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Abstract
We investigate the data complexity of the satisfiabil-
ity problem for the very expressive description logic
ZOIQ (a.k.a. ALCHbSelf

reg OIQ) over quasi-forests
and establish its NP-completeness. This completes
the data complexity landscape for decidable frag-
ments of ZOIQ, and reproves known results on
decidable fragments of OWL2 (SR family). Using
the same technique, we establish coNEXPT IME-
completeness (w.r.t. the combined complexity) of
the entailment problem of rooted queries in ZIQ.

1 Introduction
Formal ontologies are essential in nowadays approaches to
safe and trustworthy symbolic AI, serving as the backbone of
the Semantic Web, peer-to-peer data management, and infor-
mation integration. Such applications often resort to managing
and reasoning about graph-structure data. A premier choice
for the reasoning framework is then the well-established fam-
ily of logical formalisms known as description logics (DLs)
[Baader et al., 2017] that underpin the logical core of OWL 2
by the W3C [Hitzler et al., 2012]. Among the plethora of var-
ious features available in extensions of the basic DL called
ALC, an especially prominent one is ·reg, supported by the
popular Z-family of DLs [Calvanese et al., 2009]. Using ·reg,
one can specify regular path constraints and hence, allow the
user to navigate the underlying graph data-structure. In recent
years, many extensions of ALCreg for ontology-engineering
were proposed [Bienvenu et al., 2014; Calvanese et al., 2016;
Ortiz and Simkus, 2012], and the complexity of their rea-
soning problems is mostly well-understood: Calvanese et al.
[2009; 2016]; Bednarczyk et al. [2019; 2022].

Vardi [1982] observed that measuring the user’s data and
the background ontology equally is not realistic, as the data
tends to be huge in comparison to the ontology. This gave rise
to the notion of data complexity: the ontology (TBox) is fixed
upfront and only the user’s data (ABox) varies. The satisfia-
bility problem for DLs is usually NP-complete w.r.t. the data
complexity, including the two-variable counting logic [Pratt-
Hartmann, 2009] (encoding DLs up to ALCBIOQSelf) as
well as SROIQ [Kazakov, 2008], the logical core of OWL2.
Regarding DLs with path expressions, NP-completeness of
ALCISelf

reg [Jung et al., 2018] was established only recently.

1.1 Our Main Contribution and a Proof Overview
We study the data complexity of the satisfiability problem for
decidable sublogics of ZOIQ (a.k.a. ALCHbSelf

reg OIQ), and
establish NP-completeness of ZIQ, ZOQ, and ZOI. As
all the mentioned DLs possess the quasi-forest model prop-
erty (i.e. every satisfiable knowledge-base (KB) has a forest-
like model), for the uniformity of our approach we focus on
the satisfiability of ZOIQ over quasi-forests. Calvanese et
al. [2009] proved that quasi-forest-satisfiability of ZOIQ is
EXPT IME-complete w.r.t. the combined complexity. Unfor-
tunately, their approach is automata-based and relies on an
internalisation of ABoxes inside ZOIQ-concepts, and thus
cannot be used to infer tight bounds w.r.t. the data complexity.

We employ the aforementioned algorithm of Calvanese et al.
as a black box and design a novel algorithm for quasi-forest-
satisfiability of ZOIQ-KBs. In our approach we construct
a quasi-forest model in two steps, i.e. we construct its root
part (the clearing) separately from its subtrees. Our algorithm
first pre-computes (an exponential w.r.t. the size of the TBox
but of constant size if the TBox is fixed) set of quasi-forest-
satisfiable ZOIQ-concepts that indicate possible subtrees
that can be “plugged in” to the clearing of the intended model.
Then it guesses (in NP) the intended clearing and verifies its
consistency in PT IME based on the pre-computed concepts
and roles. For the feasibility of our “modular construction” a
lot of bookkeeping needs to be done. Most importantly, cer-
tain decorations are employed to decide the satisfaction of
automata concepts and number restrictions by elements in an
incomplete and fragmented forest. The first type of decora-
tions, given an automaton A, aggregates information about
existing paths realising A and starting at one of the roots of
the intended model. As a single such path may visit several
subtrees, we cut such paths into relevant pieces and summarise
them by means of “shortcut” roles and ZOIQ-concepts de-
scribing paths fully contained inside a single subtree. The sec-
ond type of decorations “localise” counting in the presence of
nominals, as the nominals may have successors outside their
own subtree and the clearing. These two “small tricks”, ob-
fuscated by various technical difficulties, are the core ideas
underlining our proof. We conclude the paper by presenting
how our algorithm can be adapted to the entailment problem
of rooted queries over ZIQ. The key idea here is to guess an
“initial segment” of a quasi-forest with no query match, and
check if it can be extended to a full model of the input KB.



2 Preliminaries
We assume familiarity with description logics (DLs) [Baader
et al., 2017], formal languages, and complexity [Sipser, 2013].
We fix countably-infinite pairwise-disjoint sets NI,NC,NR

of individual, concept, and role names. An interpretation I :=
(∆I , ·I) consists of a non-empty domain ∆I and a function ·I
that maps a ∈ NI to aI ∈ ∆I , A ∈ NC to AI ⊆ ∆I , and
r ∈ NR to rI ⊆ ∆I ×∆I . The set of simple roles Nsp

R is de-
fined with the grammar s ::= r ∈ NR | s− | s∩s | s∪s | s\s .
Simple roles are interpreted as expected by invoking the under-
lying set-theoretic operations, e.g. I interprets (r ∪ (s \ t))−
as the inverse of (rI ∪ (sI \ tI)). The superscripts ∗ and + de-
note the Kleene’s star and plus, while · denotes concatenation.
A path in I is a word ρ := ρ1 . . . ρ|ρ| in (∆I)+ such that for
all i < |ρ| there is a role name r ∈ Nsp

R with (ρi, ρi+1) ∈ rI .

Automata. We employ standard notion of nondeterministic
automata (NFAs). For states q and q′ of an NFA A, Aq,q′ de-
notes the corresponding NFA with the initial (resp. final) state
switched to q (resp. q′). NFAs use roles from Nsp

R and tests C?
for concepts C as alphabet. A path ρ realises A (ρ |= A) if
A accepts some word w1r1 . . . w|ρ|−1r|ρ|−1w|ρ|, where ri ∈
Nsp

R and wi are (possibly empty) sequences of tests, satisfying
(ρi, ρi+1) ∈ rIi and ρi ∈ CI for all i ≤ |ρ| and tests C? in wi.

Expressive DLs. The DL ZOIQ [Calvanese et al., 2009]
is the main object of our study. For all A ∈ NC, s ∈ Nsp

R,o ∈
NI, n ∈ N and NFA A, we define ZOIQ-concepts C with:

⊥ | A | {o} | ¬C | C ⊓ C | ∃s.C | (≥n s).C | ∃s.Self | ∃A.C

We denote ⊤ := ¬⊥, C ⊔ C′ := ¬(¬C ⊓ ¬C′), (≤n s).C :=
¬(≥n+1 s).¬C, (=n s).C := (≤n s).C ⊓ (≥n s).C, and
∀♡.C := ¬∃♡.¬C, where ♡ is a simple role or an NFA.

Name Syntax Semantics: d ∈ CI if
top/bottom ⊤/⊥ always/never
nominal {o} d = oI

negation ¬C d ̸∈ CI

intersection C1 ⊓ C2 d ∈ CI
1 and d ∈ CI

2

existential restriction ∃s.C ∃e
(
e ∈ CI ∧ (d, e) ∈ sI

)
number restriction (≥n s).C |{e ∈ CI | (d, e)∈sI}| ≥ n
Self concept ∃s.Self (d, d) ∈ sI

automaton concept ∃A.C ∃path d·ρ·e |= A & e ∈ CI

We define the DLs ZOI, ZIQ, and ZOQ, respectively, by
dropping (a) number restrictions, (b) nominals, and (c) role
inverses from the syntax of ZOIQ. W.l.o.g. we allow for reg-
ular expression (with tests) in place of NFAs in above syntax.

A ZOIQ-KB K := (A, T ) is composed of two sets of
axioms, an ABox A and a TBox T . An interpretation I is
a model of K (I |= K) if it satisfies all the axioms of K.
The content of ABoxes and TBoxes, as well as the notion of
their satisfaction is defined below, assuming that a,b ∈ NI,
A ∈ NC, r ∈ NR, s, t ∈ Nsp

R, andC,D are ZOIQ-concepts.

Axiom α I |= α, if
C ⊑ D, s ⊆ t CI ⊆ DI , sI ⊆ tI TBox T
A(a), r(a,b) aI ∈ AI , (aI ,bI) ∈ rI ABox A
a ≈ b, ¬α aI = bI , I ̸|= α

Note that ABoxes do not involve complex concepts. Other-
wise, data complexity of ALCreg is already EXPT IME-hard.
A TBox is in Scott’s normal form if its axioms have the form:
A ≡ B, A ≡ ¬B, A ≡ {o}, A ≡ B ⊓ B′, r = s,

A ≡ ∃Aq,q′ .⊤, A ≡ ∃r .Self, A ≡ (≥n r).⊤
for A,B,B′ ∈ NC∪{⊤,⊥},o ∈ NI, r ∈ NR, s ∈ Nsp

R, n ∈
N, and NFAs Aq,q′ . Here I |= C ≡ D iff CI = DI . W.l.o.g.
we focus only on KBs with TBoxes as above [Appendix B].
Queries. We focus on conjunctive queries (CQs) defined by
the grammar: q ::= A(x ) | r(x , y) | q ∧ q , where A ∈ NC,
r ∈ NR, and x , y being either variables or individual names.
An interpretation I satisfies a query q (I |= q), if there is an
assignment η (a match, defined as expected), mapping vari-
ables to domain elements and individual names a ∈ NI to the
corresponding aI , under which q evaluates to true. A CQ is
rooted if it has at least one individual name and its query graph
is connected. A KB entails q if every of its models satisfies q .
Problems. Let DL be a logic, and Q be a class of queries.
In the satisfiability problem we ask if a given DL-KB K :=
(A, T ) has a model. In the (rooted) query entailment problem
we ask if a given DL-KB K entails a (rooted) query q ∈ Q.
We distinguish two ways of measuring the size of the input,
which gives rise to combined and data complexity. In the first
case all the components A, T and q equally contribute to the
size of the input. In the second case, T and q are assumed to
be fixed beforehand, and thus their size is treated as constant.
Forests. We adapt the notion of quasi-forests [Calvanese et
al., 2009] under the standard set-theoretic reconstruction of
the notion of an N-forest as a prefix-closed subset of N+ with-
out ε. Our notion is stricter than the original definition by Cal-
vanese et al. but the differences are negligible [Appendix C].
Definition 1. Let NA

I and NT
I be finite subsets of NI,Root ∈

NC, and child , edge, id ∈ NR. An interpretation I is an
(NA

I ,N
T
I )-quasi-forest if its domain ∆I is an N-forest,

RootI = ∆I∩N = {aI | a∈NI} = {aI | a∈(NA
I ∪NT

I )},
childI = {(d, d·n) | d, d·n ∈ ∆I , n ∈ N},
edgeI =

⋃
r∈NR

rI ∪ (r−)I ,

idI = {(d, d) | d ∈ ∆I},
and for all roles rI and all pairs (d, e) ∈ rI at least one of

the conditions hold: (i) both d and e belong to RootI , (ii) one
of d or e is equal to oI for some name o ∈ NT

I , (iii) (d, e) ∈
idI ∪ childI ∪ (child−)I . For convenience, we refer to pairs
(d, e) ∈ rI satisfying the second condition as backlinks, and
the ones satisfying (d, e) ∈ idI as self-loops. The clearing of
I is the restriction of I to RootI . A quasi-forest is N-bounded
if every domain element has at most N child -successors. ◀

The names from NT
I are dubbed nominals, and will be usu-

ally denoted with decorated letters o. Their interpretations are
usually referred as nominal roots. Throughout the paper we
employ suitable notions from graph theory such as node, root,
child, parent, or descendant, defined as expected in accordance
with ∆I , childI and RootI . For instance, d is a descendant
of c whenever (c, d) ∈ (childI)+ holds. Consult Example 1.



Example 1. An example 3-bounded ({a,b}, {o, ö, ǒ})-quasi-
forest I is depicted below. For readability we have omitted the
interpretations of Root, child , id , and edge .
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The element 1 has a unique child 10. The roots of I are 0, 1,
2, and 3. The nominal roots are 1,2, and 3. The pairs (1, 001),
(2000, 1), and (3, 20) are example backlinks. ◀

A quasi-forest model of a ZOIQ-KB K := (A, T ) is an
(ind(A), ind(T ))-quasi-forest satisfying K, where ind(A) and
ind(T ) are sets of all individual names from A and T . The re-
sults by Calvanese et al. [2009, Prop. 3.3] and Ortiz [2010,
L. 3.4.1, Thm. 3.4.2] advocate the use of quasi-forest models.

Lemma 1. Let K:=(A, T ) be a KB of ZOQ, ZOI , or ZIQ.
Then is an integer N (exponential w.r.t. |T |) such that:
(I) K is satisfiable iff K has an N-bounded quasi-forest model,
and (II) for all (unions of) CQs q , we have K ̸|= q iff there
exists an N-bounded quasi-forest model of K violating q . ◀

The quasi-forest (counter)models of ZOIQ-KBs are canoni-
cal if they are N-bounded for the N guaranteed by Lemma 1.
Hence, for the deciding the satisfiability and query entail-
ment over ZIQ, ZOQ, and ZOI, only the class of canoni-
cal quasi-forest models is relevant. We say that a ZOIQ-KB
is quasi-forest satisfiable whenever it has a canonical quasi-
forest model. The quasi-forest satisfiability problem is defined
accordingly. We have [Ortiz, 2010, L 3.4.1, Thm. 3.4.2] that:

Lemma 2. The quasi-forest satisfiability problem for ZOIQ-
KBs is EXPT IME-complete (w.r.t. the combined complexity).
In particular, the satisfiability of ZIQ, ZOQ, and ZOI-KBs
is EXPT IME-complete (w.r.t. the combined complexity). ◀

3 Basic Paths in Quasi-Forests
The main goal of this section is to provide a characterisation
of how paths in quasi-forests look like and how they can be
decomposed into interesting pieces. A path ρ in I is nameless
if it does not contain any named elements (i.e. no element of
ρ has the form aI for some a ∈ NI). Similarly, ρ is called an
a-subtree path if all the members of ρ are descendants of aI .
In quasi-forests, nameless paths are precisely subtree paths.
Definition 2. Let I be an (NA

I ,N
T
I )-quasi-forest, a,b ∈

(NA
I ∪NT

I ), o, ö ∈ NT
I , and ρ be a path in I. We call ρ:

• (a,b)-direct if ρ = aI ·bI .
• a-inner if ρ = aI ·ρ̄ for some a-subtree path ρ̄.
• a-roundtrip if ρ = aI ·ρ̄·aI for some a-subtree path ρ̄.
• (a,o)-inout if ρ = ρ̄·oI for some a-inner path ρ̄.
• (a,o)-outin if the reverse of ρ is (a,o)-inout.
• (a,o)-inner if ρ = oI ·ρ̄ for some a-subtree path ρ̄.
• (a,o, ö)-bypass if ρ = oI ·ρ̄·öI for an a-subtree path ρ̄.

If ρ falls into one of the above seven categories, we call ρ basic.
Paths ρ := ρ̄·d for a nameless ρ̄ and a root d are called outer.
Finally, ρ is decomposable whenever there exists a growing
sequence of indices i1 < i2 < . . . < ik with i1=1 and ik=|ρ|
such that for all j < k the path ρij . . . ρi(j+1)

is basic. ◀
By a careful analysis of Definitions 1–2 we can show:

Observation 1. Take I , a, b, ρ as in Definition 2. If ρ has the
form aI ·ρ̄ or aI ·ρ̄·bI for a nameless ρ̄ then ρ is basic. ◀

We can now employ Observation 1 and invoke the induction
over the total number of named elements in ρ to establish:
Lemma 3. If I is a quasi-forest then every path starting from
a named element is decomposable. ◀

Basic paths are expressible in ZOIQ by means of regular
expressions with tests. Their construction involves nominal
tests {a}?, “descendant ofa” tests ∃(child−)+.{a}?, and role
names edge, child . For instance, all (a,o, ö)-bypasses match:

{o}? edge
(
[∃(child−)+.{a}]? edge

)+ {ö}?
Lemma 4. Let τ be a “category” of paths from Def. 2 (includ-
ing nameless and outer paths). There is an NFA Aτ (using
testing involving only individual names mentioned in τ ) that
realises for all quasi-forests I exactly the paths of the cate-
gory τ . Moreover, for any regular language L (given as an
NFA B or a reg-exp R) there exists an NFA (B ▷◁ Aτ ) (resp.
(R ▷◁ Aτ )) of size polynomial in |B| (resp. |R|) that realises
precisely the paths in I of category τ realising B (resp. R).◀

a b
a a a

o

a

o
o

a

o

a

ö
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Figure 1: Basic paths and their corresponding decorations in quasi-forests, given in order of their introduction in Def. 2, 3, and 4.



4 Automata Decorations
Overview. We use Lem. 3 to devise a method of decorating
the clearing of I with extra information about the basic paths
realising an NFA A. This helps to decide the satisfaction of
concepts ∃A.⊤ in quasi-forests in a modular way, indepen-
dently for the clearing of a quasi-forest and its subtrees. Note:
Fact 1. Let d ∈ (∃A.⊤)I for an NFA A and an (NA

I ,N
T
I )-

quasi-forest I . There is an A-path ρ starting from d s.t.: (a) d
is a root, (b) ρ is nameless, or (c) ρ = ρ̄·ρ̂ for some outer ρ̄.◀

Given an NFA A with the state set Q, by the A reachability
concepts C⇝(A) we mean the set {ReachAq,q′ | q, q′ ∈ Q}.
Ideally, ReachAq,q′ should label precisely the roots of quasi-
forests satisfying ∃Aq,q′ .⊤. With Lemma 5 we explain the de-
sired “modularity” condition. It simply says that if ReachAq,q′ -
concepts are interpreted as desired, then the verification of
whether an element d satisfies ∃Aq,q′ .⊤ boils to (i) testing
whether d is labelled with ReachAq,q′ if d is a root, or (ii) test-
ing existence of a certain path which fully contained in the
subtree of d, possibly except the last element which can also
be the root of d or a nominal. We rely on the NFAs Anmls and
Aoutr from Lemma 4 that detect nameless and outer paths.
Lemma 5. Let A be an NFA with the set of states Q, and let
I be an (NA

I ,N
T
I )-quasi-forest that interprets all ReachAq,q′-

concepts from C⇝(A) equally to Root⊓∃Aq,q′ .⊤. Then for
all states q, q′ ∈ Q, the concept ∃Aq,q′ .⊤ is interpreted in I
equally to the union of concepts:
• Root ⊓Reachq,q′ , • ¬Root ⊓ ∃

(
Aq,q′ ▷◁ Anmls

)
.⊤, and

• ¬Root ⊓
⊔

q̂∈Q ∃
(
Aq,q̂ ▷◁ Aoutr

)
.
(
Root ⊓ Reachq̂,q′

)
. ◀

Let rel(NT
I ,Aq,q′) denote the above concept union, called the

NT
I -relativisation of ∃Aq,q′ .⊤. We say that d ∈ ∆I virtu-

ally satisfies ∃Aq,q′ .⊤ whenever d satisfies rel(NT
I ,Aq,q′).

Thus, Lemma 5 tells us that under some extra assumptions the
notion of satisfaction and virtual satisfaction coincide.
Decorations. In what follows, we define ZOIQ-concepts
and roles, dubbed automata decorations, intended to guaran-
tee the desired interpretation of the reachability concepts.
Definition 3. Given an NFA A with the state-set Q, the set of
(NT

I ,A)-concepts C(NT
I ,A) is composed of the following

concept names (for all states q, q′ ∈ Q and nameso, ö ∈ NT
I ):

DA
q,q′ , I

A
q,q′ , RT

A
q,q′ , IO

A,o
q,q′ , OIA,o

q,q′ , I
A,o
q,q′ , By

A,o,ö
q,q′ .

A quasi-forest I properly interprets C(NT
I ,A) ifCI = {aI |

a ∈ NI, cond(C,a)} for concepts and conditions as below.

conc. C cond(C,a) : “There is a path ρ |= Aq,q′ s.t.

DA
q,q′ ρ is (a,b)-direct for some bI”.

IAq,q′ ρ is a-inner”.
RTA

q,q′ ρ is an a-roundtrip”.
IOA,o

q,q′ ρ is an (a,o)-inout”.
OIA,o

q,q′ ρ is an (a,o)-outin”.
IA,o
q,q′ ρ is (a,o)-inner”.
ByA,o,ö

q,q′ ρ is an (a,o, ö)-bypass”.

The size of C(NT
I ,A) is clearly polynomial in |A|·|NT

I |. ◀
The concepts from C(NT

I ,A) “bookkeep” the informa-
tion about relevant basic paths realising NFA starting from a
given root. Throughout the paper, we employ a fresh individ-
ual name (the ghost variable), to stress that the constructed
concepts are independent from NA

I . With C[ /a] we denote
the result of substituting a for all occurrences of in C. Rely-
ing on NFAs from Lemma 4, we construct ZOIQ-concepts
that describe the intended behaviour of (NT

I ,A)-concepts.
For instance, RTA

q,q′ is defined as ∃
(
Aq,q′ ▷◁ A -roundtrip

)
.⊤.

Lemma 6. For all C from C(NT
I ,A), there exists a ZOIQ-

concept desc(C) (of size polynomial w.r.t. |A|·|NT
I |) that

uses only individual names from NT
I ∪{ } with the property

that “for all (NA
I ,N

T
I )-quasi-forests I and a ∈ NI we have:

..cond(C,a) is satisfied in I iff aI is in (desc(C)[ /a])I .”◀

We next invoke Lemma 6 to rephrase the notion of proper
interpretation of C(NT

I ,A) in the language of satisfaction of
ZOIQ-concepts by the clearings of quasi-forests. We have:
Fact 2. Let comdsc(NT

I ,A) := ⊔C∈C(NT
I ,A)(C↔desc(C))

An (NA
I ,N

T
I )-quasi-forest I properly interprets C(NT

I ,A)

iff aI ∈ comdsc(NT
I ,A) [ /a]I for all a ∈ (NA

I ∪NT
I ). ◀

The information provided by the proper interpretation of
(NT

I ,A)-concepts is not sufficient to ensure the proper in-
terpretation of the reachability concepts by the clearings of
quasi-forests. The main reason is that the concepts from
(NT

I ,A) concern only about the basic paths. As some au-
tomata constraints cannot be satisfied by basic paths, e.g.
∃({o}?edge{ö}?edge{ǒ}?).⊤, more work needs to be done.
To be able to compose basic paths into bigger pieces, another
“layer of decoration” is needed: this time with fresh roles rep-
resenting the endpoints of basic paths from Definition 2, as
summarised by Figure 1. For instance, whenever there is an
(a,o)-inout ρ realising Aq,q′ in a quasi-forest I, the roots aI

and oI are going to be linked by the role ioA,o
q,q′ (and simi-

larly for other categories of basic paths that start and end in
roots). Such roles can be seen as “aggregated paths”. The “ag-
gregated paths” will be unfolded afterwards into real paths,
and the satisfaction of automata constraints by them will be
verified by means of the guided automata (introduced in Def-
inition 5). However, there exist cases of basic paths where
the last element is unnamed, more precisely (a,o)-inner and
a-inner paths. In their cases we treat aI as the “virtual end”
of ρ (and hence we link aI and oI). To ensure that such an
“aggregated path” can no longer be extended, we decorate the
corresponding role with the dead-end symbol þ. When con-
structing the guided automaton, the roles carrying þ will lead
to states with no outgoing transitions (dead ends).
Definition 4. Given a PSA A with the state-set Q, the set of
(NT

I ,A)-roles R(NT
I ,A) is composed of the following role

names (for all states q, q′ ∈ Q and names o, ö ∈ NT
I ):

dA
q,q′ , i

A
q,q′

þ

, rtAq,q′ , io
A,o
q,q′ , oi

A,o
q,q′ , i

A,o
q,q′

þ

, byA,o,ö
q,q′ .

An (NA
I ,N

T
I )-quasi-forest I properly interprets R(NT

I ,A)
if its roles consist of pairs p of roots of I as indicated below.



Role name r Pair p Condition

dA
q,q′ (aI ,bI) aIbI |= Aq,q′

iA
q,q′

þ

(aI ,aI) aI is in (IAq,q′)
I

rtAq,q′ (aI ,aI) aI is in (RTA
q,q′)

I

ioA,o
q,q′ (aI ,oI) aI is in (IOA,o

q,q′ )
I

oiA,o
q,q′ (oI ,aI) aI is in (OIA,o

q,q′ )
I

iA,o
q,q′

þ

(oI ,aI) aI is in (IA,o
q,q′ )

I

byA,o,ö
q,q′ (oI , öI) (ByA,o,ö

q,q′ )I is non-empty

The size of R(NT
I ,A) is polynomial w.r.t. |A|·|NT

I |. ◀

We stress that we interpreted role names from R(NT
I ,A)

based on the concepts from C(NT
I ,A) rather than on the ex-

istence of certain paths realising A. This allows us to verify
their proper interpretation, independently from the verifica-
tion of the proper interpretation of C(NT

I ,A)-concepts. The
roles from R(NT

I ,A) can be seen as “shortcuts” aggregating
fragments of runs of A. To retrieve the runs, we invoke the
A-guided automaton that operates solely on such “shortcuts”.
Definition 5. For an NFA A with the state-set Q, we define
the A-guided NFA B. The set of states Q′ of B consists of all
q ∈ Q and their fresh copies qþ. The transitions in B have the
form (q, r , q′) for all q, q′ ∈ Q′, and all r from R(NT

I ,A)
labelled with the ordered pair (q, q′). By design, all states
decorated with þ have no outgoing transitions. ◀

The guided automaton B is of size polynomial in |A|·|NT
I |,

and it traverses only the clearings of quasi-forests. The follow-
ing Lemma 7 reveals the desired property of B.
Lemma 7. Let A be an NFA with an A-guided NFA B,
and I be an (NA

I ,N
T
I )-quasi-forest that properly inter-

prets C(NT
I ,A) and R(NT

I ,A). For all states q, q′ of A:
(Root⊓∃Aq,q′ .⊤)I = (Root⊓ (∃Bq,q′ .⊤⊔∃Bq,q′

þ
.⊤))I .◀

Its proof relies on either (a) shortening a path ρ |= Aq,q′

to its subsequence composed of all named elements, or (b)
replacing any two consecutive elements in ρ |= Bq,q′ with the
corresponding paths guaranteed by the roles from Def. 4.
Example 2. Let ρ := aI ·oI ·ρ1·oIρ2·öI ·ρ3 |= Aq1,q5 be a
path in a quasi-forest I (depicted below), and A be an NFA
with states indicated by decorated q. Suppose (i) aI ·oI |=
Aq1,q2 is (a,o)-direct, (ii) oI ·ρ1·oI |= Aq2,q3 is an o-
roundtrip, (iii) oIρ2·öI |= Aq3,q4 is an (b,o, ö)-bypass, and
(iv) öI ·ρ3 |= Aq4,q5 is (c, ö)-inner. So, aI ∈ (∃Aq1,q5 .⊤)I .

q1 ⇝ q2

q2 ⇝ q3

q3 ⇝ q′

q′⇝ q′′

q′′ ⇝ q4
q4 ⇝ q̂

q̂⇝ q5

a o b ö c

a odA
q1,q2

ortAq2,q3
öbyA,o,ö

q2,q3
ciA,ö

q4,(q5)þ

Consider now the A-guided B, and observe that aI is in
(∃Bq1,(q5)þ .⊤)I , as witnessed by the path aI ·oI ·oI ·öI ·cI

and the word dA
q1,q2 ·rt

A
q2,q3 ·by

A,o,ö
q2,q3 ·i

A,ö
q4,(q5)þ

. ◀

With the proviso that a quasi-forest I properly interprets
both C(NT

I ,A) and R(NT
I ,A), Lemma 7 guarantees the

desired interpretation of reachability concepts ReachAq,q′ .

Definition 6. Let I,A,B be as in Lemma 7, and Q be the
state-set of A. The set of A-reachability-concepts C⇝(A)

is {ReachAq,q′ | q, q′ ∈ Q}. I properly interprets C⇝(A) if
(ReachAq,q′)

I = (Root ⊓ (∃Bq,q′ .⊤ ⊔ ∃Bq,q′
þ
.⊤))I

for all q, q′ ∈ Q. We call I virtually (NT
I ,A)-decorated if it

properly interprets R(NT
I ,A), and C⇝(A), and (NT

I ,A)-
decorated if it additionally properly interprets C(NT

I ,A). ◀

Relying on Lemma 5 and Lemma 7 we can show:

Lemma 8. Let A be an NFA, and let I be an (NT
I ,A)-

decorated (NA
I ,N

T
I )-quasi-forest. For all elements d in I,

if d virtually satisfies ∃Aq,q′ .⊤ then d satisfies ∃Aq,q′ .⊤.

We conclude by showing an algorithmic result concerning
(virtually) (NT

I ,A)-decorated quasi-forests. It exploits the
fact that the regular path queries over databases can be evalu-
ated in PT IME [Mendelzon and Wood, 1995, Lemma 3.1].

Lemma 9. Let I be a finite interpretation with RootI = ∆I ,
and A be an NFA. We can then verify in time polynomial w.r.t.
(|A|·|I|) whether I is virtually (NT

I ,A)-decorated. ◀

Lemma 9 tells us that if I is the clearing of some (NA
I ,N

T
I )-

quasi-forest J that properly interprets C(NT
I ,A)-concepts,

then we can verify if J is (NT
I ,A)-decorated in PT IME.

5 Counting Decorations
We want to “relativise” number restrictions in the presence of
nominals, so that in the suitably decorated quasi-forest mod-
els, the satisfaction of concepts of the form (≥n r).⊤ by the
clearing can be decided solely based on the decoration of the
clearing. Observe that for a given a root d of a quasi-forest I
and a role name r , the set of r -successors of d can be divided
into three groups: (a) the clearing, (b) the children of d, and (c)
the descendants of roots (but only in case d is a nominal root).
To relativise counting, we decorate each element of the clear-
ing with the total number of their r -successors in categories
(a) and (b), as well as the information, for each nominal o, on
(c) how many of their descendants are r -successors of o.

Definition 7. Fix r ∈ NR,n ∈ N, and a finite NT
I ⊆ NI. The

set of (NT
I ,≥n r)-counting-concepts C#(N

T
I ,≥n r) con-

sists of concept names Clrngrt ,Chldrt ,Desr ,ot foro ∈ NT
I and

thresholds t of the form “=m” for 0 ≤ m ≤ n or “≥n+1”.
All integers appearing in thresholds are encoded in binary.
An (NA

I ,N
T
I )-quasi-forest I is (≥n r)-semi-decorated if all

roots d have unique thresholds tdcl, t
d
ch, and tdo for all o ∈ NT

I ,
for which d satisfies the concept

Clrngrtdcl
⊓ Chldrtdch

⊓ ⊔o∈NT
I
Desr ,o

tdo
.

The above concepts are called the (NT
I ,≥n r)-descriptions

of d. Note that their size is polynomial w.r.t. |NT
I |· log2(n).◀

Similarly to the previous section, we next introduce the notion
of proper satisfaction. Intuitions regarding Definition 7 are
provided in Example 3. We encourage the reader to read it.



Definition 8. An (NA
I ,N

T
I )-quasi-forest I properly inter-

prets C#(N
T
I ,≥n r) if I is (≥n r)-semi-decorated and for

all roots aI of I and o ∈ NT
I , the root aI belongs to:

• (Clrngrt )I iff |{d: d ∈ RootI , (aI , d) ∈ rI}| t,
• (Chldrt )I iff |{d: (aI , d) ∈ rI , (aI , d) ∈ childI}| t,
• (Desr ,ot )I ifif |{d: (oI , d) ∈ rI , (aI , d) ∈ (child+)I}| t.
In this case we also say that I is (≥n r)-decorated. ◀

Based on the above definitions, we can easily express the in-
tended behaviour of C#(N

T
I ,≥n r)-concepts in ZOIQ, us-

ing (=n r).C as an abbreviation of (≥n r).C⊓¬(≥n+1 r).C.
In the most difficult case, we describe (Desr ,o=42)

I with:

{ } ⊓ ∃edge∗.
(
{o} ⊓ (=42 r).[∃(child−)+.{ }]

)
.

Lemma 10. For every (NT
I ,≥n r)-description C there is a

ZOIQ-concept desc(C) (of size polynomial w.r.t. |C|) that
uses only individual names from NT

I ∪ { } for a fresh , s.t.
for all (NT

I ,≥n r)-semi-decorated (NA
I ,N

T
I )-quasi-forests

I: I is (≥n r)-decorated iff for every root aI of I and its
(NT

I ,≥n r)-description C we haveaI ∈ (desc(C)[ /a])I .◀

Example 3. Let us consider an ({a,b}, {o})-quasi-forest I
sketched below and a role name r depicted as a green ar-
row. As suggested by the drawing, (i) aI has no r -successors
among the clearing of I and precisely one r -successor among
its children, (ii) oI has two r -successors among the clearing
of I, it has precisely two r -successor among its children, one
r -successor that is a descendant ofaI , and three r -successors
that are descendants of bI , and (iii) bI has precisely one r -
successor inside the clearing of I and no other r -successors.

a o b
Clrngr=0

Chldr
=1

Desr,o=1

Desr,o=2

Chldr
=2

Clrngr=2

Clrngr=1

Chldr
=0

Desr,o≥2+1

Suppose now that I is ({o},≥2 r)-decorated. This implies:
• aI ∈ (Clrngr=0 ⊓ Chldr=1 ⊓Desr ,o=1)

I .
• oI ∈ (Clrngr=2 ⊓ Chldr=2 ⊓Desr ,o=2)

I .
• bI ∈ (Clrngr=1 ⊓ Chldr=0 ⊓Desr ,o≥2+1)

I . ◀

Lemma 10 rephrases the notion of proper satisfaction in the
language of ZOIQ-concepts. Call a quasi-forest I virtually
(NT

I ,≥n r)-decorated if I is (NT
I ,≥n r)-semi-decorated

and properly interprets concepts of the form Clrngrt . We have:
Lemma 11. For a finite interpretation I we can test in polyno-
mial time w.r.t. |I| if I is virtually (NT

I ,≥n r)-decorated. ◀

We use the numbers appearing in (NT
I ,≥n r)-descriptions

labelling the roots of (≥n r)-decorated quasi-forests to de-
cide the satisfaction of (≥n r).⊤. We first describe it with
an example. Suppose that we want to verify if a non-nominal
root d from I satisfies (≥3 r) based on its labels Clrngr=1
and Chldr≥3+1. It suffices to check if 1 + (3 + 1) is at least 3.
For the nominals roots o, we additionally take all the concepts
Desr ,ot into account, that are spread across the whole clearing.

An element d from a finite I virtually satisfies (≥n r).⊤,
whenever d satisfies (≥n r).⊤ in every (≥n r)-decorated
(NA

I ,N
T
I )-quasi-forest with the clearing equal to I . We show:

Lemma 12. For a finite virtually (NT
I ,≥n r)-decorated in-

terpretation I with ∆I = RootI and d ∈ RootI we can test
in time polynomial in |I| if d virtually satisfies (≥n r).⊤. ◀

6 Elegant Models and Their Summaries
In this section we benefit from various decorations introduced
in the previous sections to design a succinct way of represent-
ing quasi-forest models of ZOIQ-KBs, dubbed summaries.
From now on we will focus only on KBs in Scott’s normal
form (i.e. with TBoxes in Scott’s normal form) and on certain
class of elegant models introduced in Definition 9.
Definition 9. Let K := (A, T ) be a ZOIQ-KB in Scott’s
normal form and let I be its model.
We call I elegant if it satisfies all the conditions below:

(i) I is a canonical quasi-forest model of K,
(ii) I is (ind(T ),≥n r)-decorated for all number restric-

tions (≥n r).⊤ from T ,
(iii) I is (ind(T ),A)-decorated for all automata A from T ,
(iv) I interprets all concept and role names that do not ap-

pear in K, the set {Root, edge, child , id}, and in men-
tioned decorations, as the empty set. ◀

Invoking the normal form lemma [Appendix A], Lemma 1, as
well as the definitions of proper interpretation, we obtain:
Lemma 13. For every ZOIQ-TBox T we can compute in
PT IME a ZOIQ-TBox T ′ in Scott’s normal form that possi-
bly such that for every ABox A we have: (i) (A, T ) is quasi-
forest satisfiable iff (A, T ′) has an elegant model, and (ii) for
every UCQ q using only concepts and roles present in T we
have that (A, T ) has a canonical quasi-forest model violat-
ing q iff (A, T ′) has an elegant model violating q . ◀

To-be-defined summaries are nothing more than ABoxes rep-
resenting the full descriptions of clearings of elegant models.
Definition 10. Let K := (A, T ) be a ZOIQ-KB in Scott’s
normal form. A K-summary S is any ⊆-minimal ABox satis-
fying, for all names a,b ∈ ind(K), all the conditions below.

(I) S contains either a ≈ b or ¬(a ≈ b).
(II) For all concept names A appearing in K we have that S

contains either A(a) or ¬A(a).
(III) For all NFA A from K, and all concept names A from

C(ind(T ),A) ∪C⇝(A), S contains A(a) or ¬A(a).
(IV) For all role names r appearing in K we have that S

contains either r(a,b) or ¬r(a,b).
(V) For all NFA A from K, and all role names r from

R(ind(T ),A), the ABox S contains r(a,b) or ¬r(a,b).
(VI) For all number restrictions (≥n r).⊤ from K, and for

all o ∈ ind(T ), there are thresholds tacl, t
a
ch, and tao in

{=m,≥n+1 | 0 ≤ m ≤ n} for which S contains
Clrngrtacl

(a), Chldrtach
(a), and Desr ,otao

(a).

(VII) Root(a) ∈ S and edge(a,b) ∈ S .
In the case when only a ZOIQ-TBox T is given, we define
T -ghost-summaries as ({ ≈ }, T )-summaries. ◀



Invoking the previously-established bounds on the number
and sizes of concepts and roles occurring in decorations (i.e.
the ones stated at the end of Definitions 3, 4, and 7), we infer:

Lemma 14. Let K and T be, respectively, a ZOIQ-KB and a
ZOIQ-TBox, both in Scott’s normal form. We have that every
K-summary is of size polynomial in |K|. Moreover, there are
exponentially (in |T |) many T -ghost-summaries and each of
them is of size polynomial w.r.t. |T |. ◀

While a K-summary can be easily extracted from the clearing
of any elegant model of K, the converse direction requires two
extra assumptions, dubbed clearing- and subtree-consistency.

7 Consistent Summaries
The notion of clearing-consistency ensures that a given sum-
mary S is a good candidate for the clearing of some elegant
model of K, namely (i) S does not violate “local” constraints
from K, (ii) S is virtually decorated for decorations involving
number restrictions and automata, and that (iii) every element
from S virtually satisfies all concepts involving automata or
number restrictions from K. Below, IS denotes the minimal
interpretation that corresponds to and satisfies the ABox S .

Definition 11. Let K := (A, T ) be a ZOIQ-KB in Scott’s
normal form, and let S be a K-summary. Let Tloc be the TBox
composed of all GCIs from T except for the ones concern-
ing NFAs and number restrictions. We say that S is clearing-
consistent if IS satisfies (A, Tloc), and:
• For all GCIs A ≡ ∃Aq,q′ .⊤ from T : (i) IS is virtually
(ind(T ),A)-decorated, and (ii) for alla ∈ ind(K), A(a) ∈ S
iff a virtually satisfies ∃Aq,q′ .⊤ in IS .
• For all GCIs A ≡ (≥n r).⊤ from T : (i) IS is virtually
(ind(T ),≥n r)-decorated, and (ii) for all a ∈ ind(K), we
have that A(a) ∈ S iff a virtually satisfies (≥n r).⊤ in IS . ◀

Based on Lemma 9 and Lemma 12 we can conclude that
deciding clearing consistency can be done in PT IME.

Lemma 15. For K and S as in Def. 11 we can decide in time
polynomial w.r.t. |K| · |S| whether S is clearing consistent.◀

The second required notion is the subtree-consistency. To
decide whether a given summary S extends to a model of K,
we need to check, for all elements d of S, the existence of
a suitable forest satisfying (a relativised) K and fulfilling all
the premises given by the decorations of d. This is achieved
by crafting a suitable ZOIQ-KB and testing whether it has a
quasi-forest model of a suitably bounded branching. To make
such a KB dependent only on the TBox, we are going to use
the ghost variable in place of the intended element d.

Definition 12. Let T be a ZOIQ-TBox in Scott’s normal
form and S be a T -ghost-summary. S is T -subtree-consistent
if the ZOIQ-KB KS, := (S, Tloc∪Taut∪Tcnt) is quasi-forest
satisfiable, where Tloc is as in Definition 11 and:
• Taut consists of { } ⊑ comdsc(ind(T ),A) and A ≡
rel(ind(T ),Aq,q′) for all GCIs A ≡ ∃Aq,q′ .⊤ from T .
• Tcnt consists of the GCIs ¬Root⊓A ≡ ¬Root⊓ (≥n r).⊤
as well as { } ⊑ desc

(
Chldrtch

⊓ ⊔o∈ind(T ) Desr ,o
to

)
, for the

unique concepts Chldrtch
, Desr ,o

to
satisfied by in IS , for all

GCIs A ≡ (≥n r).⊤ appearing in T . ◀

The crucial property concerning the notion of T -subtree-
consistency as well as the set ST of all T -subtree-consistent
T -ghost-summaries is provided next. Its proof relies on the
bounds on the concepts from Lemma 5, Lemma 6, and Defini-
tion 7, as well as the exponential time algorithm for deciding
quasi-forest-satisfiability of ZOIQ-KBs from Lemma 2.
Lemma 16. For a ZOIQ-TBox T in Scott’s normal form,
one can decide in time exponential w.r.t. |T | if a given T -
ghost-summary is T -subtree-consistent. Moreover, the set ST
of all T -subtree-consistent T -ghost-summaries has size expo-
nential in |T | and is computable in time exponential in |T |.◀

We now lift the definition of subtree-consistency from ghost
summaries to arbitrary K-summaries by producing a ghost
summary per each individual name a mentioned in K. The
idea is simple: we first restrict S to nominals and the selected
namea, and then replaceawith the ghost variable (we must
be a bit more careful if a is itself a nominal). This produces
a ghost summary, for which the notion of subtree-consistency
is already well-defined. The main benefit of testing subtree-
consistency of such a summary is that this guarantees the ex-
istence of a quasi-forest containing a subtree rooted at that
we can afterwards “plug in” to a in S in order to produce a
full model of K from S . This is formalised next.
Definition 13. Let T and ST be as in Lemma 16. For a
ZOIQ-KB K := (A, T ) and a K-summary S we say that S
is consistent if S is clearing-consistent and for every name
a ∈ ind(K) the (T ,S,a)-ghost-summary Sa belongs to ST .
Sa is defined as the sum of (i) S restricted to ind(T ), (ii) S
restricted to ind(T ) ∪ {a} with all occurrences of a replaced
with , and (iii) {a ≈ , ≈ a} in case a ∈ ind(T ). ◀

It can be readily verified that all K-summaries constructed
from elegant models of ZOIQ-KBs K := (A, T ) are consis-
tent. For the opposite direction, we define a suitable notion of a
merge in order to “combine” a clearing-consistent summary S
with relevant subtrees provided by the subtree-consistency of
(T ,S,a)-ghost-summaries for all a ∈ ind(K). The interpreta-
tion constructed in this way becomes an elegant model of K.
Lemma 17. A ZOIQ-KB in Scott’s normal form is quasi-
forest satisfiable iff there exists a consistent K-summary. ◀

8 Deciding Existence of Quasi-Forest Models
Based on Lemma 17 and all the other lemmas presented in the
previous section, we can finally design an algorithm for decid-
ing whether an input ZOIQ-KB is quasi-forest satisfiable.

Algorithm 1: Quasi-Forest Satisfiability in ZOIQ
Input: A ZOIQ-KB K := (A, T ).
Output: True iff K is quasi-forest satisfiable.

1 Turn T into Scott’s normal form. // L. 13.
2 Compute the set ST . // L. 16.
3 Guess a K-summary S . // L. 14.
4 Return False if S is clearing-consistent. // L. 15.
5 Foreach a ∈ ind(K) do compute the (T ,S,a)-ghost-

-summary Sa and return False if Sa ̸∈ ST .
6 Return True.



Lemma 18. Algorithm 1 returns True if and only if the in-
put ZOIQ-KB K has an elegant model. Moreover, there ex-
ist polynomial function p and an exponential function e for
which Algorithm 1 can be implemented with a nondeterminis-
tic Turing machine of running time bounded, for every input
K := (A, T ), by e(|T |) + p(|K|) + p(|K|) · e(|T |). ◀

Suppose now that a TBox T is fixed and only an ABox A is
given as the input. Then the first two steps of Algorithm 1
are independent from the input. The same holds for the ver-
ification of whether a given ghost summary belongs to the
pre-computed set ST . The desired algorithm is given below.

Algorithm 2: Deciding Quasi-Forest Satisfiability in
ZOIQ w.r.t. Data Complexity

Input: An ABox A.
Parameters: ZOIQ-TBox T already in Scott’s

normal form and a pre-computed set ST .
Output: True iff K := (A, T ) is quasi-forest sat.

1 Guess a K-summary S . // NP in |K|, L. 14.
2 Return False if S is clearing-consistent.

// PTI M E w.r.t. |K|·|S| by L. 15.
3 Foreach a ∈ ind(K) do compute the (T ,S,a)-ghost-

-summary Sa and return False if Sa ̸∈ ST .
// PTI M E w.r.t. |K| · (|K|+|ST |)

4 Return True.

We employ Lemma 18, and based on Algorithm 2 we get:

Theorem 1. For every ZOIQ-TBox T , there is an NP pro-
cedure (parametrised by T ) that for an input ABox A decides
if the ZOIQ-KB K := (A, T ) is quasi-forest satisfiable. ◀

Recall that the maximal decidable fragments of ZOIQ
have the elegant model property (Lemma 13). We conclude:

Theorem 2. The satisfiability problem for ZIQ, ZOQ, and
ZOI is NP-complete w.r.t. the data complexity. ◀

For expressive logics from the SR family, the logical core
of OWL2, it is known [Calvanese et al., 2009, Prop. 5.1] that
any TBox in SRIQ, SROQ or SROI can be rewritten into
ZIQ, ZOQ or ZOI . Hence, we reprove the following result:

Corollary 1. The satisfiability problem for SRIQ, SROQ,
and SROI is NP-complete w.r.t. the data complexity. ◀

9 Application: Entailment of Rooted Queries
We adapt Algorithm 1 to derive coNEXPT IME-completeness
of the entailment problem of (unions of) rooted conjunc-
tive queries over ZIQ-KBs, generalising previous results on
SHIQ [Lutz, 2008b, Thm. 2]. We focus on the dual prob-
lem: “Given a (union of) rooted CQs q and ZIQ-KB K :=
(A, T ), is there a model of K that violates q?” and show
its NEXPT IME-completeness. As we work with ZIQ, by
Lemma 13 we can assume that the input KB K is in Scott’s
normal form, and the intended model I violating q is elegant
(in particular, is N-bounded for an N exponential in |T |). The
crucial observation is that whenever q matches I, all the el-
ements from the image of a match are at the depth at most
|q | (as q has at least one individual name and is connected).

Hence, it suffices to construct an “initial segment” of I of
depth at most |q | and degree at most N, and check if (i) q does
not match it, and (ii) it can be extended to the full model of K.
Definition 14. Let R, C, D ∈ N. An (R,C,D)-forest F is
a prefix-closed set of non-empty words from ZR·(ZC)

+ of
length at most D (Zn denotes the set of integers modulo n).
The number R indicates the total number of roots of F , C de-
notes the maximal number of children per each element, and
D indicates the maximal depth.

Treating F as a set of individual names, we define an
(F ,K)-initial segment of a ZOIQ-KB K as any summary
S of K ∪ {a ̸≈ b | a,b ∈ F ,a ̸= b} such that:
• For every a ∈ ind(K) there is b ∈ F ∩ N with a ≈ b in S,
and for every b ∈ F ∩N there is a ∈ ind(K) with a ≈ b in S .
• ((=0 child).⊤) (a) for all a ∈ F that are not leaves of F .
• ¬r(a,b) for all role names r appearing in K and all a ̸= b
from F such that a is not a child of b in F (or vice-versa). ◀

The above conditions are needed to represent a forest F
inside the clearing of the intended models of S. The first
item of Definition 14 guarantees the proper behaviour of roots.
The second item guarantees that the children of elements in
the initial segment are precisely the ones that are explicitly
mentioned there. Finally, the last item ensures that the “tree-
likeness” of the initial segment is not violated.
Lemma 19. LetK := (A, T ) be a ZIQ-KB in Scott’s normal
form and let q :=

∨
i qi be a union of rooted CQs. We have

that K ̸|= q if and only if there is an (F ,K)-initial segment S
such that (i) F is an (R,C,D)-forest for an R bounded by
|ind(K)|, C exponential in |T |, and D bounded by |q |, (ii)
(S, T ) is quasi-forest satisfiable, and (iii) IS ̸|= q . ◀

Note that the forestF described above is exponential w.r.t. |K|,
and thus the initial segment S can be “guessed” in NEXP.

Algorithm 3: Rooted Query Entailment in ZIQ
Input: A ZIQ-KB K := (A, T ) and a union

q :=
∨n

i=1 qi of rooted conjunctive queries.
Output: True if and only if K ̸|= q .

1 Turn T into Scott’s normal form.
2 Guess (F ,K)-initial segment S of K as in Lemma 19.
3 Foreach 1 ≤ i ≤ n return False if IS |= qi.
4 Use Algorithm 1 to verify that (S, T ) is quasi-forest

satisfiable and return True if this is indeed the case.

Lemma 20. Algorithm 3 returns True if and only if the input
ZOIQ-KB K does not entail the input query q . Moreover,
Algorithm 3 can can be implemented with a nondeterministic
Turing machine of running time bounded by some function
bounded exponentially w.r.t. |q | and |K|. ◀

Based on Lemma 20 we can conclude:
Theorem 3. The entailment problem for unions of rooted CQs
over ZIQ-KBs is coNEXPT IME-complete. ◀

The coNEXPT IME-hardness of rooted entailment holds al-
ready for ALCI [Lutz, 2008a, Thm. 1]. Interestingly enough,
we establish [Appendix L] a novel lower bound for ALCSelf.
Theorem 4. The rooted conjunctive query entailment problem
is coNEXPT IME-hard for ALCSelf (thus also for ZIQ). ◀
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