one unique solu-
tion as long as possible, aiming to provide her with as many
solutions as possible to explore while “strolling” between
sub-spaces. As a consequence, regardless of whether abso-
lute or relative weights are used, during weighted navigation
some (partial) solutions may be unreachable.
Example 8. Consider Π2 from Example 6 where we
can choose from facets F(Π2) = {a, b, c, d, e, f, a,
b, c, d, e, f} and maxω#AS (Π2) = {a, c, d, e, f} =
maxω#F (Π2). Thus, any solution X ∈ AS(Π2) =
{{a}, {b, d}, {b, e}, {c, f}} s.t. b ∈ X is unreachable in
ν#AS
sgo and ν#F

sgo . Since ω#AS is splitting, it follows that

min#AS(Π2) = {a, c, d, e, f}. Hence, navigating in ν#AS
expl ,

one has to sacrifice either partial solution a, or c and f
right in the beginning. Furthermore, since minω#F (Π2) =

{a, d, e}, right in the beginning of navigating in ν#F
expl , one

has to sacrifice partial solution a, d, or e.

Implementation and Evaluation
To study the feasibility of our framework, we implemented
the faceted answer set browser (fasb) on top of the
clingo solver. In particular, we conducted experiments
on three instance sets that range from large solution spaces
to complex encodings in order to verify the following two
hypotheses: (H1) weighted faceted navigation can be per-
formed in reasonable time in an incomprehensible solution
space associated with product configuration; and (H2) the
feasibility of our framework depends on the complexity of
the given problem, i.e., program. The implementation and
experiments are publicly available (Fichte, Gaggl, and Ruso-
vac 2021a,b). We follow standard guidelines for empirical
evaluations (van der Kouwe et al. 2018; Fichte et al. 2021a)

Environment. fasb is designed for desktop systems, en-
abling users to practicably explore the solution space in an
interactive way. Hence, runtime was limited to 600 seconds
and the experiments were run on an eight core Intel i7-
10510U CPU 1.8 GHz with 16 GB of RAM, running Man-
jaro Linux 21.1.1 (kernel 5.10.59-1-MANJARO). Runtime
was measured in elapsed time by timers in fasb itself.

Design of Experiment. Currently, we miss data on real
user behavior. Thus, we run three iterations of random navi-
gation steps in each of the implemented modes, to simulate
a user and avoid bias regarding the choice of steps. For go,
sgo-fc, and sgo-abs, we use the --random-safe-walk
call, which in the provided mode performs random steps un-
til the current route is maximal safe, e.g., in sgo-fc and sgo-
abs it computes maximal weighted facets and then chooses
one of them to activate randomly. Since, in practice, using
expl-fc and expl-abs, we do not necessarily aim to arrive at
a unique solution, we use --random-safe-steps for
expl-fc and expl-abs and provide the maximum number n
of steps among iterations in go, which performs n random
steps in the provided mode. We measure the elapsed time
for a mode to filter current facets according to its strategy,
then, using the mentioned calls, we randomly select a facet
thereof to activate, until we reach a unique solution or took
n steps. For any mode except go, we ignore the elapsed time
of --activate, for go we solely measure elapsed time of
the --activate call, which in the case of go includes run-
time of computing facets. fasb computes the initial facets
at startup, which are used throughout further computations,
in particular when performing a first step. Thus, we add
elapsed time, due to startup, to the first result in each mode.

Instances. To study (H1), we inspect product configura-
tion (Gorczyca 2020) where users may configure PC compo-
nents over a large solutions space until a full configuration is
obtained. To verify (H2), we select instances from abstract
argumentation using the ASPARTIX encodings (Egly,

5656

1 3 5 7 9 11 13 15

0

2

4

6

(a) PC configuration.

1 3 5 7 9 11

0

1

2

3

4

(b) Stable extensions.

1 3 5 7 9

0

20

40

60
go

sgo-fc

expl-fc

sgo-abs

expl-abs

(c) Preferred extensions.

Figure 2: Comparing random steps in several navigation modes. The x-axis refers to the respective navigation step, the y-axis
refers to the execution time in seconds. Colors in Figure 2a and 2b follow the legend as given in Figure 2c.

Gaggl, and Woltran 2010; Gaggl et al. 2015; Dvořák et al.
2020) stable.lp and preferred-cond-disj.dl.
There, brave and cautious reasoning in abstract argumen-
tation is of higher complexity for preferred semantics
than for the stable semantics (Baroni, Caminada, and
Giacomin 2011). For the stable argumentation semantics,
the problems can be encoded as normal programs. Whereas
for preferred, one needs disjunctive programs. As input
instance, we used the abstract argumentation framework
A/3/ferry2.pfile-L3-C1-06.pddl.1.cnf.apx
from the benchmark set of (ICCMA’17) (Gaggl et al. 2020).
There, solutions of both semantics coincide with exactly
7696 answer sets.

Observations and Results. In the beginning of PC config-
uration, we choose from 340 facets resulting in on average
15 steps in go and 13 steps in sgo-fc to reach a uniqe so-
lution. Taking 16 steps in expl-fc, throughout all iterations
the facet-counting pace of the obtained route is 9%. The
number of solutions for the respective generated benchmark
pc_config remains unknown. Running clingo for over
9 hours resulted in more than 1.3 · 109 answer sets. As ex-
pected, for more than a billion solutions, sgo-abs and expl-
abs timed out in the first step. Inspecting Figure 2a, we see
that sgo-fc execution time drops significantly from Step 1 to
5, which originates in the fact that Steps 1 to 5 throughout all
iterations on the average decreased the number of remaining
facets by 35%. Consequently, it reduces the number of facets
to compute weights for and leads to shorter execution times.
In expl-fc, on the other hand, throughout all iterations each
step decreases the facet-count by 2. Except for one outlier,
this leads to slowly decreasing, but in general, similar exe-
cution times. Figures 2b and 2c illustrate the execution times
for navigation steps in the argumentation instances. As ex-
pected, we see no timeouts when navigating through 7696
stable extensions. Whereas exploring 7696 preferred exten-
sions, works only in mode go. Computing cautious conse-
quences was most expensive when considering the execution
time of processes at startup for preferred extensions, which
emphasizes (H2). From Figure 2b, we see that go, sgo-fc,
and expl-fc show a similar trend to Figure 2a. While go and
expl-fc remain rather steady in execution time, sgo-fc drops
in the first steps. Moreover, we observe that the execution

time of expl-abs, in contrast to expl-fc, decreases noticeably
with every step indicating that counting less answer sets in
each step becomes easier, whereas counting facets does not.
Throughout all iterations, while sgo-fc needs 6 steps, sgo-
abs only needs 5 steps to reach a unique solution. The sig-
nificant drop between Step 1 and 2 in sgo-abs originates in
zooming in by 93%, pruning 7152 out of 7696 solutions.

Summary. In general (H2) the feasibility of weighted nav-
igation depends on the complexity of the given problem. Re-
garding product configuration, associated with a large and
incomprehensible solution space (H1), weighted navigation
can be performed in reasonable time using fasb.

Conclusion and Future Work
We provide a formal, dynamic, and flexible framework for
navigating through subsets of answer sets in a systematic
way. We introduce absolute and relative weights to quan-
tify the size of the search space when reasoning under as-
sumptions (facets) as well as natural navigation operations.
In a systematic comparison, we prove which weights can
be employed under the search space navigation operations.
In addition, we illustrate the computational complexity for
computing the weights. Our framework is intended as an ad-
ditional layer on top of a solver, adding functionality for sys-
tematically manipulating the size of the solution space dur-
ing (faceted) answer set navigation. Our implementation, on
top of the solver clingo, demonstrates feasibility of our
framework for an incomprehensible solution space.

For future work, we believe that an interesting question
is to research relative weights which preserve the proper-
ties min-inline and max-inline. Our framework may have in-
teresting applications for characterizing features of a con-
figuration space (Sundermann, Thüm, and Schaefer 2020).
We are interested in visual support for navigating the ASP
solution space by extending the work of (Yang, Gaggl,
and Rudolph 2020). Furthermore, we aim to investigate
whether supported model counting is in fact practically
feasible using recent developments in propositional model
counting (Fichte, Hecher, and Hamiti 2021; Fichte et al.
2021b; Fichte, Hecher, and Roland 2021; Korhonen and
Järvisalo 2021), ASP (Fichte and Hecher 2019), or approxi-
mate counting (Kabir et al. 2022).

5657

Acknowledgements
The authors are stated in alphabetic order. This research
was partially funded by the DFG through the Collab-
orative Research Center, Grant TRR 248 (see https://
perspicuous-computing.science project ID 389792660), the
Bundesministerium für Bildung und Forschung (BMBF),
Grant 01IS20056 NAVAS, a Google Fellowship at the Si-
mons Institute, and the Austrian Science Fund (FWF), Grant
Y698. Work has partially been carried out while Johannes
Fichte was visiting the Simons Institute for the Theory of
Computing.

References
Alrabbaa, C.; Rudolph, S.; and Schweizer, L. 2018. Faceted
Answer-Set Navigation. In Benzmüller, C.; Ricca, F.; Par-
ent, X.; and Roman, D., eds., Proc. of RuleML+RR’18, 211–
225. Springer.
Alviano, M.; Calimeri, F.; Dodaro, C.; Fuscà, D.; Leone, N.;
Perri, S.; Ricca, F.; Veltri, P.; and Zangari, J. 2017. The
ASP System DLV2. In Balduccini, M.; and Janhunen, T.,
eds., Proc. of LPNMR’17, volume 10377 of LNCS, 215–221.
Cham: Springer. ISBN 978-3-319-61660-5.
Alviano, M.; and Dodaro, C. 2016a. Anytime answer set
optimization via unsatisfiable core shrinking. TPLP, 16(5-
6): 533—551.
Alviano, M.; and Dodaro, C. 2016b. Completion of Dis-
junctive Logic Programs. In Kambhampati, S., ed., Proc. of
IJCAI’16, 886–892. IJCAI/AAAI Press.
Alviano, M.; Dodaro, C.; Leone, N.; and Ricca, F. 2015. Ad-
vances in WASP. In Calimeri, F.; Ianni, G.; and Truszczyn-
ski, M., eds., Proc. of LPNMR’15, 40–54. Springer.
Alviano, M.; Romero, J.; and Schaub, T. 2018. Preference
Relations by Approximation. In Thielscher, M.; and Toni,
F., eds., Proc. of KR’18, 2–11.
Apt, K. R.; Blair, H. A.; and Walker, A. 1988. Towards a the-
ory of declarative knowledge. In Foundations of deductive
databases and logic programming, 89–148. Elsevier.
Baroni, P.; Caminada, M.; and Giacomin, M. 2011. An in-
troduction to argumentation semantics. Knowledge Eng. Re-
view, 26: 365–410.
Brewka, G. 2004. Complex Preferences for Answer Set Op-
timization. In Dubois, D.; Welty, C. A.; and Williams:, M.-
A., eds., Proc. of KR’04, 213–223. The AAAI Press.
Brewka, G.; Delgrande, J.; Romero, J.; and Schaub, T.
2015. asprin: Customizing answer set preferences without
a headache. In Proc. of AAAI’15.
Brewka, G.; Eiter, T.; and Truszczyński, M. 2011. Answer
set programming at a glance. Communications of the ACM,
54(12): 92–103.
Calimeri, F.; Faber, W.; Gebser, M.; Ianni, G.; Kaminski,
R.; Krennwallner, T.; Leone, N.; Maratea, M.; Ricca, F.;
and Schaub, T. 2020. ASP-Core-2 Input Language Format.
TPLP, 20(2): 294–309.
Dimopoulos, Y.; Nebel, B.; and Koehler, J. 1997. Encod-
ing planning problems in nonmonotonic logic programs. In

Steel, S.; and Alami, R., eds., Proc. of ECP’97, 169–181.
Springer.
Dodaro, C.; Gasteiger, P.; Reale, K.; Ricca, F.; and Schekoti-
hin, K. 2019. Debugging Non-ground ASP Programs: Tech-
nique and Graphical Tools. TPLP, 19(2): 290–316.
Dvořák, W.; Gaggl, S. A.; Rapberger, A.; Wallner, J. P.;
and Woltran, S. 2020. The ASPARTIX System Suite. In
Prakken, H.; Bistarelli, S.; Santini, F.; and Taticchi, C., eds.,
Proc. of COMMA’20, volume 326 of FAIA, 461–462. IOS
Press.
Eén, N.; and Sörensson, N. 2003. An Extensible SAT-solver.
In Giunchiglia, E.; and Tacchella, A., eds., Proc. of SAT’03,
502–518. Springer.
Egly, U.; Gaggl, S. A.; and Woltran, S. 2010. Answer-set
programming encodings for argumentation frameworks. Ar-
gument & Computation, 1(2): 147–177.
El-Khatib, O.; Pontelli, E.; and Son, T. C. 2005. Justification
and Debugging of Answer Set Programs in ASP. In Proc. of
AADEBUG’05, 49–58. ACM. ISBN 1595930507.
Everardo, F. 2017. Towards an automated multitrack mix-
ing tool using answer set programming. In 14th Sound and
Music Computing Conf.
Everardo, F.; Janhunen, T.; Kaminski, R.; and Schaub, T.
2019. The Return of xorro. In Balduccini, M.; Lierler,
Y.; and Woltran, S., eds., Proc. of LPNMR’19, 284–297.
Springer.
Fages, F. 1994. Consistency of Clark’s completion and ex-
istence of stable models. Journal of Methods of logic in
computer science, 1(1): 51–60.
Fichte, J. K.; Gaggl, S. A.; and Rusovac, D. 2021a. Rushing
and Strolling among Answer Sets - Navigation Made Easy
(Experiments). https://doi.org/10.5281/zenodo.5780050.
Fichte, J. K.; Gaggl, S. A.; and Rusovac, D. 2021b. Rushing
and Strolling among Answer Sets - Navigation Made Easy
(Faceted Answer Set Browser fasb). https://doi.org/10.5281/
zenodo.5767981.
Fichte, J. K.; and Hecher, M. 2019. Treewidth and Count-
ing Projected Answer Sets. In Balduccini, M.; Lierler, Y.;
and Woltran, S., eds., Proc. of LPNMR’19, volume 11481 of
LNCS, 105–119. Philadelphia, PA, USA: Springer.
Fichte, J. K.; Hecher, M.; and Hamiti, F. 2021. The Model
Counting Competition 2020. ACM Journal of Experimental
Algorithmics, 26(13).
Fichte, J. K.; Hecher, M.; McCreesh, C.; and Shahab, A.
2021a. Complications for Computational Experiments from
Modern Processors. In Michel, L. D., ed., Proc. of CP’21,
volume 210 of LIPIcs, 25:1–25:21. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik.
Fichte, J. K.; Hecher, M.; and Roland, V. 2021. Parallel
Model Counting with CUDA: Algorithm Engineering for
Efficient Hardware Utilization. In Michel, L. D., ed., Proc.
of CP’21, volume 210 of LIPIcs, 24:1–24:20. Dagstuhl, Ger-
many: Dagstuhl Publishing. ISBN 978-3-95977-211-2.
Fichte, J. K.; Hecher, M.; Thier, P.; and Woltran, S. 2021b.
Exploiting Database Management Systems and Treewidth
for Counting. TPLP, 1–30.

5658

Gaggl, S. A.; Linsbichler, T.; Maratea, M.; and Woltran, S.
2020. Design and results of the Second International Com-
petition on Computational Models of Argumentation. Artif.
Intell., 279.
Gaggl, S. A.; Manthey, N.; Ronca, A.; Wallner, J. P.; and
Woltran, S. 2015. Improved Answer-Set Programming En-
codings for Abstract Argumentation. TPLP, 15(4-5): 434–
448.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2012. Answer set solving in practice. Synthesis lectures on
artificial intelligence and machine learning, 6(3): 1–238.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2014. Clingo = ASP + Control: Preliminary Report. CoRR,
abs/1405.3694.
Gebser, M.; Kaminski, R.; König, A.; and Schaub, T. 2011.
Advances in gringo series 3. In Delgrande, J. P.; and Faber,
W., eds., Proc. of LPNMR’11, 345–351. Springer.
Gebser, M.; Kaminski, R.; and Schaub, T. 2011. Complex
optimization in answer set programming. TPLP, 11(4-5):
821–839.
Gebser, M.; Pührer, J.; Schaub, T.; and Tompits, H. 2008. A
Meta-Programming Technique for Debugging Answer-Set
Programs. In Proc. of AAAI ’08.
Gelfond, M.; and Lifschitz, V. 1988. The Stable Model Se-
mantics For Logic Programming. In Kowalski, R. A.; and
Bowen, K. A., eds., Proc. of ICLP/SLP’88, volume 2, 1070–
1080. MIT Press.
Gelfond, M.; and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databases. New Genera-
tion Comput., 9(3/4): 365–386.
Gorczyca, P. 2020. Configuration Problem ASP Encoding
Generator. https://doi.org/10.5281/zenodo.5777217.
Kabir, M.; Everardo, F.; Shukla, A.; Fichte, J. K.; Hecher,
M.; and Meel, K. 2022. ApproxASP – A Scalable Approxi-
mate Answer Set Counter. In Proc. of AAAI’22. The AAAI
Press.
Korhonen, T.; and Järvisalo, M. 2021. Integrating Tree
Decompositions into Decision Heuristics of Propositional
Model Counters. In Michel, L. D., ed., Proc. of CP’21, vol-
ume 210 of LIPIcs, 8:1–8:11. Dagstuhl Publishing. ISBN
978-3-95977-211-2.
Lee, J.; Talsania, S.; and Wang, Y. 2017. Computing
LPMLN using ASP and MLN solvers. TPLP, 17(5-6): 942–
960.
Lifschitz, V. 1999. Action languages, answer sets, and
planning. In The Logic Programming Paradigm, 357–373.
Springer.
Marek, W.; and Subrahmanian, V. 1992. The relationship
between stable, supported, default and autoepistemic seman-
tics for general logic programs. Theor. Comput. Sci., 103(2):
365–386.
Nogueira, M.; Balduccini, M.; Gelfond, M.; Watson, R.; and
Barry, M. 2001. An A-Prolog decision support system for
the Space Shuttle. In Ramakrishnan, I. V., ed., Proc. of
PADL’01, 169–183. Springer.

Oetsch, J.; Pührer, J.; and Tompits, H. 2018. Stepwise de-
bugging of answer-set programs. TPLP, 18(1): 30–80.
Shchekotykhin, K. M. 2015. Interactive Query-Based De-
bugging of ASP Programs. In Bonet, B.; and Koenig, S.,
eds., Proc. of AAAI’15, 1597–1603. AAAI Press.
Soininen, T.; and Niemelä, I. 1999. Developing a declarative
rule language for applications in product configuration. In
Gupta, G., ed., Proc. of PADL’99, 305–319. Springer.
Soininen, T.; Niemelä, I.; Tiihonen, J.; and Sulonen, R.
2001. Configuration Knowledge With Weight Constraint
Rules. In Provetti, A.; and Son, T. C., eds., Proc. of ASP’01,
volume 1.
Son, T. C.; Sabuncu, O.; Schulz-Hanke, C.; Schaub, T.; and
Yeoh, W. 2016. Solving Goal Recognition Design Using
ASP. In Proc. of AAAI’16, 3181–3187.
Stockmeyer, L. J. 1976. The polynomial-time hierarchy.
Theor. Comput. Sci., 3(1): 1–22.
Sundermann, C.; Thüm, T.; and Schaefer, I. 2020. Evalu-
ating# SAT solvers on industrial feature models. In Proc.
of the 14th Int. Working Conf. on Variability Modelling of
Software-Intensive Systems, 1–9.
Tiihonen, J.; Soininen, T.; Niemelä, I.; and Sulonen, R.
2003. A practical tool for mass-customising configurable
products. In Proc. of ICED’03.
Toda, S. 1991. PP is as Hard as the Polynomial-Time Hier-
archy. SIAM J. Comput., 20(5): 865–877.
Tunkelang, D. 2009. Faceted Search. Synthesis Lectures on
Information Concepts, Retrieval, and Services, 1(1).
van der Kouwe, E.; Andriesse, D.; Bos, H.; Giuffrida, C.;
and Heiser, G. 2018. Benchmarking Crimes: An Emerging
Threat in Systems Security. CoRR, abs/1801.02381.
Vos, M. D.; Kisa, D. G.; Oetsch, J.; Pührer, J.; and Tompits,
H. 2012. Annotating answer-set programs in Lana. TPLP,
12(4-5): 619–637.
Yang, M.; Gaggl, S. A.; and Rudolph, S. 2020. Neva - Ex-
tension Visualization for Argumentation Frameworks. In
Prakken, H.; Bistarelli, S.; Santini, F.; and Taticchi, C., eds.,
Proc. of COMMA 2020, volume 326 of FAIA, 477–478. IOS
Press.

5659

