

Weak Completion Semantics and Abduction

Steffen Hölldobler

International Center for Computational Logic
Technische Universität Dresden
Germany

- ▶ The Suppression Task
- ▶ Rules, Facts and Assumptions
- ▶ Weak Completion Semantics
- ▶ Abduction

"Logic is everywhere ..."

The Suppression Task

- ▶ Byrne: Suppressing Valid Inferences with Conditionals. Cognition 31, 61-83: 1989

C_1 If she has an essay to write, then she will go to the library
 C_2 if she has a textbook to read, then she will go to the library
 C_3 If the library is open, then she will go to the library
 E She has an essay to write
 L She will go to the library

	E	$\neg E$	L	$\neg L$
C_1	96%	46%	71%	92%
$C_1 \& C_2$	96%	4%	13%	96%
$C_1 \& C_3$	38%	63%	54%	33%
	(L)	$(\neg L)$	(E)	$(\neg E)$

The Suppression Task – Modus Ponens

- ▶ Stenning, van Lambalgen: Human Reasoning and Cognitive Science. MIT Press: 2008

▶ Programs

$$\begin{array}{l} e \leftarrow \top \\ \ell \leftarrow e \wedge \neg ab_1 \\ ab_1 \leftarrow \perp \end{array}$$

fact
rule
assumption

definition of e
definition of ℓ
 ab_1 is assumed to be false

▶ Weakly completed programs & least models

$$\begin{array}{l} e \leftrightarrow \top \\ \ell \leftrightarrow e \wedge \neg ab_1 \\ ab_1 \leftrightarrow \perp \end{array}$$

true	false
e	ab_1
ℓ	

$\Phi \uparrow 1$
 $\Phi \uparrow 2$

▶ Computing logical consequences with respect to least models

$$\mathcal{M} = \langle \{e, \ell\}, \{ab_1\} \rangle \models_{wcs} \ell$$

- ▶ Łukasiewicz: O logice trójwartościowej. Ruch Filozoficzny 5, 169-171: 1920
H., Kencana Ramli: Logic Programs under Three-Valued Łukasiewicz's Semantics
LNCS 5649, 464-478: 2009

The Suppression Task – Alternative Argument

► Programs

$e \leftarrow \top$	fact	definition of e
$\ell \leftarrow e \wedge \neg ab_1$	rule	definition of ℓ
$ab_1 \leftarrow \perp$	assumption	ab_1 is assumed to be false
$\ell \leftarrow t \wedge \neg ab_2$	rule	definition of ℓ
$ab_2 \leftarrow \perp$	assumption	ab_2 is assumed to be false

► Weakly completed programs & least models

$e \leftrightarrow \top$
$\ell \leftrightarrow (e \wedge \neg ab_1) \vee (t \wedge \neg ab_2)$
$ab_1 \leftrightarrow \perp$
$ab_2 \leftrightarrow \perp$

	true	false
e	ab_1	
		ab_2
ℓ		

$\Phi \uparrow 1$
 $\Phi \uparrow 2$

► Computing logical consequences with respect to least models

$$\mathcal{M} = \langle \{e, \ell\}, \{ab_1, ab_2\} \rangle \models_{wcs} \ell$$

The Suppression Task – Additional Argument

► Programs

$e \leftarrow \top$	fact	definition of e
$\ell \leftarrow e \wedge \neg ab_1$	rule	definition of ℓ
$ab_1 \leftarrow \perp$	assumption	ab_1 is assumed to be false
$\ell \leftarrow o \wedge \neg ab_3$	rule	definition of ℓ
$ab_3 \leftarrow \perp$	assumption	ab_3 is assumed to be false
$ab_1 \leftarrow \neg o$	rule	definition of ab_1
$ab_3 \leftarrow \neg e$	rule	definition of ab_3

► Weakly completed programs & least models

$e \leftrightarrow \top$	true	false	
$\ell \leftrightarrow (e \wedge \neg ab_1) \vee (o \wedge \neg ab_3)$			$\Phi \uparrow 1$
$ab_1 \leftrightarrow \perp \vee \neg o$			$\Phi \uparrow 2$
$ab_3 \leftrightarrow \perp \vee \neg e$			

► Computing logical consequences with respect to least models

$$\mathcal{M} = \langle \{e\}, \{ab_3\} \rangle \not\models_{wcs} \ell$$

The Suppression Task – Denial of the Antecedent

► Programs

$$\begin{array}{l} e \leftarrow \perp \\ \ell \leftarrow e \wedge \neg ab_1 \\ ab_1 \leftarrow \perp \end{array}$$

► Weakly completed programs & least models

$$\begin{array}{l} e \leftrightarrow \perp \\ \ell \leftrightarrow e \wedge \neg ab_1 \\ ab_1 \leftrightarrow \perp \end{array}$$

true	false
e	
ab_1	
ℓ	

► Computing logical consequences with respect to least models

$$\mathcal{M} = \langle \emptyset, \{e, ab_1, \ell\} \rangle \models_{wcs} \neg \ell$$

The Suppression Task – Affirmation of the Consequent

► Programs

$$\begin{array}{l} \ell \leftarrow \top \\ \ell \leftarrow e \wedge \neg ab_1 \\ ab_1 \leftarrow \perp \end{array}$$

► Weakly completed programs & least models

$$\begin{array}{l} \ell \leftrightarrow \top \vee (e \wedge \neg ab_1) \\ ab_1 \leftrightarrow \perp \end{array}$$

$$\begin{array}{c} \text{true} \quad \text{false} \\ \hline \ell & ab_1 \end{array}$$

► Computing logical consequences with respect to least models

$$\mathcal{M} = \langle \{\ell\}, \{ab_1\} \rangle \not\models_{wcs} e$$

► Byrne 1989 **most humans conclude e !**

Abduction

► Programs & observations

$$\begin{array}{l} \ell \leftarrow e \wedge \neg ab_1 \\ ab_1 \leftarrow \perp \end{array} \qquad \ell$$

► Abducibles

$$e \leftarrow \top \qquad e \leftarrow \perp$$

► Weakly completed programs plus explanations & least models

$$\begin{array}{l} \ell \leftrightarrow e \wedge \neg ab_1 \\ ab_1 \leftrightarrow \perp \\ e \leftrightarrow \top \end{array}$$

true	false
e	ab_1
ℓ	

► Computing logical consequences with respect to least models

$$\mathcal{M} = \langle \{e, \ell\}, \{ab_1\} \rangle \models_{wcs} e$$

- H., Philipp, Wernhard: An Abductive Model for Human Reasoning. In: Proc. Tenth Int. Symposium on Logical Formalizations of Commonsense Reasoning: 2011

Alternative Arguments and Affirmation of the Consequent

► Programs & observations

$$\begin{array}{l}
 \ell \leftarrow e \wedge \neg ab_1 \\
 ab_1 \leftarrow \perp \\
 \ell \leftarrow t \wedge \neg ab_2 \\
 ab_2 \leftarrow \perp
 \end{array}
 \qquad \ell$$

► Abducibles

$$e \leftarrow \top \qquad t \leftarrow \top \qquad e \leftarrow \perp \qquad t \leftarrow \perp$$

► Weakly completed programs plus explanations & least models

$$\begin{array}{l}
 \ell \leftrightarrow (e \wedge \neg ab_1) \vee (t \wedge \neg ab_2) \\
 ab_1 \leftrightarrow \perp \\
 ab_2 \leftrightarrow \perp \\
 e \leftrightarrow \top \text{ or } t \leftrightarrow \top
 \end{array}$$

true	false	true	false
e	ab ₁	t	ab ₁
	ab ₂		ab ₂
<hr/>			ℓ
<hr/>			ℓ

► Computing skeptical consequences with respect to both models

► e does not follow

- Dietz, H., Ragni: A Computational Logic Approach to the Suppression Task
Proc. COGSCI, 1500-1505: 2012

Usually Birds Fly

► Programs & observations

$fly(X) \leftarrow bird(X) \wedge \neg ab(X)$	$\neg fly(tweety)$
$ab(X) \leftarrow \perp$	
$bird(tweety) \leftarrow \top$	
$bird(jerry) \leftarrow \top$	

► Abducibles

\emptyset

► Weakly completed programs plus explanations & least models

$fly(tweety) \leftrightarrow bird(tweety) \wedge \neg ab(tweety)$	
$fly(jerry) \leftrightarrow bird(jerry) \wedge \neg ab(jerry)$	
$ab(tweety) \leftrightarrow \perp$	
$ab(jerry) \leftrightarrow \perp$	
$bird(tweety) \leftrightarrow \top$	
$bird(jerry) \leftrightarrow \top$	

<i>true</i>	<i>false</i>
$bird(tweety)$	$ab(tweety)$
$bird(jerry)$	$ab(jerry)$
$fly(tweety)$	
$fly(jerry)$	

► We cannot explain the observation!

Abducibles Revised

► Programs & observations

$fly(X) \leftarrow bird(X) \wedge \neg ab(X)$	$\neg fly(tweety)$
$ab(X) \leftarrow \perp$	
$bird(tweety) \leftarrow \top$	
$bird(jerry) \leftarrow \top$	

► Abducibles

$$ab(tweety) \leftarrow \top \quad ab(jerry) \leftarrow \top$$

► Weakly completed programs plus explanations & least models

$fly(tweety) \leftrightarrow bird(tweety) \wedge \neg ab(tweety)$	$true$	$false$
$fly(jerry) \leftrightarrow bird(jerry) \wedge \neg ab(jerry)$	$bird(tweety)$	$ab(jerry)$
$ab(tweety) \leftrightarrow \perp \vee \top$	$bird(jerry)$	
$ab(jerry) \leftrightarrow \perp$	$ab(tweety)$	
$bird(tweety) \leftrightarrow \top$	$fly(jerry)$	$fly(tweety)$
$bird(jerry) \leftrightarrow \top$		

► Dietz Saldanha, H., Pereira

Contextual Reasoning: Usually Birds can Abductively Fly. TUD: 2017 (submitted)

Summary

- ▶ Usually,
 - ▷ \mathcal{P} denotes a program, i.e. a finite set of facts, rules and assumptions
 - ▷ $g\mathcal{P}$ denotes the ground instance of \mathcal{P}
 - ▷ $wc\mathcal{P}$ denotes the weak completion of $g\mathcal{P}$
 - ▷ $M_{\mathcal{P}}$ denotes the least model of $wc\mathcal{P}$
 - ▷ $A_{\mathcal{P}}$ denotes the set of abducibles of $g\mathcal{P}$
 - ▷ IC denotes a finite set of integrity constraints of the form $U \leftarrow L_1 \wedge \dots \wedge L_n$
- ▶ Weak Completion Semantics is the approach
 - ▷ to consider weakly completed programs
 - ▷ to compute their least models
 - ▷ and to reason with respect to these models

