Answer Set Programming: Solving

Sebastian Rudolph

Computational Logic Group
Technische Universität Dresden

Slides based on a lecture by Martin Gebser and Torsten Schaub.
Potassco Slide Packages are licensed under a Creative Commons Attribution 3.0 Unported License.
1 Motivation

2 Boolean constraints

3 Nogoods from logic programs
 - Nogoods from program completion
 - Nogoods from loop formulas

4 Conflict-driven nogood learning
 - CDNL-ASP Algorithm
 - Nogood Propagation
 - Conflict Analysis
Motivation

- **Goal** Approach to computing stable models of logic programs, based on concepts from
 - Constraint Processing (CP) and
 - Satisfiability Testing (SAT)

- **Idea** View inferences in ASP as unit propagation on nogoods

- **Benefits**
 - A uniform constraint-based framework for different kinds of inferences in ASP
 - Advanced techniques from the areas of CP and SAT
 - Highly competitive implementation
Abbreviations

- NL: normal logic
- ILP: inductive logic programming
- ML: machine learning
- DL: description logic
- OWL: Web Ontology Language
- FO: first-order logic
- FP: first-order predicate
- FOIQ: first-order intuitionistic quantum logic
- LCL: linear constraints over logic variables
- ASP: answer set programming
- SAT: satisfiability problem
- CNF: conjunctive normal form
- NP: nondeterministic polynomial
- EXPTIME: exponential time
- 2SAT: two-satisfiability problem
- 3SAT: three-satisfiability problem
- 4SAT: four-satisfiability problem
- 5SAT: five-satisfiability problem
- 6SAT: six-satisfiability problem
- 7SAT: seven-satisfiability problem
- 8SAT: eight-satisfiability problem
- 9SAT: nine-satisfiability problem
- 10SAT: ten-satisfiability problem
- 11SAT: eleven-satisfiability problem
- 12SAT: twelve-satisfiability problem
- 13SAT: thirteen-satisfiability problem
- 14SAT: fourteen-satisfiability problem
- 15SAT: fifteen-satisfiability problem
- 16SAT: sixteen-satisfiability problem
- 17SAT: seventeen-satisfiability problem
- 18SAT: eighteen-satisfiability problem
- 19SAT: nineteen-satisfiability problem
- 20SAT: twenty-satisfiability problem
- 21SAT: twenty-one-satisfiability problem
- 22SAT: twenty-two-satisfiability problem
- 23SAT: twenty-three-satisfiability problem
- 24SAT: twenty-four-satisfiability problem
- 25SAT: twenty-five-satisfiability problem
- 26SAT: twenty-six-satisfiability problem
- 27SAT: twenty-seven-satisfiability problem
- 28SAT: twenty-eight-satisfiability problem
- 29SAT: twenty-nine-satisfiability problem
- 30SAT: thirty-satisfiability problem
- 31SAT: thirty-one-satisfiability problem
- 32SAT: thirty-two-satisfiability problem
- 33SAT: thirty-three-satisfiability problem
- 34SAT: thirty-four-satisfiability problem
- 35SAT: thirty-five-satisfiability problem
- 36SAT: thirty-six-satisfiability problem
- 37SAT: thirty-seven-satisfiability problem
- 38SAT: thirty-eight-satisfiability problem
- 39SAT: thirty-nine-satisfiability problem
- 40SAT: forty-satisfiability problem
- 41SAT: forty-one-satisfiability problem
- 42SAT: forty-two-satisfiability problem
- 43SAT: forty-three-satisfiability problem
- 44SAT: forty-four-satisfiability problem
- 45SAT: forty-five-satisfiability problem
- 46SAT: forty-six-satisfiability problem
- 47SAT: forty-seven-satisfiability problem
- 48SAT: forty-eight-satisfiability problem
- 49SAT: forty-nine-satisfiability problem
- 50SAT: fifty-satisfiability problem
- 51SAT: fifty-one-satisfiability problem
- 52SAT: fifty-two-satisfiability problem
- 53SAT: fifty-three-satisfiability problem
- 54SAT: fifty-four-satisfiability problem
- 55SAT: fifty-five-satisfiability problem
- 56SAT: fifty-six-satisfiability problem
- 57SAT: fifty-seven-satisfiability problem
- 58SAT: fifty-eight-satisfiability problem
- 59SAT: fifty-nine-satisfiability problem
- 60SAT: sixty-satisfiability problem
- 61SAT: sixty-one-satisfiability problem
- 62SAT: sixty-two-satisfiability problem
- 63SAT: sixty-three-satisfiability problem
- 64SAT: sixty-four-satisfiability problem
- 65SAT: sixty-five-satisfiability problem
- 66SAT: sixty-six-satisfiability problem
- 67SAT: sixty-seven-satisfiability problem
- 68SAT: sixty-eight-satisfiability problem
- 69SAT: sixty-nine-satisfiability problem
- 70SAT: seventy-satisfiability problem
- 71SAT: seventy-one-satisfiability problem
- 72SAT: seventy-two-satisfiability problem
- 73SAT: seventy-three-satisfiability problem
- 74SAT: seventy-four-satisfiability problem
- 75SAT: seventy-five-satisfiability problem
- 76SAT: seventy-six-satisfiability problem
- 77SAT: seventy-seven-satisfiability problem
- 78SAT: seventy-eight-satisfiability problem
- 79SAT: seventy-nine-satisfiability problem
- 80SAT: eighty-satisfiability problem
- 81SAT: eighty-one-satisfiability problem
- 82SAT: eighty-two-satisfiability problem
- 83SAT: eighty-three-satisfiability problem
- 84SAT: eighty-four-satisfiability problem
- 85SAT: eighty-five-satisfiability problem
- 86SAT: eighty-six-satisfiability problem
- 87SAT: eighty-seven-satisfiability problem
- 88SAT: eighty-eight-satisfiability problem
- 89SAT: eighty-nine-satisfiability problem
- 90SAT: ninety-satisfiability problem
- 91SAT: ninety-one-satisfiability problem
- 92SAT: ninety-two-satisfiability problem
- 93SAT: ninety-three-satisfiability problem
- 94SAT: ninety-four-satisfiability problem
- 95SAT: ninety-five-satisfiability problem
- 96SAT: ninety-six-satisfiability problem
- 97SAT: ninety-seven-satisfiability problem
- 98SAT: ninety-eight-satisfiability problem
- 99SAT: ninety-nine-satisfiability problem
- 100SAT: one hundred-satisfiability problem

ewn
Assignments

- An assignment A over $\text{dom}(A) = \text{atom}(P) \cup \text{body}(P)$ is a sequence

 $$(\sigma_1, \ldots, \sigma_n)$$

 of signed literals σ_i of form T_v or F_v for $v \in \text{dom}(A)$ and $1 \leq i \leq n$

- T_v expresses that v is true and F_v that it is false

- The complement, $\overline{\sigma}$, of a literal σ is defined as $\overline{T_v} = F_v$ and $\overline{F_v} = T_v$

- $A \circ \sigma$ stands for the result of appending σ to A

- Given $A = (\sigma_1, \ldots, \sigma_{k-1}, \sigma_k, \ldots, \sigma_n)$, we let $A[\sigma_k] = (\sigma_1, \ldots, \sigma_{k-1})$

- We sometimes identify an assignment with the set of its literals

- Given this, we access true and false propositions in A via

 $$A^T = \{v \in \text{dom}(A) \mid T_v \in A\} \text{ and } A^F = \{v \in \text{dom}(A) \mid F_v \in A\}$$
Assignments

- An assignment A over $\text{dom}(A) = \text{atom}(P) \cup \text{body}(P)$ is a sequence $(\sigma_1, \ldots, \sigma_n)$

 of signed literals σ_i of form T_v or F_v for $v \in \text{dom}(A)$ and $1 \leq i \leq n$

- T_v expresses that v is true and F_v that it is false

- The complement, $\overline{\sigma}$, of a literal σ is defined as $\overline{Tv} = Fv$ and $\overline{Fv} = Tv$

- $A \circ \sigma$ stands for the result of appending σ to A

- Given $A = (\sigma_1, \ldots, \sigma_{k-1}, \sigma_k, \ldots, \sigma_n)$, we let $A[\sigma_k] = (\sigma_1, \ldots, \sigma_{k-1})$

- We sometimes identify an assignment with the set of its literals

- Given this, we access true and false propositions in A via

 $A^T = \{v \in \text{dom}(A) \mid Tv \in A\}$ and $A^F = \{v \in \text{dom}(A) \mid Fv \in A\}$
Assignments

- An assignment A over $\text{dom}(A) = \text{atom}(P) \cup \text{body}(P)$ is a sequence

$$(\sigma_1, \ldots, \sigma_n)$$

of signed literals σ_i of form T_v or F_v for $v \in \text{dom}(A)$ and $1 \leq i \leq n$

- T_v expresses that v is true and F_v that it is false

- The complement, $\bar{\sigma}$, of a literal σ is defined as $\overline{T_v} = F_v$ and $\overline{F_v} = T_v$

- $A \circ \sigma$ stands for the result of appending σ to A

Given $A = (\sigma_1, \ldots, \sigma_{k-1}, \sigma_k, \ldots, \sigma_n)$, we let $A[\sigma_k] = (\sigma_1, \ldots, \sigma_{k-1})$

- We sometimes identify an assignment with the set of its literals

- Given this, we access true and false propositions in A via

$$A^T = \{v \in \text{dom}(A) \mid T_v \in A\} \text{ and } A^F = \{v \in \text{dom}(A) \mid F_v \in A\}$$
Assignments

- An assignment A over $\text{dom}(A) = \text{atom}(P) \cup \text{body}(P)$ is a sequence
 $$(\sigma_1, \ldots, \sigma_n)$$
 of signed literals σ_i of form $T \nu$ or $F \nu$ for $\nu \in \text{dom}(A)$ and $1 \leq i \leq n$
- $T \nu$ expresses that ν is true and $F \nu$ that it is false
- The complement, $\overline{\sigma}$, of a literal σ is defined as $\overline{T \nu} = F \nu$ and $\overline{F \nu} = T \nu$
- $A \circ \sigma$ stands for the result of appending σ to A
- Given $A = (\sigma_1, \ldots, \sigma_{k-1}, \sigma_k, \ldots, \sigma_n)$, we let $A[\sigma_k] = (\sigma_1, \ldots, \sigma_{k-1})$
- We sometimes identify an assignment with the set of its literals
- Given this, we access true and false propositions in A via
 $$A^T = \{ \nu \in \text{dom}(A) \mid T \nu \in A \} \text{ and } A^F = \{ \nu \in \text{dom}(A) \mid F \nu \in A \}$$
Assignments

- An assignment A over $\text{dom}(A) = \text{atom}(P) \cup \text{body}(P)$ is a sequence $(\sigma_1, \ldots, \sigma_n)$ of signed literals σ_i of form $T v$ or $F v$ for $v \in \text{dom}(A)$ and $1 \leq i \leq n$.

- $T v$ expresses that v is true and $F v$ that it is false.

- The complement, $\overline{\sigma}$, of a literal σ is defined as $\overline{T v} = F v$ and $\overline{F v} = T v$.

- $A \circ \sigma$ stands for the result of appending σ to A.

- Given $A = (\sigma_1, \ldots, \sigma_{k-1}, \sigma_k, \ldots, \sigma_n)$, we let $A[\sigma_k] = (\sigma_1, \ldots, \sigma_{k-1})$.

- We sometimes identify an assignment with the set of its literals.

- Given this, we access true and false propositions in A via $A^T = \{ v \in \text{dom}(A) \mid T v \in A \}$ and $A^F = \{ v \in \text{dom}(A) \mid F v \in A \}$.
Assignments

- An assignment A over $\text{dom}(A) = \text{atom}(P) \cup \text{body}(P)$ is a sequence $(\sigma_1, \ldots, \sigma_n)$ of signed literals σ_i of form $T v$ or $F v$ for $v \in \text{dom}(A)$ and $1 \leq i \leq n$.
- $T v$ expresses that v is true and $F v$ that it is false.
- The complement, $\overline{\sigma}$, of a literal σ is defined as $\overline{T v} = F v$ and $\overline{F v} = T v$.
- $A \circ \sigma$ stands for the result of appending σ to A.
- Given $A = (\sigma_1, \ldots, \sigma_{k-1}, \sigma_k, \ldots, \sigma_n)$, we let $A[\sigma_k] = (\sigma_1, \ldots, \sigma_{k-1})$.
- We sometimes identify an assignment with the set of its literals.
- Given this, we access true and false propositions in A via:

$$A^T = \{v \in \text{dom}(A) \mid T v \in A\} \quad \text{and} \quad A^F = \{v \in \text{dom}(A) \mid F v \in A\}$$
Boolean constraints

Assignments

- An assignment A over $\text{dom}(A) = \text{atom}(P) \cup \text{body}(P)$ is a sequence $$(\sigma_1, \ldots, \sigma_n)$$
 of signed literals σ_i of form $T \, v$ or $F \, v$ for $v \in \text{dom}(A)$ and $1 \leq i \leq n$.
- $T \, v$ expresses that v is true and $F \, v$ that it is false.
- The complement, $\overline{\sigma}$, of a literal σ is defined as $\overline{T \, v} = F \, v$ and $\overline{F \, v} = T \, v$.
- $A \circ \sigma$ stands for the result of appending σ to A.
- Given $A = (\sigma_1, \ldots, \sigma_{k-1}, \sigma_k, \ldots, \sigma_n)$, we let $A[\sigma_k] = (\sigma_1, \ldots, \sigma_{k-1})$.
- We sometimes identify an assignment with the set of its literals.
- Given this, we access true and false propositions in A via $A^T = \{v \in \text{dom}(A) \mid T \, v \in A\}$ and $A^F = \{v \in \text{dom}(A) \mid F \, v \in A\}$.
Nogoods, solutions, and unit propagation

- A **nogood** is a set \(\{\sigma_1, \ldots, \sigma_n\} \) of signed literals, expressing a **constraint** violated by any assignment containing \(\sigma_1, \ldots, \sigma_n \)

- An assignment \(A \) such that \(A^T \cup A^F = \text{dom}(A) \) and \(A^T \cap A^F = \emptyset \) is a **solution** for a set \(\Delta \) of nogoods, if \(\delta \not\subseteq A \) for all \(\delta \in \Delta \)

- For a nogood \(\delta \), a literal \(\sigma \in \delta \), and an assignment \(A \), we say that \(\overline{\sigma} \) is **unit-resulting** for \(\delta \) wrt \(A \), if
 1. \(\delta \setminus A = \{\sigma\} \) and
 2. \(\overline{\sigma} \not\in A \)

- For a set \(\Delta \) of nogoods and an assignment \(A \), **unit propagation** is the iterated process of extending \(A \) with unit-resulting literals until no further literal is unit-resulting for any nogood in \(\Delta \)
Nogoods, solutions, and unit propagation

- A **nogood** is a set \(\{\sigma_1, \ldots, \sigma_n\} \) of signed literals, expressing a constraint violated by any assignment containing \(\sigma_1, \ldots, \sigma_n \).

- An assignment \(A \) such that \(A^T \cup A^F = \text{dom}(A) \) and \(A^T \cap A^F = \emptyset \) is a **solution** for a set \(\Delta \) of nogoods, if \(\delta \not\subseteq A \) for all \(\delta \in \Delta \).

- For a nogood \(\delta \), a literal \(\sigma \in \delta \), and an assignment \(A \), we say that \(\overline{\sigma} \) is unit-resulting for \(\delta \) wrt \(A \), if
 1. \(\delta \setminus A = \{\sigma\} \) and
 2. \(\overline{\sigma} \notin A \).

- For a set \(\Delta \) of nogoods and an assignment \(A \), **unit propagation** is the iterated process of extending \(A \) with unit-resulting literals until no further literal is unit-resulting for any nogood in \(\Delta \).
Nogoods, solutions, and unit propagation

- A nogood is a set \(\{\sigma_1, \ldots, \sigma_n\} \) of signed literals, expressing a constraint violated by any assignment containing \(\sigma_1, \ldots, \sigma_n \).

- An assignment \(A \) such that \(A^T \cup A^F = \text{dom}(A) \) and \(A^T \cap A^F = \emptyset \) is a solution for a set \(\Delta \) of nogoods, if \(\delta \not\subseteq A \) for all \(\delta \in \Delta \).

- For a nogood \(\delta \), a literal \(\sigma \in \delta \), and an assignment \(A \), we say that \(\overline{\sigma} \) is unit-resulting for \(\delta \) wrt \(A \), if
 1. \(\delta \setminus A = \{\sigma\} \) and
 2. \(\overline{\sigma} \not\in A \).

- For a set \(\Delta \) of nogoods and an assignment \(A \), unit propagation is the iterated process of extending \(A \) with unit-resulting literals until no further literal is unit-resulting for any nogood in \(\Delta \).
Nogoods, solutions, and unit propagation

- A **nogood** is a set $\{\sigma_1, \ldots, \sigma_n\}$ of signed literals, expressing a **constraint** violated by any assignment containing $\sigma_1, \ldots, \sigma_n$.

- An assignment A such that $A^T \cup A^F = \text{dom}(A)$ and $A^T \cap A^F = \emptyset$ is a **solution** for a set Δ of nogoods, if $\delta \not\subset A$ for all $\delta \in \Delta$.

- For a nogood δ, a literal $\sigma \in \delta$, and an assignment A, we say that $\overline{\sigma}$ is **unit-resulting** for δ wrt A, if

 1. $\delta \setminus A = \{\sigma\}$ and
 2. $\overline{\sigma} \not\in A$.

- For a set Δ of nogoods and an assignment A, **unit propagation** is the iterated process of extending A with unit-resulting literals until no further literal is unit-resulting for any nogood in Δ.

Boolean constraints
Outline

1 Motivation

2 Boolean constraints

3 Nogoods from logic programs
 - Nogoods from program completion
 - Nogoods from loop formulas

4 Conflict-driven nogood learning
 - CDNL-ASP Algorithm
 - Nogood Propagation
 - Conflict Analysis
Outline

1 Motivation

2 Boolean constraints

3 Nogoods from logic programs
 - Nogoods from program completion
 - Nogoods from loop formulas

4 Conflict-driven nogood learning
 - CDNL-ASP Algorithm
 - Nogood Propagation
 - Conflict Analysis
The completion of a logic program P can be defined as follows:

$$\{ v_B \leftrightarrow a_1 \land \cdots \land a_m \land \neg a_{m+1} \land \cdots \land \neg a_n \mid B \in \text{body}(P) \text{ and } B = \{a_1, \ldots, a_m, \neg a_{m+1}, \ldots, \neg a_n\} \}$$

$$\cup \{ a \leftrightarrow v_{B_1} \lor \cdots \lor v_{B_k} \mid a \in \text{atom}(P) \text{ and } \text{body}_P(a) = \{B_1, \ldots, B_k\} \} ,$$

where $\text{body}_P(a) = \{\text{body}(r) \mid r \in P \text{ and } \text{head}(r) = a\}$
Nogoods from logic programs
via program completion

The (body-oriented) equivalence

\[v_B \leftrightarrow a_1 \land \cdots \land a_m \land \neg a_{m+1} \land \cdots \land \neg a_n \]

can be decomposed into two implications:
The (body-oriented) equivalence

\[\nu_B \leftrightarrow a_1 \land \cdots \land a_m \land \neg a_{m+1} \land \cdots \land \neg a_n \]

can be decomposed into two implications:

1. \[\nu_B \rightarrow a_1 \land \cdots \land a_m \land \neg a_{m+1} \land \cdots \land \neg a_n \]

is equivalent to the conjunction of

\[\neg \nu_B \lor a_1, \ldots, \neg \nu_B \lor a_m, \neg \nu_B \lor \neg a_{m+1}, \ldots, \neg \nu_B \lor \neg a_n \]

and induces the set of nogoods

\[\Delta(B) = \{ \{TB, Fa_1\}, \ldots, \{TB, Fa_m\}, \{TB, Ta_{m+1}\}, \ldots, \{TB, Ta_n\} \} \]
The (body-oriented) equivalence

\[v_B \iff a_1 \land \cdots \land a_m \land \neg a_{m+1} \land \cdots \land \neg a_n \]

can be decomposed into two implications:

\[a_1 \land \cdots \land a_m \land \neg a_{m+1} \land \cdots \land \neg a_n \rightarrow v_B \]

gives rise to the nogood

\[\delta(B) = \{ F B, T a_1, \ldots, T a_m, F a_{m+1}, \ldots, F a_n \} \]
Nogoods from logic programs
via program completion

Analogously, the (atom-oriented) equivalence

\[a \leftrightarrow v_{B_1} \lor \cdots \lor v_{B_k} \]

yields the nogoods

1. \(\Delta(a) = \{ \{ Fa, TB_1 \}, \ldots, \{ Fa, TB_k \} \} \) and
2. \(\delta(a) = \{ Ta, FB_1, \ldots, FB_k \} \)
Outline

1. Motivation

2. Boolean constraints

3. Nogoods from logic programs
 - Nogoods from program completion
 - Nogoods from loop formulas

4. Conflict-driven nogood learning
 - CDNL-ASP Algorithm
 - Nogood Propagation
 - Conflict Analysis
Nogoods from logic programs
via loop formulas

Let P be a normal logic program and recall that:

- For $L \subseteq \text{atom}(P)$, the external supports of L for P are
 \[ES_P(L) = \{ r \in P \mid \text{head}(r) \in L \text{ and } \text{body}(r)^+ \cap L = \emptyset \} \]

- The (disjunctive) loop formula of L for P is
 \[LF_P(L) = (\bigvee_{A \in L} A) \rightarrow (\bigvee_{r \in ES_P(L)} \text{body}(r)) \]
 \[\equiv (\bigwedge_{r \in ES_P(L)} \neg \text{body}(r)) \rightarrow (\bigwedge_{A \in L} \neg A) \]

- Note The loop formula of L enforces all atoms in L to be false whenever L is not externally supported

- The external bodies of L for P are
 \[EB_P(L) = \{ \text{body}(r) \mid r \in ES_P(L) \} \]
Let P be a normal logic program and recall that:

- For $L \subseteq \text{atom}(P)$, the external supports of L for P are

 $$ES_P(L) = \{ r \in P \mid \text{head}(r) \in L \text{ and } \text{body}(r)^+ \cap L = \emptyset \}$$

- The (disjunctive) loop formula of L for P is

 $$LF_P(L) = (\bigvee_{A \in L} A) \rightarrow (\bigvee_{r \in ES_P(L)} \text{body}(r))$$

 $$\equiv (\bigwedge_{r \in ES_P(L)} \neg \text{body}(r)) \rightarrow (\bigwedge_{A \in L} \neg A)$$

 Note The loop formula of L enforces all atoms in L to be false whenever L is not externally supported

- The external bodies of L for P are

 $$EB_P(L) = \{ \text{body}(r) \mid r \in ES_P(L) \}$$
Let P be a normal logic program and recall that:

- For $L \subseteq \text{atom}(P)$, the external supports of L for P are
 \[ES_P(L) = \{ r \in P \mid \text{head}(r) \in L \text{ and } \text{body}(r)^+ \cap L = \emptyset \} \]

- The (disjunctive) loop formula of L for P is
 \[LF_P(L) = (\bigvee_{A \in L} A) \rightarrow (\bigvee_{r \in ES_P(L)} \text{body}(r)) \]
 \[\equiv (\bigwedge_{r \in ES_P(L)} \neg \text{body}(r)) \rightarrow (\bigwedge_{A \in L} \neg A) \]

 Note The loop formula of L enforces all atoms in L to be false whenever L is not externally supported

- The external bodies of L for P are
 \[EB_P(L) = \{ \text{body}(r) \mid r \in ES_P(L) \} \]
For a logic program P and some $\emptyset \subset U \subseteq \text{atom}(P)$, define the *loop nogood* of an atom $a \in U$ as

$$\lambda(a, U) = \{ T_a, F B_1, \ldots, F B_k \}$$

where $EB_P(U) = \{ B_1, \ldots, B_k \}$

We get the following set of loop nogoods for P:

$$\Lambda_P = \bigcup_{\emptyset \subset U \subseteq \text{atom}(P)} \{ \lambda(a, U) \mid a \in U \}$$

The set Λ_P of loop nogoods denies cyclic support among *true* atoms.
For a logic program P and some $\emptyset \subset U \subseteq \text{atom}(P)$, define the loop nogood of an atom $a \in U$ as

$$\lambda(a, U) = \{ T a, F B_1, \ldots, F B_k \}$$

where $EB_P(U) = \{ B_1, \ldots, B_k \}$

We get the following set of loop nogoods for P:

$$\Lambda_P = \bigcup_{\emptyset \subset U \subseteq \text{atom}(P)} \{ \lambda(a, U) \mid a \in U \}$$

The set Λ_P of loop nogoods denies cyclic support among true atoms.
For a logic program P and some $\emptyset \subset U \subseteq \text{atom}(P)$, define the loop nogood of an atom $a \in U$ as

$$\lambda(a, U) = \{ T a, F B_1, \ldots, F B_k \}$$

where $EB_P(U) = \{ B_1, \ldots, B_k \}$

We get the following set of loop nogoods for P:

$$\Lambda_P = \bigcup_{\emptyset \subset U \subseteq \text{atom}(P)} \{ \lambda(a, U) \mid a \in U \}$$

The set Λ_P of loop nogoods denies cyclic support among true atoms
Example

Consider the program

\[
\begin{align*}
 x & \leftarrow \neg y \\
 y & \leftarrow \neg x \\
 u & \leftarrow x \\
 u & \leftarrow v \\
 v & \leftarrow u, y
\end{align*}
\]

For \(u \) in the set \(\{u, v\} \), we obtain the loop nogood:

\[
\lambda(u, \{u, v\}) = \{T u, F \{x\}\}
\]

Similarly for \(v \) in \(\{u, v\} \), we get:

\[
\lambda(v, \{u, v\}) = \{T v, F \{x\}\}
\]
Example

Consider the program

\[
\begin{align*}
x & \leftarrow \neg y & u & \leftarrow x \\
y & \leftarrow \neg x & u & \leftarrow v \\
\end{align*}
\]

For \(u \) in the set \(\{u, v\} \), we obtain the loop nogood:

\[
\lambda(u, \{u, v\}) = \{ Tu, F\{x\} \}
\]

Similarly for \(v \) in \(\{u, v\} \), we get:

\[
\lambda(v, \{u, v\}) = \{ Tv, F\{x\} \}
\]
Example

Consider the program

\[
\begin{align*}
& x \leftarrow \neg y \\
& y \leftarrow \neg x \\
& u \leftarrow x \\
& u \leftarrow v \\
& v \leftarrow u, y
\end{align*}
\]

For \(u \) in the set \(\{u, v\} \), we obtain the loop nogood:

\[
\lambda(u, \{u, v\}) = \{T u, F\{x\}\}
\]

Similarly for \(v \) in \(\{u, v\} \), we get:

\[
\lambda(v, \{u, v\}) = \{T v, F\{x\}\}
\]
Characterization of stable models

Theorem

Let P be a logic program. Then,

$X \subseteq \text{atom}(P)$ is a stable model of P iff

$X = A^T \cap \text{atom}(P)$ for a (unique) solution A for $\Delta_P \cup \Lambda_P$

Some remarks

- Nogoods in Λ_P augment Δ_P with conditions checking for unfounded sets, in particular, those being loops.
- While $|\Delta_P|$ is linear in the size of P, Λ_P may contain exponentially many (non-redundant) loop nogoods.
Characterization of stable models

Theorem

Let P be a logic program. Then,

$X \subseteq \text{atom}(P)$ is a stable model of P iff

$X = A^T \cap \text{atom}(P)$ for a (unique) solution A for $\Delta_P \cup \Lambda_P$

Some remarks

- Nogoods in Λ_P augment Δ_P with conditions checking for **unfounded sets**, in particular, those being loops
- While $|\Delta_P|$ is linear in the size of P, Λ_P may contain **exponentially many** (non-redundant) loop nogoods
1 Motivation

2 Boolean constraints

3 Nogoods from logic programs
 - Nogoods from program completion
 - Nogoods from loop formulas

4 Conflict-driven nogood learning
 - CDNL-ASP Algorithm
 - Nogood Propagation
 - Conflict Analysis
Towards conflict-driven search

Boolean constraint solving algorithms pioneered for SAT led to:

- **Traditional DPLL-style approach**
 (DPLL stands for ‘Davis-Putnam-Logemann-Loveland’)
 - (Unit) propagation
 - (Chronological) backtracking
 - in ASP, eg *smodels*

- **Modern CDCL-style approach**
 (CDCL stands for ‘Conflict-Driven Constraint Learning’)
 - (Unit) propagation
 - Conflict analysis (via resolution)
 - Learning + Backjumping + Assertion
 - in ASP, eg *clasp*
DPLL-style solving

loop

propagate // deterministically assign literals

if no conflict then
 if all variables assigned then return solution
 else decide // non-deterministically assign some literal
else
 if top-level conflict then return unsatisfiable
 else
 backtrack // unassign literals propagated after last decision
 flip // assign complement of last decision literal
CDCL-style solving

loop

propagate // deterministically assign literals

if no conflict then
 if all variables assigned then return solution
 else decide // non-deterministically assign some literal
else
 if top-level conflict then return unsatisfiable
 else
 analyze // analyze conflict and add conflict constraint
 backjump // unassign literals until conflict constraint is unit
Outline

1 Motivation

2 Boolean constraints

3 Nogoods from logic programs
 - Nogoods from program completion
 - Nogoods from loop formulas

4 Conflict-driven nogood learning
 - CDNL-ASP Algorithm
 - Nogood Propagation
 - Conflict Analysis
Outline of CDNL-ASP algorithm

- Keep track of deterministic consequences by unit propagation on:
 - Program completion \([\Delta_P]\)
 - Loop nogoods, determined and recorded on demand \([\Lambda_P]\)
 - Dynamic nogoods, derived from conflicts and unfounded sets \([\nabla]\)

- When a nogood in \(\Delta_P \cup \nabla\) becomes violated:
 - Analyze the conflict by resolution
 (until reaching a Unique Implication Point, short: UIP)
 - Learn the derived conflict nogood \(\delta\)
 - Backjump to the earliest (heuristic) choice such that the complement of the UIP is unit-resulting for \(\delta\)
 - Assert the complement of the UIP and proceed
 (by unit propagation)

- Terminate when either:
 - Finding a stable model (a solution for \(\Delta_P \cup \Lambda_P\))
 - Deriving a conflict independently of (heuristic) choices
Conflict-driven nogood learning CDNL-ASP Algorithm

Outline of CDNL-ASP algorithm

- Keep track of deterministic consequences by unit propagation on:
 - Program completion \([\Delta_P]\)
 - Loop nogoods, determined and recorded on demand \([\Lambda_P]\)
 - Dynamic nogoods, derived from conflicts and unfounded sets \([\nabla]\)

- When a nogood in \(\Delta_P \cup \nabla\) becomes violated:
 - **Analyze** the conflict by resolution
 (until reaching a Unique Implication Point, short: UIP)
 - **Learn** the derived conflict nogood \(\delta\)
 - **Backjump** to the earliest (heuristic) choice such that the complement of the UIP is unit-resulting for \(\delta\)
 - **Assert** the complement of the UIP and proceed
 (by unit propagation)

- Terminate when either:
 - Finding a stable model (a solution for \(\Delta_P \cup \Lambda_P\))
 - Deriving a conflict independently of (heuristic) choices
Outline of CDNL-ASP algorithm

- Keep track of deterministic consequences by unit propagation on:
 - Program completion \([\Delta_P]\)
 - Loop nogoods, determined and recorded on demand \([\Lambda_P]\)
 - Dynamic nogoods, derived from conflicts and unfounded sets \([\nabla]\)

- When a nogood in \(\Delta_P \cup \nabla\) becomes violated:
 - Analyze the conflict by resolution (until reaching a Unique Implication Point, short: UIP)
 - Learn the derived conflict nogood \(\delta\)
 - Backjump to the earliest (heuristic) choice such that the complement of the UIP is unit-resulting for \(\delta\)
 - Assert the complement of the UIP and proceed (by unit propagation)

- Terminate when either:
 - Finding a stable model (a solution for \(\Delta_P \cup \Lambda_P\))
 - Deriving a conflict independently of (heuristic) choices
Algorithm 1: CDNL-ASP

Input : A normal program P

Output : A stable model of P or “no stable model”

$A := \emptyset$ // assignment over $\text{atom}(P) \cup \text{body}(P)$

$\nabla := \emptyset$ // set of recorded nogoods

$dl := 0$ // decision level

loop

$(A, \nabla) := \text{NogoodPropagation}(P, \nabla, A)$

if $\varepsilon \subseteq A$ for some $\varepsilon \in \Delta_P \cup \nabla$ then // conflict

if $\max(\{d\text{level}(\sigma) \mid \sigma \in \varepsilon\} \cup \{0\}) = 0$ then return no stable model

$(\delta, dl) := \text{ConflictAnalysis}(\varepsilon, P, \nabla, A)$

$\nabla := \nabla \cup \{\delta\}$ // (temporarily) record conflict nogood

$A := A \setminus \{\sigma \in A \mid dl < d\text{level}(\sigma)\}$ // backjumping

else if $A^T \cup A^F = \text{atom}(P) \cup \text{body}(P)$ then // stable model

return $A^T \cap \text{atom}(P)$

else

$\sigma_d := \text{Select}(P, \nabla, A)$ // decision

$dl := dl + 1$

$d\text{level}(\sigma_d) := dl$

$A := A \circ \sigma_d$

end
Observations

- Decision level dl, initially set to 0, is used to count the number of heuristically chosen literals in assignment A.

- For a heuristically chosen literal $\sigma_d = Ta$ or $\sigma_d = Fa$, respectively, we require $a \in (\text{atom}(P) \cup \text{body}(P)) \setminus (A^T \cup A^F)$.

- For any literal $\sigma \in A$, $dl(\sigma)$ denotes the decision level of σ, viz. the value dl had when σ was assigned.

- A conflict is detected from violation of a nogood $\varepsilon \subseteq \Delta_P \cup \nabla$.

- A conflict at decision level 0 (where A contains no heuristically chosen literals) indicates non-existence of stable models.

- A nogood δ derived by conflict analysis is asserting, that is, some literal is unit-resulting for δ at a decision level $k < dl$.
 - After learning δ and backjumping to decision level k, at least one literal is newly derivable by unit propagation.
 - No explicit flipping of heuristically chosen literals!
Observations

- Decision level dl, initially set to 0, is used to count the number of heuristically chosen literals in assignment A
- For a heuristically chosen literal $\sigma_d = Ta$ or $\sigma_d = Fa$, respectively, we require $a \in (atom(P) \cup body(P)) \setminus (AT \cup AF)$
- For any literal $\sigma \in A$, $dl(\sigma)$ denotes the decision level of σ, viz. the value dl had when σ was assigned
- A conflict is detected from violation of a nogood $\varepsilon \subseteq \Delta_P \cup \nabla$
- A conflict at decision level 0 (where A contains no heuristically chosen literals) indicates non-existence of stable models
- A nogood δ derived by conflict analysis is asserting, that is, some literal is unit-resulting for δ at a decision level $k < dl$
 - After learning δ and backjumping to decision level k, at least one literal is newly derivable by unit propagation
 - No explicit flipping of heuristically chosen literals!
Observations

- Decision level dl, initially set to 0, is used to count the number of heuristically chosen literals in assignment A
- For a heuristically chosen literal $\sigma_d = T_a$ or $\sigma_d = F_a$, respectively, we require $a \in (\text{atom}(P) \cup \text{body}(P)) \setminus (A^T \cup A^F)$
- For any literal $\sigma \in A$, $dl(\sigma)$ denotes the decision level of σ, viz. the value dl had when σ was assigned
- A conflict is detected from violation of a nogood $\varepsilon \subseteq \Delta_P \cup \nabla$
- A conflict at decision level 0 (where A contains no heuristically chosen literals) indicates non-existence of stable models
- A nogood δ derived by conflict analysis is asserting, that is, some literal is unit-resulting for δ at a decision level $k < dl$
 - After learning δ and backjumping to decision level k, at least one literal is newly derivable by unit propagation
 - No explicit flipping of heuristically chosen literals!
Conflict-driven nogood learning

CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

\[P = \left\{ \begin{array}{c}
 x \leftarrow \neg y \\
 u \leftarrow x, y \\
 v \leftarrow x \\
 w \leftarrow \neg x, \neg y \\
 y \leftarrow \neg x \\
 u \leftarrow v \\
 v \leftarrow u, y
\end{array} \right\} \]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\overline{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Tu)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(F{\neg x, \neg y})</td>
<td>(Fw)</td>
<td>({ Tw, F{\neg x, \neg y}} = \delta(w))</td>
</tr>
<tr>
<td>3</td>
<td>(F{\neg y})</td>
<td>(Fx)</td>
<td>({ Tx, F{\neg y}} = \delta(x))</td>
</tr>
<tr>
<td></td>
<td>(F{x})</td>
<td>({ Tx, F{\neg y}} \in \Delta({x}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(F{x, y})</td>
<td>({ Tx, F{\neg y}} \in \Delta({x, y}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>({ Tu, F{x}, F{x, y}} = \lambda(u, {u, v}))</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Example: CDNL-ASP

Consider

\[P = \{ x \leftarrow \neg y \quad u \leftarrow x, y \quad v \leftarrow x \quad w \leftarrow \neg x, \neg y \\
 y \leftarrow \neg x \quad u \leftarrow v \quad v \leftarrow u, y \} \]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\overline{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Tu)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(F{\neg x, \neg y})</td>
<td>(F_w)</td>
<td>{ (Tw, F{\neg x, \neg y} } = \delta(w))</td>
</tr>
<tr>
<td>3</td>
<td>(F{\neg y})</td>
<td>(F_x)</td>
<td>{ (Tx, F{\neg y} } = \delta(x))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x})</td>
<td>{ (T{x}, F_x } \in \Delta({x}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x, y})</td>
<td>{ (T{x, y}, F_x } \in \Delta({x, y}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{ (Tu, F{x}, F{x, y} } = \lambda(u, {u, v}) \times }</td>
<td></td>
</tr>
</tbody>
</table>

Sebastian Rudolph (TUD)
Example: CDNL-ASP

Consider

\[P = \left\{ \begin{array}{ll}
 x & \leftarrow \sim y \\
 y & \leftarrow \sim x \\
 u & \leftarrow x, y \\
 v & \leftarrow x \\
 w & \leftarrow \sim x, \sim y \\
 u & \leftarrow v \\
 v & \leftarrow u, y
\end{array} \right\} \]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\overline{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(T_u)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(F{\sim x, \sim y})</td>
<td>(F_w)</td>
<td>({T_w, F{\sim x, \sim y}} = \delta(w))</td>
</tr>
<tr>
<td>3</td>
<td>(F{\sim y})</td>
<td></td>
<td>({T_x, F{\sim y}} = \delta(x))</td>
</tr>
<tr>
<td></td>
<td>(F{x})</td>
<td></td>
<td>({T{x}, Fx} \in \Delta({x}))</td>
</tr>
<tr>
<td></td>
<td>(F{x, y})</td>
<td></td>
<td>({T{x, y}, Fx} \in \Delta({x, y}))</td>
</tr>
<tr>
<td></td>
<td>\vdots</td>
<td></td>
<td>(\vdots)</td>
</tr>
<tr>
<td></td>
<td>{T_u, F{x}, F{x, y}} = \lambda(u, {u, v}))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sebastian Rudolph (TUD)
Answer Set Programming: Solving
Example: CDNL-ASP

Consider

\[P = \{ \begin{array}{l}
x \iff \neg y \\
u \iff x, y \\
v \iff x \\
w \iff \neg x, \neg y \\
y \iff \neg x \\
u \iff v \\
v \iff u, y \\
\end{array} \} \]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\overline{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(T_u)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(F{\neg x, \neg y})</td>
<td>(F_w)</td>
<td>({T_w, F{\neg x, \neg y}} = \delta(w))</td>
</tr>
<tr>
<td>3</td>
<td>(F{\neg y})</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(F_x)</td>
<td></td>
<td>({T_x, F{\neg y}} = \delta(x))</td>
</tr>
<tr>
<td></td>
<td>(F{x})</td>
<td></td>
<td>({T{x}, F_x} \in \Delta({x}))</td>
</tr>
<tr>
<td></td>
<td>(F{x, y})</td>
<td></td>
<td>({T{x, y}, F_x} \in \Delta({x, y}))</td>
</tr>
<tr>
<td></td>
<td>\vdots</td>
<td></td>
<td>\vdots</td>
</tr>
<tr>
<td></td>
<td>({T_u, F{x}, F{x, y}} = \lambda(u, {u, v}))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: CDNL-ASP

Consider

\[P = \left\{ \begin{array}{llll} x \leftarrow \neg y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \neg x, \neg y \\ y \leftarrow \neg x & u \leftarrow v & v \leftarrow u, y \end{array} \right\} \]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\bar{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(T_u)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(F{\neg x, \neg y})</td>
<td>(F_w)</td>
<td>{ (T_w, F{\neg x, \neg y} }} = \delta(w)</td>
</tr>
<tr>
<td>3</td>
<td>(F{\neg y})</td>
<td>(F_x)</td>
<td>{ (T_x, F{\neg y} }} = \delta(x)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x})</td>
<td>{ (T{x}, F_x }} \in \Delta({x})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x, y})</td>
<td>{ (T{x, y}, F_x }} \in \Delta({x, y})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{ (T_u, F{x}, F{x, y} }} = \lambda(u, {u, v})</td>
<td></td>
</tr>
</tbody>
</table>

Sebastian Rudolph (TUD)
Example: CDNL-ASP

Consider

\[P = \left\{ \begin{array}{l}
 x \leftarrow \neg y \\
 u \leftarrow x, y \\
 v \leftarrow x \\
 w \leftarrow \neg x, \neg y \\
 y \leftarrow \neg x \\
 u \leftarrow v \\
 v \leftarrow u, y
\end{array} \right\} \]

\[dl \ | \ \sigma_d \ | \ \overline{\sigma} \ | \ \delta \]
\[\begin{array}{|c|c|c|c|}
 \hline
 1 & T u & & \\
 \hline
 2 & F\{\neg x, \neg y\} & F_w & \{ T w, F\{\neg x, \neg y\} \} = \delta(w) \\
 \hline
 3 & F\{\neg y\} & F_x & \{ T x, F\{\neg y\} \} = \delta(x) \\
 & & F\{x\} & \{ T \{x\}, Fx \} \in \Delta(\{x\}) \\
 & & F\{x, y\} & \{ T \{x, y\}, Fx \} \in \Delta(\{x, y\}) \\
 \hline
\end{array} \]

\[\{ T u, F\{x\}, F\{x, y\} \} = \lambda(u, \{u, v\}) \]
Example: CDNL-ASP

Consider

\[P = \begin{cases}
 x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
 y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y
\end{cases} \]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\overline{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Tu)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(F{\sim x, \sim y})</td>
<td>(Fw)</td>
<td>({Tw, F{\sim x, \sim y}} = \delta(w))</td>
</tr>
<tr>
<td>3</td>
<td>(F{\sim y})</td>
<td>(Fx)</td>
<td>({Tx, F{\sim y}} = \delta(x))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x})</td>
<td>({Tx, F{x}} \in \Delta({x}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x, y})</td>
<td>({Tx, y}, Fx \in \Delta({x, y}))</td>
</tr>
<tr>
<td></td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td></td>
<td></td>
<td>({Tu, F{x}, F{x, y}} = \lambda(u, {u, v}))</td>
<td></td>
</tr>
</tbody>
</table>
Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

\[P = \{ \begin{align*}
x & \leftarrow \sim y \\
u & \leftarrow x, y \\
v & \leftarrow x \\
w & \leftarrow \sim x, \sim y \\
y & \leftarrow \sim x \\
u & \leftarrow v \\
v & \leftarrow u, y
\end{align*} \} \]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\overline{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Tu)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: CDNL-ASP

Consider

\[
P = \{ x \leftarrow \sim y \quad u \leftarrow x, y \quad v \leftarrow x \quad w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x \quad u \leftarrow v \quad v \leftarrow u, y \}
\]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\overline{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Tu)</td>
<td>(Tx)</td>
<td>({ Tu, Fx } \in \nabla)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\vdots)</td>
<td>({ Fv, T{x} } \in \Delta(v))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Tv)</td>
<td>({ Ty, F{\sim x} } = \delta(y))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Fy)</td>
<td>{ Tw, F{\sim x, \sim y} } = \delta(w))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Fw)</td>
<td></td>
</tr>
</tbody>
</table>
Consider

\[P = \{ x \leftarrow \neg y, u \leftarrow x, y, v \leftarrow x, w \leftarrow \neg x, \neg y
\quad y \leftarrow \neg x, u \leftarrow v, v \leftarrow u, y \} \]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\overline{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Tu)</td>
<td>(Tx)</td>
<td>({ Tu, Fx } \in \nabla)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
<tr>
<td></td>
<td>(Tv)</td>
<td>({ Fv, T{x} } \in \Delta(v))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Fy)</td>
<td>({ Ty, F{\neg x} } = \delta(y))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Fw)</td>
<td>({ Tw, F{\neg x, \neg y} } = \delta(w))</td>
<td></td>
</tr>
</tbody>
</table>
Example: CDNL-ASP

Consider

\[P = \left\{ \begin{align*}
x & \leftarrow \neg y \\
u & \leftarrow x, y \\
v & \leftarrow x \\
w & \leftarrow \neg x, \neg y \\
y & \leftarrow \neg x \\
u & \leftarrow v \\
v & \leftarrow u, y
\end{align*} \right\} \]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\overline{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(T u)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(T x)</td>
<td>({ T u, F x } \in \nabla)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(T v)</td>
<td>({ F v, T { x } } \in \Delta(v))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(F y)</td>
<td>({ T y, F { \neg x } } = \delta(y))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(F w)</td>
<td>({ T w, F { \neg x, \neg y } } = \delta(w))</td>
<td></td>
</tr>
</tbody>
</table>
Outline

1 Motivation

2 Boolean constraints

3 Nogoods from logic programs
 - Nogoods from program completion
 - Nogoods from loop formulas

4 Conflict-driven nogood learning
 - CDNL-ASP Algorithm
 - Nogood Propagation
 - Conflict Analysis
Outline of NogoodPropagation

- Derive deterministic consequences via:
 - Unit propagation on Δ_P and ∇;
 - Unfounded sets $U \subseteq \text{atom}(P)$

- Note that U is unfounded if $EB_P(U) \subseteq A^F$
 - Note For any $a \in U$, we have $(\lambda(a, U) \setminus \{Ta\}) \subseteq A$

- An “interesting” unfounded set U satisfies:

 $$\emptyset \subset U \subseteq (\text{atom}(P) \setminus A^F)$$

- Wrts a fixpoint of unit propagation, such an unfounded set contains some loop of P
 - Note Tight programs do not yield “interesting” unfounded sets!

- Given an unfounded set U and some $a \in U$, adding $\lambda(a, U)$ to ∇ triggers a conflict or further derivations by unit propagation
 - Note Add loop nogoods atom by atom to eventually falsify all $a \in U$
Outline of NogoodPropagation

- Derive deterministic consequences via:
 - Unit propagation on Δ_P and ∇;
 - Unfounded sets $U \subseteq atom(P)$
- Note that U is unfounded if $EB_P(U) \subseteq A^F$
 - Note For any $a \in U$, we have $(\lambda(a, U) \setminus \{Ta\}) \subseteq A$
- An “interesting” unfounded set U satisfies:

 $$\emptyset \subset U \subseteq (atom(P) \setminus A^F)$$

- Wrt a fixpoint of unit propagation,
 such an unfounded set contains some loop of P
 - Note Tight programs do not yield “interesting” unfounded sets!
- Given an unfounded set U and some $a \in U$, adding $\lambda(a, U)$ to ∇ triggers a conflict or further derivations by unit propagation
 - Note Add loop nogoods atom by atom to eventually falsify all $a \in U$
Outline of NogoodPropagation

- Derive deterministic consequences via:
 - Unit propagation on Δ_P and ∇;
 - Unfounded sets $U \subseteq \text{atom}(P)$
- Note that U is unfounded if $EB_P(U) \subseteq A^F$
 - Note For any $a \in U$, we have $(\lambda(a, U) \setminus \{Ta\}) \subseteq A$
- An “interesting” unfounded set U satisfies:
 \[
 \emptyset \subset U \subseteq (\text{atom}(P) \setminus A^F)
 \]
- Wrt a fixpoint of unit propagation, such an unfounded set contains some loop of P
 - Note Tight programs do not yield “interesting” unfounded sets!
- Given an unfounded set U and some $a \in U$, adding $\lambda(a, U)$ to ∇ triggers a conflict or further derivations by unit propagation
 - Note Add loop nogoods atom by atom to eventually falsify all $a \in U$
Outline of NogoodPropagation

- Derive deterministic consequences via:
 - Unit propagation on Δ_P and ∇;
 - Unfounded sets $U \subseteq \text{atom}(P)$
- Note that U is unfounded if $EB_P(U) \subseteq A^F$
 - Note For any $a \in U$, we have $(\lambda(a, U) \setminus \{Ta\}) \subseteq A$
- An “interesting” unfounded set U satisfies:

 $\emptyset \subset U \subseteq (\text{atom}(P) \setminus A^F)$

- Wr.t a fixpoint of unit propagation, such an unfounded set contains some loop of P
 - Note Tight programs do not yield “interesting” unfounded sets!
- Given an unfounded set U and some $a \in U$, adding $\lambda(a, U)$ to ∇ triggers a conflict or further derivations by unit propagation
 - Note Add loop nogoods atom by atom to eventually falsify all $a \in U$
Algorithm 2: \textsc{NogoodPropagation}

\textbf{Input} : A normal program P, a set ∇ of nogoods, and an assignment A.

\textbf{Output} : An extended assignment and set of nogoods.

$U := \emptyset$

// unfounded set

\begin{algorithmic}
 \STATE \textbf{loop}
 \STATE \quad \textbf{repeat}
 \STATE \quad \quad \textbf{if} $\delta \subseteq A$ for some $\delta \in \Delta_P \cup \nabla$ \textbf{then return} (A, ∇)
 \STATE \quad \quad \STATE $\Sigma := \{ \delta \in \Delta_P \cup \nabla \mid \delta \setminus A = \{\overline{\sigma}\}, \sigma \notin A \}$
 \STATE \quad \quad \STATE \textbf{if} $\Sigma \neq \emptyset$ \textbf{then let $\overline{\sigma} \in \delta \setminus A$ for some $\delta \in \Sigma$ in}
 \STATE \quad \quad \quad \STATE $dlevel(\sigma) := \max(\{dlevel(\rho) \mid \rho \in \delta \setminus \{\overline{\sigma}\}\} \cup \{0\})$
 \STATE \quad \quad \quad \STATE $A := A \circ \sigma$
 \STATE \quad \STATE \textbf{until} $\Sigma = \emptyset$
 \STATE \textbf{if} $\text{loop}(P) = \emptyset$ \textbf{then return} (A, ∇)

 $U := U \setminus A^F$
 \STATE \textbf{if} $U = \emptyset$ \textbf{then} $U := \text{UnfoundedSet}(P, A)$
 \STATE \textbf{if} $U = \emptyset$ \textbf{then return} (A, ∇)
 \STATE \quad // no unfounded set $\emptyset \subset U \subset \text{atom}(P) \setminus A^F$
\end{algorithmic}
Requirements for **UNFOUNDEDSet**

- Implementations of **UNFOUNDEDSet** must guarantee the following for a result U
 1. $U \subseteq (\text{atom}(P) \setminus A^F)$
 2. $EB_P(U) \subseteq A^F$
 3. $U = \emptyset$ iff there is no nonempty unfounded subset of $(\text{atom}(P) \setminus A^F)$

- Beyond that, there are various alternatives, such as:
 - Calculating the greatest unfounded set
 - Calculating unfounded sets within strongly connected components of the positive atom dependency graph of P
 - Usually, the latter option is implemented in ASP solvers
Requirements for `UNFOUNDEDSET`

- Implementations of `UNFOUNDEDSET` must guarantee the following for a result U
 1. $U \subseteq (\text{atom}(P) \setminus A^F)$
 2. $EB_P(U) \subseteq A^F$
 3. $U = \emptyset$ iff there is no nonempty unfounded subset of $(\text{atom}(P) \setminus A^F)$

- Beyond that, there are various alternatives, such as:
 - Calculating the greatest unfounded set
 - Calculating unfounded sets within strongly connected components of the positive atom dependency graph of P
 - Usually, the latter option is implemented in ASP solvers
Example: NogoodPropagation

Consider

\[P = \{ \begin{array}{l}
 x \leftarrow \sim y \\
 u \leftarrow x, y \\
 v \leftarrow x \\
 w \leftarrow \sim x, \sim y \\
 y \leftarrow \sim x \\
 u \leftarrow v \\
 v \leftarrow u, y
\end{array} \} \]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\bar{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(T_u)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(F{\sim x, \sim y})</td>
<td>(F_w)</td>
<td>({ T_w, F{\sim x, \sim y}} = \delta(w))</td>
</tr>
<tr>
<td>3</td>
<td>(F{\sim y})</td>
<td>(F_x)</td>
<td>({ T_x, F{\sim y}} = \delta(x))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x})</td>
<td>({ T{x}, Fx} \in \Delta({x}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x, y})</td>
<td>({ T{x, y}, Fx} \in \Delta({x, y}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{\sim x})</td>
<td>({ F{\sim x}, Fx} = \delta({\sim x}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_y)</td>
<td>({ F{\sim y}, Fy} = \delta({\sim y}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{v})</td>
<td>({ Tu, F{x, y}, F{v}} = \delta(u))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{u, y})</td>
<td>({ F{u, y}, Tu, Ty} = \delta({u, y}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Tv)</td>
<td>({ Fv, T{u, y}} \in \Delta(v))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>({ Tu, F{x}, F{x, y}} = \lambda(u, {u, v}))</td>
</tr>
</tbody>
</table>

Sebastian Rudolph (TUD)
Answer Set Programming: Solving
31 / 36
Outline

1 Motivation

2 Boolean constraints

3 Nogoods from logic programs
 - Nogoods from program completion
 - Nogoods from loop formulas

4 Conflict-driven nogood learning
 - CDNL-ASP Algorithm
 - Nogood Propagation
 - Conflict Analysis
Conflict-driven nogood learning

Conflict Analysis

Outline of Conflict Analysis

- Conflict analysis is triggered whenever some nogood \(\delta \in \Delta_P \cup \nabla \) becomes violated, viz. \(\delta \subseteq \mathcal{A} \), at a decision level \(dl > 0 \)
 - Note that all but the first literal assigned at \(dl \) have been unit-resulting for nogoods \(\varepsilon \in \Delta_P \cup \nabla \)
 - If \(\sigma \in \delta \) has been unit-resulting for \(\varepsilon \), we obtain a new violated nogood by resolving \(\delta \) and \(\varepsilon \) as follows:

\[
(\delta \setminus \{\sigma\}) \cup (\varepsilon \setminus \{\overline{\sigma}\})
\]

- Resolution is directed by resolving first over the literal \(\sigma \in \delta \) derived last, viz. \((\delta \setminus A[\sigma]) = \{\sigma\} \)
 - Iterated resolution progresses in inverse order of assignment
 - Iterated resolution stops as soon as it generates a nogood \(\delta \) containing exactly one literal \(\sigma \) assigned at decision level \(dl \)
 - This literal \(\sigma \) is called First Unique Implication Point (First-UIP)
 - All literals in \((\delta \setminus \{\sigma\}) \) are assigned at decision levels smaller than \(dl \)
Outline of Conflict Analysis

- Conflict analysis is triggered whenever some nogood $\delta \in \Delta P \cup \nabla$ becomes violated, viz. $\delta \subseteq A$, at a decision level $dl > 0$
 - Note that all but the first literal assigned at dl have been unit-resulting for nogoods $\varepsilon \in \Delta P \cup \nabla$
 - If $\sigma \in \delta$ has been unit-resulting for ε, we obtain a new violated nogood by resolving δ and ε as follows:
 $$ (\delta \setminus \{\sigma\}) \cup (\varepsilon \setminus \{\overline{\sigma}\}) $$

- Resolution is directed by resolving first over the literal $\sigma \in \delta$ derived last, viz. $(\delta \setminus A[\sigma]) = \{\sigma\}$
 - Iterated resolution progresses in inverse order of assignment
- Iterated resolution stops as soon as it generates a nogood δ containing exactly one literal σ assigned at decision level dl
 - This literal σ is called First Unique Implication Point (First-UIP)
 - All literals in $(\delta \setminus \{\sigma\})$ are assigned at decision levels smaller than dl
Outline of Conflict Analysis

- Conflict analysis is triggered whenever some nogood \(\delta \in \Delta_P \cup \nabla \) becomes violated, viz. \(\delta \subseteq A \), at a decision level \(dl > 0 \)
 - Note that all but the first literal assigned at \(dl \) have been unit-resulting for nogoods \(\varepsilon \in \Delta_P \cup \nabla \)
 - If \(\sigma \in \delta \) has been unit-resulting for \(\varepsilon \), we obtain a new violated nogood by resolving \(\delta \) and \(\varepsilon \) as follows:

\[
(\delta \setminus \{\sigma\}) \cup (\varepsilon \setminus \{\overline{\sigma}\})
\]

- Resolution is directed by resolving first over the literal \(\sigma \in \delta \) derived last, viz. \((\delta \setminus A[\sigma]) = \{\sigma\} \)
 - Iterated resolution progresses in inverse order of assignment

- Iterated resolution stops as soon as it generates a nogood \(\delta \) containing exactly one literal \(\sigma \) assigned at decision level \(dl \)
 - This literal \(\sigma \) is called First Unique Implication Point (First-UIP)
 - All literals in \((\delta \setminus \{\sigma\}) \) are assigned at decision levels smaller than \(dl \)
Algorithm 3: ConflictAnalysis

Input : A non-empty violated nogood δ, a normal program P, a set ∇ of nogoods, and an assignment A.
Output : A derived nogood and a decision level.

loop
 let $\sigma \in \delta$ such that $\delta \setminus A[\sigma] = \{\sigma\}$ in
 $k := \max\{|d\text{level}(\rho)| \mid \rho \in \delta \setminus \{\sigma\}\} \cup \{0\}$
 if $k = d\text{level}(\sigma)$ then
 let $\varepsilon \in \Delta_P \cup \nabla$ such that $\varepsilon \setminus A[\sigma] = \{\overline{\sigma}\}$ in
 $\delta := (\delta \setminus \{\sigma\}) \cup (\varepsilon \setminus \{\overline{\sigma}\})$ // resolution
 else return (δ, k)
Example: ConflictAnalysis

Consider

\[P = \left\{ \begin{array}{lll}
 x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
 y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y
\end{array} \right\} \]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\bar{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Tu)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(F{\sim x, \sim y})</td>
<td>(Fw)</td>
<td>({ Tw, F{\sim x, \sim y}} = \delta(w))</td>
</tr>
<tr>
<td>3</td>
<td>(F{\sim y})</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Fx)</td>
<td>({ Tx, F{\sim y}} = \delta(x))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(F{x})</td>
<td>({ T{x}, Fx} \in \Delta({x}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(F{x, y})</td>
<td>({ T{x, y}, Fx} \in \Delta({x, y}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Tw)</td>
<td>(F{\sim x}, Fx } = \delta({\sim x}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Ty)</td>
<td>(F{\sim y}, Fy } = \delta({\sim y}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Tu)</td>
<td>({ Tu, F{x, y}, F{v}}) (= \delta(u))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(T{u, y})</td>
<td>({ F{u, y}, Tu, Ty }) (= \delta({u, y}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Tv)</td>
<td>({ Fv, Tu, T{u, y}} \in \Delta(v))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>({ Tu, F{x}, F{x, y}}) (= \lambda(u, {u, v})) (\times)</td>
<td></td>
</tr>
</tbody>
</table>

Sebastian Rudolph (TUD)
Answer Set Programming: Solving
Example: ConflictAnalysis

Consider

\[P = \begin{cases}
 x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
 y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y
\end{cases} \]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\bar{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Tu)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(F{\sim x, \sim y})</td>
<td>(Fw)</td>
<td>({ Tw, F{\sim x, \sim y}} = \delta(w))</td>
</tr>
<tr>
<td>3</td>
<td>(F{\sim y})</td>
<td>(Fx)</td>
<td>({ Tx, F{\sim y}} = \delta(x))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x})</td>
<td>({ Tx, F{x}} \in \Delta({x}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x, y})</td>
<td>({ Tx, y, F{x}} \in \Delta({x, y}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Tw)</td>
<td>(F{\sim x}, Fx) = \delta({\sim x})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Ty)</td>
<td>(F{\sim y}, Fy) = \delta({\sim y})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Tu)</td>
<td>(F{x, y}, F{v}} = \delta(u)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{u, y})</td>
<td>(F{u, y}, Tw, Ty } = \delta({u, y})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Tv)</td>
<td>(Fv, T{u, y}} \in \Delta(v)</td>
</tr>
</tbody>
</table>

\[\{ Tu, F\{x\}\} \]

\[\{ Tu, F\{x\}, F\{x, y\}\} = \lambda(u, \{u, v\}) \]
Example: ConflictAnalysis

Consider

\[P = \{ \begin{align*}
x & \leftarrow \sim y \\
y & \leftarrow \sim x \\
u & \leftarrow x, y \\
v & \leftarrow x & w & \leftarrow \sim x, \sim y \\
u & \leftarrow v \\
v & \leftarrow u, y
\end{align*} \} \]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\overline{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Tu)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(F{\sim x, \sim y})</td>
<td>(Fw)</td>
<td>({ Tw, F{\sim x, \sim y}} = \delta(w))</td>
</tr>
<tr>
<td>3</td>
<td>(F{\sim y})</td>
<td>(Fx)</td>
<td>({ Tx, F{\sim y}} = \delta(x))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x})</td>
<td>({ T{x}, Fx} \in \Delta({x}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x, y})</td>
<td>({ T{x, y}, Fx} \in \Delta({x, y}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{\sim x})</td>
<td>({ F{\sim x}, Fx} = \delta({\sim x}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Ty)</td>
<td>({ F{\sim y}, Fy} = \delta({\sim y}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{v})</td>
<td>({ Tu, F{x, y}, F{v}} = \delta(u))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{u, y})</td>
<td>({ F{u, y}, Tu, Ty} = \delta({u, y}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Tv)</td>
<td>({ Fv, T{u, y}} \in \Delta(v))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>({ Tu, F{x}, F{x, y}} = \lambda(u, {u, v}))</td>
</tr>
</tbody>
</table>
Example: ConflictAnalysis

Consider

\[P = \begin{cases}
 x \leftarrow \neg y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \neg x, \neg y \\
 y \leftarrow \neg x & u \leftarrow v & v \leftarrow u, y
\end{cases} \]

<table>
<thead>
<tr>
<th>dl</th>
<th>\sigma_d</th>
<th>\overline{\sigma}</th>
<th>\delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>F{\neg x, \neg y}</td>
<td></td>
<td>{Tw, F{\neg x, \neg y}} = \delta(w)</td>
</tr>
<tr>
<td>3</td>
<td>F{\neg y}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fx</td>
<td>{Tx, F{\neg y}} = \delta(x)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F{x}</td>
<td>{Tx, Fx} \in \Delta({x})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F{x, y}</td>
<td>{Tx, y}, Fx \in \Delta({x, y})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T{\neg x}</td>
<td>F{\neg x}, Fx = \delta({\neg x})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ty</td>
<td>F{\neg y}, Fy = \delta({\neg y})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T{v}</td>
<td>{Tu, F{x, y}, F{v}} = \delta(u)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T{u, y}</td>
<td>F{u, y}, Tu, Ty = \delta({u, y})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T{u, y}</td>
<td>F{u, y}, Tu, Ty = \delta({u, y})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T{v}</td>
<td>F{v, T{u, y}} \in \Delta(v)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>{Tu, F{x}}, F{x, y} = \lambda(u, {u, v})</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>
Conflict-driven nogood learning

Example: ConflictAnalysis

Consider

\[P = \{ \begin{align*}
 x & \leftarrow \neg y \\
 u & \leftarrow x, y \\
 v & \leftarrow x \\
 w & \leftarrow \neg x, \neg y \\
 y & \leftarrow \neg x \\
 u & \leftarrow v \\
 v & \leftarrow u, y
\end{align*} \} \]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\bar{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Tu)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(F{\neg x, \neg y})</td>
<td>(Fw)</td>
<td>({ Tw, F{\neg x, \neg y}} = \delta(w))</td>
</tr>
<tr>
<td>3</td>
<td>(F{\neg y})</td>
<td>(Fx)</td>
<td>({ Tx, F{\neg y}} = \delta(x))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>({ x })</td>
<td>({ x } \in \Delta({ x }))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x})</td>
<td>({ x, y }, Fx } \in \Delta({ x, y }))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x, y})</td>
<td>({ F{x}, Fx } = \delta({\neg x}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{\neg x})</td>
<td>({ F{\neg y}, Fy } = \delta({\neg y}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Ty)</td>
<td>({ Tu, F{x, y}, F{v}} = \delta(u))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{v})</td>
<td>({ F{u, y}, Tu, Ty } = \delta({u, y}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{u, y})</td>
<td>({ Fv, Tu, Ty } \in \Delta(v))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Tv)</td>
<td>({ Tu, F{x}, F{x, y}} = \lambda(u, { u, v }))</td>
</tr>
</tbody>
</table>

\[\square \]
Example: ConflictAnalysis

Consider

\[P = \left\{ \begin{array}{l}
 x \leftarrow \sim y \\
 u \leftarrow x, y \\
 v \leftarrow x \\
 w \leftarrow \sim x, \sim y \\
 y \leftarrow \sim x \\
 u \leftarrow v \\
 v \leftarrow u, y
\end{array} \right\} \]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\bar{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Tu)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(F{\sim x, \sim y})</td>
<td>(Fw)</td>
<td>(Fw) = \delta(w)</td>
</tr>
<tr>
<td>3</td>
<td>(F{\sim y})</td>
<td>(Fx)</td>
<td>(Fx) = \delta(x)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x})</td>
<td>(F{x}) = \delta({x})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x, y})</td>
<td>(F{x, y}) = \delta({x, y})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{\sim x})</td>
<td>(F{\sim x}, Fx) = \delta({\sim x})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T y)</td>
<td>(F{\sim y}, Fy) = \delta({\sim y})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{v})</td>
<td>(Tu, F{x, y}, F{v}) = \delta(u)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{u, y})</td>
<td>(F{u, y}, Tu, Ty) = \delta({u, y})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T v)</td>
<td>(Fv, Tu, T y) = \delta({u, y})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(T u, F{x}, F{x, y}) = \lambda(u, {u, v})</td>
</tr>
</tbody>
</table>

\[T \{\sim x\} \}
\[\{ Tu, Fx \} \]
\[\{ Tu, Fx, F\{x\} \} \]
Example: ConflictAnalysis

Consider

\[P = \left\{ \begin{array}{l}
 x \leftarrow \sim y \\
 u \leftarrow x, y \\
 v \leftarrow x \\
 w \leftarrow \sim x, \sim y \\
 y \leftarrow \sim x \\
 u \leftarrow v \\
 v \leftarrow u, y
\end{array} \right\} \]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\bar{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Tu)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(F{\sim x, \sim y})</td>
<td>(Fw)</td>
<td>({ Tw, F{\sim x, \sim y}} = \delta(w))</td>
</tr>
<tr>
<td>3</td>
<td>(F{\sim y})</td>
<td></td>
<td>({ Tu, Fx })</td>
</tr>
<tr>
<td></td>
<td>(Fx)</td>
<td>({ Tx, F{\sim y}} = \delta(x))</td>
<td>({ Tu, Fx, F{x}})</td>
</tr>
<tr>
<td></td>
<td>(F{x})</td>
<td>({ T{x}, Fx} \in \Delta({x}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(F{x, y})</td>
<td>({ T{x, y}, Fx} \in \Delta({x, y}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(T{\sim x})</td>
<td>({ F{\sim x}, Fx} = \delta({\sim x}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Ty)</td>
<td>({ F{\sim y}, Fy} = \delta({\sim y}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(T{v})</td>
<td>({ Tu, F{x, y}, F{v}} = \delta(u))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(T{u, y})</td>
<td>({ F{u, y}, Tu, Ty} = \delta({u, y}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Tv)</td>
<td>({ Fv, Tu, Ty} \in \Delta(v))</td>
<td>({ Tu, F{x}, F{x, y}} = \lambda(u, {u, v}))</td>
</tr>
</tbody>
</table>

Sebastian Rudolph (TUD) | Answer Set Programming: Solving | 35 / 36
Example: ConflictAnalysis

Consider

\[P = \{ x \leftarrow \neg y \quad u \leftarrow x, y \quad v \leftarrow x \quad w \leftarrow \neg x, \neg y \quad y \leftarrow \neg x \quad u \leftarrow v \quad v \leftarrow u, y \} \]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\bar{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Tu)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(F{\neg x, \neg y})</td>
<td>(Fw)</td>
<td>({ T_w, F{\neg x, \neg y} } = \delta(w))</td>
</tr>
<tr>
<td>3</td>
<td>(F{\neg y})</td>
<td>(Fx)</td>
<td>({ T_x, F{\neg y} } = \delta(x))</td>
</tr>
<tr>
<td></td>
<td>(F{x})</td>
<td>({ T{x}, Fx } \in \Delta({x}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(F{x, y})</td>
<td>({ T{x, y}, Fx } \in \Delta({x, y}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(T{\neg x})</td>
<td>({ F{\neg x}, Fx } = \delta({\neg x}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Ty)</td>
<td>({ F{\neg y}, Fy } = \delta({\neg y}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(T{v})</td>
<td>({ Tu, F{x, y}, F{v} } = \delta(u))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(T{u, y})</td>
<td>({ F{u, y}, Tu, Ty } = \delta({u, y}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Tv)</td>
<td>({ Fv, T{u, y} } \in \Delta(v))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>({ Tu, F{x}, F{x, y} } = \lambda(u, {u, v}))</td>
<td></td>
</tr>
</tbody>
</table>
Example: ConflictAnalysis

Consider

\[P = \begin{cases} x \leftarrow \neg y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \neg x, \neg y \\ y \leftarrow \neg x & u \leftarrow v & v \leftarrow u, y \end{cases} \]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\overline{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Tu)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(F{\neg x, \neg y})</td>
<td>(Fw)</td>
<td>(Tw, F{\neg x, \neg y}) = (\delta(w))</td>
</tr>
<tr>
<td>3</td>
<td>(F{\neg y})</td>
<td>(Fx)</td>
<td>(Tw, F{\neg y}) = (\delta(x))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x})</td>
<td>(Tw, F{x, y}) (\in \Delta({x}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x, y})</td>
<td>(Tw, F{x}) (\in \Delta({x, y}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Tw)</td>
<td>(Tw, T{u, y}) = (\delta({u, y}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{v})</td>
<td>(Tu, F{x, y}, F{v}) = (\delta(u))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{u, y})</td>
<td>(F{u, y}, Tu, Ty) = (\delta({u, y}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Tw)</td>
<td>(Tw, T{u, y}) (\in \Delta({v}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Tv)</td>
<td>(Tu, F{x}, F{x, y}) = (\lambda(u, {u, v}))</td>
</tr>
</tbody>
</table>
Conflict-driven nogood learning

Example: ConflictAnalysis

Consider

\[P = \left\{ \begin{align*}
x & \leftarrow \sim y \\
u & \leftarrow x, y \\
v & \leftarrow x \\
w & \leftarrow \sim x, \sim y \\
y & \leftarrow \sim x \\
u & \leftarrow v \\
v & \leftarrow u, y
\end{align*} \right\} \]

<table>
<thead>
<tr>
<th>dl</th>
<th>(\sigma_d)</th>
<th>(\bar{\sigma})</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Tu)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(F{\sim x, \sim y})</td>
<td>(F_w)</td>
<td>({ Tw, F{\sim x, \sim y}} = \delta(w))</td>
</tr>
<tr>
<td>3</td>
<td>(F{\sim y})</td>
<td>(Fx)</td>
<td>({Tx, F{\sim y}} = \delta(x))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x})</td>
<td>({T{x}, Fx} \in \Delta({x}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F{x, y})</td>
<td>({T{x, y}, Fx} \in \Delta({x, y}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{\sim x})</td>
<td>({F{\sim x}, Fx} = \delta({\sim x}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Ty)</td>
<td>({F{\sim y}, Fy} = \delta({\sim y}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{v})</td>
<td>({Tu, F{x, y}, F{v}} = \delta(u))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T{u, y})</td>
<td>({F{u, y}, Tu, Ty} = \delta({u, y}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Tv)</td>
<td>({Fv, T{u, y}} \in \Delta(\nu))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_u, F{x}, F{x, y})</td>
<td>(\lambda(u, {u, v}))</td>
</tr>
</tbody>
</table>

Sebastian Rudolph (TUD) Answer Set Programming: Solving
Remarks

- There always is a First-UIP at which conflict analysis terminates
 - In the worst, resolution stops at the heuristically chosen literal assigned at decision level dl
- The nogood δ containing First-UIP σ is violated by A, viz. $\delta \subseteq A$
- We have $k = \max(\{dl(\rho) \mid \rho \in \delta \setminus \{\sigma\}\} \cup \{0\}) < dl$
 - After recording δ in ∇ and backjumping to decision level k, $\overline{\sigma}$ is unit-resulting for δ!
 - Such a nogood δ is called asserting
- Asserting nogoods direct conflict-driven search into a different region of the search space than traversed before, without explicitly flipping any heuristically chosen literal!
Remarks

- There always is a First-UIP at which conflict analysis terminates
 - In the worst, resolution stops at the heuristically chosen literal assigned at decision level dl
- The nogood δ containing First-UIP σ is violated by A, viz. $\delta \subseteq A$
- We have $k = \max(\{dl(\rho) \mid \rho \in \delta \setminus \{\sigma\}\} \cup \{0\}) < dl$
 - After recording δ in ∇ and backjumping to decision level k, $\overline{\sigma}$ is unit-resulting for δ!
 - Such a nogood δ is called asserting
- Asserting nogoods direct conflict-driven search into a different region of the search space than traversed before, without explicitly flipping any heuristically chosen literal!
Remarks

- There always is a First-UIP at which conflict analysis terminates
 - In the worst, resolution stops at the heuristically chosen literal assigned at decision level dl
- The nogood δ containing First-UIP σ is violated by A, viz. $\delta \subseteq A$
- We have $k = \max\{dl(\rho) \mid \rho \in \delta \setminus \{\sigma\} \cup \{0\}\} < dl$
 - After recording δ in ∇ and backjumping to decision level k, $\overline{\sigma}$ is unit-resulting for δ!
 - Such a nogood δ is called asserting

- Asserting nogoods direct conflict-driven search into a different region of the search space than traversed before, without explicitly flipping any heuristically chosen literal!
Remarks

- There always is a First-UIP at which conflict analysis terminates
 - In the worst, resolution stops at the heuristically chosen literal assigned at decision level dl
- The nogood δ containing First-UIP σ is violated by A, viz. $\delta \subseteq A$
- We have $k = \max(\{dl(\rho) \mid \rho \in \delta \setminus \{\sigma\} \cup \{0\}\} < dl$
 - After recording δ in ∇ and backjumping to decision level k, $\overline{\sigma}$ is unit-resulting for δ!
 - Such a nogood δ is called asserting
- Asserting nogoods direct conflict-driven search into a different region of the search space than traversed before, without explicitly flipping any heuristically chosen literal!