
Correcting Access Restrictions to a Consequence
More Flexibly

Eldora1?, Martin Knechtel2, and Rafael Peñaloza1

1 Theoretical Computer Science, TU Dresden, Germany
eldora.eldora@mailbox.tu-dresden.de, penaloza@tcs.inf.tu-dresden.de

2 SAP Research, Germany
martin.knechtel@sap.com

Abstract. Recent research has shown that labeling ontologies can be
useful for restricting the access to some of the axioms and their implicit
consequences. However, the labeling of the axioms is an error-prone and
highly sensible task. In previous work we have shown how to correct the
access restrictions if the security administrator knows the precise access
level that a consequence must receive, and axioms are relabeled to that
same access level. In this paper, we look at a more general situation
in which access rights can be granted or denied to some specific users,
without having to fully specify the precise access level. We also allow a
more flexible labeling function, where the new access level of the relabeled
axioms may differ from the level of the restriction. We provide black-box
algorithms for computing suggestions of axioms to be relabeled.

1 Introduction

Description Logics (DL) [1] have been successfully used to represent knowledge
of various application domains. One of the main advantages of using a logic-
based knowledge representation language is the possibility of reasoning within
the system; that is, deriving implicit consequences from the explicitly stated
knowledge in the ontology.

In some application domains it is desirable to restrict users to access only
portions of the ontology. For instance, in a security scenario [5], users with a low
security clearance should not be able to access classified information. Other mo-
tivations for restricting access to users are the reduction of information overload,
or filtering w.r.t. a level of specialization. Rather than maintaining different sub-
ontologies for each definable user level, we have previously proposed [2] to label
each axiom with information on which users can access it. Reasoning then gener-
alizes to the task of finding an adequate label for each implicit consequence of the
ontology. This label, called a boundary, can be computed through black-box [2]
as well as glass-box [9] techniques.

However, the task of labeling axioms according to their access level is error-
prone and highly sensitive to noise. Indeed, a set of seemingly innocuous axioms

? This work was developed while the author worked for SAP Research Dresden.

may allow a user to derive some unwanted consequence. Dually, a too restrictive
access level may hide a consequence from relevant users. This problem becomes
more pronounced if neither the security administrator nor the knowledge engi-
neer is an expert in logic. We thus want to develop a system that can automat-
ically suggest changes in the labeling function that correct the access to a given
consequence.

In previous work [8, 7] we have developed and implemented efficient algo-
rithms for correcting access restrictions to implicit consequences if (i) the knowl-
edge engineer knows the exact access level the consequence must receive (called
the goal label) and (ii) axioms are always relabeled to the goal label. In this
paper we relax these both conditions. On the one hand, we allow the knowledge
engineer to specify a bound on the desired access level, rather than an exact
value. This is useful, for instance, to express that a set of users must all have
access to the consequence, but it is irrelevant which other users (if any) can also
derive it. On the other hand, the knowledge engineer is also able to specify a
so-called target label to which the axioms are relabeled. Contrary to the previous
approach, the target label needs not be equal to the goal label.

We develop black-box algorithms for finding the minimal sets of axioms that
need to be relabeled to the target label in order for the access of the consequence
to satisfy the restriction imposed. Additionally, we show that our methods can be
improved if one is only interested in finding one such set of minimal cardinality.
All our methods are based on results and ideas from axiom-pinpointing [11, 3],
but optimized by considering the labels of the axioms used.

2 Preliminaries

To keep our presentation and results as general as possible, we impose only
minimal restrictions to our ontology language. We just assume that an ontology
is a finite set, whose elements are called axioms. An ontology language specifies
which sets of axioms are admitted as ontologies, with the only restriction that
every subset of an ontology is itself an ontology. If O′ ⊆ O and O is an ontology,
then O′ is called a sub-ontology of O. A monotone consequence relation |= is a
binary relation between ontologies O and consequences c such that if O |= c,
then for every ontology O′ ⊇ O it holds that O′ |= c. If O |= c, we say that c
follows from O or that O entails c. Consider, for instance, a description logic
L. Then, an ontology is a finite set of general concept inclusion axioms (GCIs)
of the form C v D, with C,D L-concept descriptions and assertion axioms of
the form C(b), with C an L-concept description and b an individual name. An
example of a consequence is the subsumption relation A v B between concept
names A,B.

If O |= c, we may be interested in finding the axioms responsible for this
fact. A sub-ontology S ⊆ O is called a MinA for O,c if S |= c and for every
S ′ ⊂ S,S ′ 6|= c. The dual notion of a MinA is that of a diagnosis. A diagnosis for
O,c is a sub-ontology S ⊆ O such that O \ S 6|= c and O \ S ′ |= c for all S ′ ⊂ S.

For a lattice (L,≤) and a set K ⊆ L, we denote as
⊕

`∈K ` and
⊗

`∈K ` the
join (least upper bound) and meet (greatest lower bound) of K, respectively. We
consider that ontologies are labeled with elements of the lattice. More formally,
for an ontology O there is a labeling function lab that assigns a label lab(a) ∈ L
to every element a of O. We will often use the notation Llab := {lab(a) | a ∈ O}.

For a user labeled with the access level ` ∈ L, we denote as O≥` the sub-
ontology O≥` := {a ∈ O | lab(a) ≥ `} visible for him. The sub-ontologies
O≤`,O=`,O6=`,O6≥`, and O6≤` are defined analogously. Conversely, for a sub-
ontology S ⊆ O, we define

λS :=
⊗

a∈S lab(a) and µS :=
⊕

a∈S lab(a).

An element ` ∈ L is join prime relative to Llab if for every K1, . . . ,Kn ⊆ Llab, it
holds that ` ≤

⊕n
i=1 λKi

implies that there is i, 1 ≤ i ≤ n such that ` ≤ λKi
. For

instance, in the lattice from Figure 1, `1 and `4 are the only elements that are not
join prime relative to Llab = {`1, . . . , `5}, since `1 ≤ `2 ⊕ `4 but neither `1 ≤ `2
nor `1 ≤ `4 and similarly `4 ≤ `5⊕`3 but neither `4 ≤ `5 nor `4 ≤ `3. Join prime
elements relative to Llab are called user labels. The set of all user labels is denoted
as U . When dealing with labeled ontologies, the reasoning problem of interest
consists on the computation of a boundary for a consequence c. Intuitively, the
boundary divides the user labels ` of U according to whether O≥` entails c or
not.

Definition 1 (Boundary). Let O be an ontology, lab a labeling function and
c a consequence. An element ν ∈ L is called a boundary for O,c,lab if for every
join prime element relative to Llab ` it holds that ` ≤ ν iff O≥` |= c.

Given a user label `u, we will say that the user sees a consequence c if `u ≤ ν
for some boundary ν. The following lemma relating MinAs and boundaries was
shown in [2].

Lemma 2. If S1, . . . ,Sn are all MinAs for O,c, then
⊕n

i=1 λSi is a boundary
for O,c.

A dual result relating the boundary with the set of diagnoses, also holds.

Lemma 3. If S1, . . . ,Sn are all diagnoses for O,c, then
⊗n

i=1 µSi is a boundary
for O,c.

Example 4. Let (Ld,≤d) be the lattice shown in Figure 1, and O a labeled
ontology from a marketplace in the Semantic Web with the following axioms

a1 : EUecoService uHighperformanceService(ecoCalculatorV1)
a2 : HighperformanceService
v ServiceWithLowCustomerNr u LowProfitService

a3 : ServiceWithLowCustomerNr v ServiceWithComingPriceIncrease
a4 : EUecoService v ServiceWithLowCustomerNr u LowProfitService
a5 : LowProfitService v ServiceWithComingPriceIncrease

Fig. 1. Lattice (Ld,≤d) with 4 user labels and an assignment of 5 axioms to labels

where the function lab assigns to each axiom ai the label `i as shown in Figure 1.
This ontology entails ServiceWithComingPriceIncrease(ecoCalculatorV1). The
MinAs for O,c are {a1, a2, a3}, {a1, a2, a5}, {a1, a3, a4}, {a1, a4, a5}, and its diag-
noses are {a1}, {a2, a4}, {a3, a5}. Using Lemma 3, we can compute the boundary
as µ{a1}⊗µ{a2,a4}⊗µ{a3,a5} = `1⊗`1⊗`4 = `4. The join prime elements relative
to Llab, which define valid user labels, are `0, `2, `3, `5. These labels represent the
user roles as illustrated. Thus, the consequence c is only visible for the user roles
`0, `5 and `3, i.e. for customer service employees, customers, and development
engineers.

3 Modifying the Boundary

An efficient implementation of a black-box algorithm for computing the bound-
ary of DL consequences already exists [2]. However, a desirable addition to this
method is the capability of automatically relabeling some of the axioms to cor-
rect the access level of some implicit consequence. Indeed, labeling axioms w.r.t.
their access restrictions is highly error-prone, and very small changes in the la-
beling function may produce consequences to become visible to unauthorized
users, or inaccessible to the relevant users.

We have previously shown [8, 7] how to detect a set of axioms of minimal
cardinality that needs to be relabeled for obtaining a given boundary. However,
in that setting the knowledge engineer must specify the exact boundary that
the consequence must receive, and all axioms are relabeled to that value. We
now relax these restrictions, by allowing more general constraints on the new
boundary, and a more flexible relabeling function.

Definition 5 (Boundary Constraint, Change Set). A boundary constraint
is a tuple β = (c,∝ `g, `t), where c is a consequence, ∝ `g, with ∝∈ {≤,≥, 6≥, 6≤},
`g ∈ L is a condition and `t is the target label with `t ∝ `g.

Let O be an ontology, S ⊆ O, lab a labeling function, and ` ∈ L. We define
the modified labeling function labS,` as

labS,`(a) =

{
` if a ∈ S,
lab(a) otherwise.

A sub-ontology S ⊆ O is called a change set (CS) for the boundary constraint
β = (c,∝ `g, `t) if the boundary ν for O, c, labS,`t satisfies ν ∝ `g.

For the rest of this paper, we assume, w.l.o.g. that the boundary for O, c, lab
does not satisfy the condition ∝ `g since otherwise, the empty set is already a
CS and nothing needs to be changed in the labeling function.

Notice that, since `t ∝ `g, the whole ontology O is always a change set.
However, using the whole ontology as a change set would set `t as the boundary
of every consequence of O. In general, we want to make the least possible changes
when correcting the boundary of a given consequence. For that reason, we will
focus on finding all those change sets that are minimal w.r.t. set inclusion. These
sets are useful if the knowledge engineer wants to obtain several suggestions
of correction, and then choose the adequate one by some external criterion.
However, due to the huge number (possibly exponentially many [4]) of change
sets that may exist, one may also look for the “best” change set, and use it
automatically in the correction. Hence, we also study how to find a smallest
change set; that is, one with the least cardinality.

We divide this section in two parts. First we look at the case where the bound-
ary restriction is of the form ≤ or ≥. We show that previously known techniques
can be used also in this setting. We then look at the negative restrictions, which
require new methods to be developed.

3.1 Positive Conditions

We now focus on the case where the condition of the boundary constraint is of
the form ≥ `g. Due to the duality of MinAs and diagnoses, the case for ≤ `g can
be treated in an analogous way (see e.g. [8]).

Let β = (c,≥ `g, `t) be a boundary constraint and `t ≥ `g. Recall (Lemma 2)
that the boundary can be computed as the supremum of all λSi , where Si is a
MinA for O, c. Thus, if we relabel all the axioms in a MinA S to `t, then the
boundary for O, c, labS,`t is ≥ `t ≥ `g; that is, every MinA is a change set. Yet,
this change set may not be minimal. In fact, we only need that the infimum of
the labels of all the axioms in this MinA is ≥ `g. This can be achieved by only
relabeling the axioms in S that are not already ≥ `g.

Example 6. Continuing Example 4, recall that we have computed the label `4
as the boundary of the consequence c. Suppose now that we want to change
this boundary to be ≥ `2, using `2 also as the relabeling target. As described
above, every MinA is also a change set for this consequence. If we consider the
MinA S = {a1, a2, a3}, then under the new labeling labS,`2 we obtain the new
boundary

λ{a1,a2,a3} ⊕ λ{a1,a2,a5} ⊕ λ{a1,a3,a4} ⊕ λ{a1,a4,a5} = `2 ⊕ `0 ⊕ `3 ⊕ `0 = `2.

However, it is easy to see through a simple computation, that the set {a3} is
also a change set, which is strictly included in the previous MinA. This set is
obtained from the MinA by removing all axioms whose label is greater or equal
`2, namely a1 and a2.

Intuitively, we simply consider every axiom a ∈ O with lab(a) ≥ `g as fixed
in the sense that its label cannot be changed, as changing it will be superfluous
for any CS. We thus consider a generalization of MinAs, called IAS.

Definition 7 (IAS). A minimal inserted axiom set (IAS) for ` is a subset
I ⊆ O such that O≥` ∪ I |= c and O≥` ∪ I ′ 6|= c for all I ′ ⊂ I.

The known algorithms for computing all MinAs [6, 12] through a hitting set
tree (HST) method [10] can easily be adapted for also computing IAS [8]. More
interestingly, the set of all minimal change sets corresponds to the set of all IAS.

Theorem 8. Let O be an ontology, β = (c,≥ `g, `t) a boundary constraint and
S ⊆ O. S is a minimal CS for β iff S is an IAS for `g.

In [8, 7] it is shown how to compute the set of all IAS for a consequence c.
Moreover, the algorithms presented there have been also optimized for finding
the smallest IAS, through the inclusion of a cardinality restriction. Basically,
the construction of an IAS stops once that this has reached the cardinality of
the smallest IAS found so far. It was shown that using these (partial) IAS can
drastically reduce the search space, while preserving correctness of the method.
Due to Theorem 8, all the algorithms for computing IAS and IAS of minimal
cardinality can be used for finding the minimal change sets and a change set of
minimal cardinality, for positive boundary constraints.

3.2 Negative Conditions

We now consider the case in which the boundary constraint has a condition of
the form 6≥ `g. As in the previous section, the case for 6≤ `g can be solved dually
by simply interchanging MinAs and diagnoses.

Given an ontology O, a labeling function lab and a consequence c, if the
boundary for O, c, lab is greater or equal to `g, then we know that for every
diagnosis S for O, c it holds that µS ≥ `g (see Lemma 3). Hence, if we relabel
all the axioms in any diagnosis S to `t 6≥ `g, it follows that the boundary is then
changed to a new value 6≥ `g; that is, S is a CS. However, just as in the previous
section, this CS may not be minimal. One idea to try to find a minimal CS is
to follow the same intuition as in the previous section, and fix all axioms whose
labels already satisfy the condition 6≥ `g. Unfortunately, this idea is not correct,
as shown by the following example.

Example 9. Returning to Example 4, suppose now that we want to change the
boundary from `4 to some value 6≥ `4, using `5 as a target label. Recall that
{a2, a4} and {a3, a5} are diagnoses for the consequence. If we consider the axioms
having a label 6≥ `4 as fixed, then none of these diagnoses produces a change set.
In the first one, the axiom a2 would be fixed, but then, under the relabeling
lab{a4},`5 we will obtain the boundary

µ{a1} ⊗ µ{a2,a4} ⊗ µ{a3,a5} = `1 ⊗ (`2 ⊕ `5)⊗ (`3 ⊕ `5) = `1 ⊗ `1 ⊗ `4 = `4,

Algorithm 1 Compute one minimal CS contained in a diagnosis

Procedure compute-one-CS(S, β)
Input: S: diagnosis; β = (c, 6≥ `g, `t): boundary constraint;
Output: T ⊆ S: minimal CS for β contained in S
1: if `t ≥ `g then
2: return ∅
3: T := S
4: ` := `t
5: for every a ∈ S do
6: if `⊕ lab(a) 6≥ `g then
7: T := T \ {a}
8: ` := `⊕ lab(a)
9: return T

which does not satisfy the restriction 6≥ `4; hence, {a4} is not a change set.
In the case of the second diagnosis, the problem is even greater, since both

axioms will be considered as fixed. Thus, the approach would deduce that no
axiom needs to be relabeled to obtain a boundary 6≥ `4, which is obviously not
true.

Despite this, it is still possible to use diagnoses as a basis for computing the
minimal CS. Suppose that we have a diagnosis S containing an axiom a0 such
that `t ⊕ lab(a0) 6≥ `g. Then, S ′ = S \ {a0} is also a CS, since⊕

a∈S
labS′,`t(a) = `t ⊕ lab(a0) 6≥ `g.

Obviously, this result holds not only for a single axiom a0 but for any subset T
of S such that `t ⊕

⊕
a∈T lab(a) 6≥ `g.

Lemma 10. Let S be a diagnosis for O, c and β = (c, 6≥ `g, `t) a boundary
constraint. If T is a subset of S such that `t ⊕

⊕
a∈T lab(a) 6≥ `g, then S \ T is

a CS for β.

Proof. For every axiom a ∈ S \ T , labS\T ,`t(a) = `t. Additionally, we know that⊕
a∈S lab(a) ≥ `g, and hence T 6= S. Thus, under the new labeling, we have

that ⊕
a∈S

labS\T ,`t(a) = `t ⊕
⊕
a∈T

lab(a) 6≥ `g

Since S is a diagnosis, Lemma 3 implies that the new boundary satisfies the
condition, and hence S \ T is a CS. ut

A simple consequence of this lemma is that, given a maximal subset T of S
satisfying `t ⊕

⊕
a∈T lab(a) 6≥ `g, S \ T is a minimal change set for β contained

in S. Algorithm 1 describes how to compute one such minimal change set from
a diagnosis. This, however, might not be a “globally” minimal change set; that
is, there might still exist other change sets strictly contained in it, as shown in
the following example.

Example 11. Consider the lattice in Figure 1, an ontology O having four axioms
{a1, a2, a3, a4}, and a consequence c such that the diagnoses for O, c are the
sets {a1, a2, a3} and {a1, a4}. Assume that the labeling function lab is given by
the mapping lab(a1) = `4, lab(a2) = `5, lab(a3) = lab(a4) = `2. It is easy to see
that the boundary for this consequence is `1. If we apply Algorithm 1 to the
diagnosis {a1, a2, a3} and the boundary constraint β = (c, 6≥ `1, `3), where at
Line 5, we first choose a3, then ` is changed to `2 at Line 8, and hence the test
`⊕ lab(a) 6≥ `1 fails for axioms a1 and a2. Thus, the algorithm returns the change
set {a1, a2}. However, {a1} is also a change set, since if a1 is relabeled to `3,
then µ{a1,a4} = `2,and thus the boundary is 6≥ `1.

Although Algorithm 1 does not always output a globally minimal change set,
one can still use it for computing all the minimal change sets for β. The idea is
based on the following lemma, which is a simple consequence of the definition of
diagnoses and change sets.

Lemma 12. Let S be a minimal change set for (c, 6≥ `g, `t). Then, there exists
a set T such that (i) `t ⊕

⊕
a∈T lab(a) 6≥ `g and (ii) S ∪ T is a diagnosis for

O, c.

For instance, in Example 11 we found the minimal change set {a1}. The set
T = {a4} satisfies the two conditions stated in Lemma 12.

To compute all minimal change sets, one then needs to compute all diagnoses,
and from each of these diagnoses compute all the minimal change sets that are
contained in it. This is possible through a nesting of two hitting set tree (HST)
algorithms: the external one produces all different diagnoses for O, c, while the
internal generates, for any given diagnosis, all the maximal subsets of axioms
that can be removed to obtain a CS. Algorithm 2 shows how this internal HST
algorithm works.

The idea behind all HST-like algorithms is the following. One first computes
a set of axioms T satisfying some property; in the case of Algorithm 2, the set
is a minimal CS for β contained in S. This set is then used to label the root
of the tree. The algorithm then branches as follows. For each axiom a in T , a
new branch is created and a is removed from the search space. A new set T ′
satisfying the property is then computed, and used to label the successor node.
The removal of the axiom a ∈ T from the search space ensures that T 6⊆ T ′.
This process is then iterated until the property is not satisfied by the search
space; that is, Algorithm 1 returns the empty set. This process stops after at
most exponentially many iterations, on the size of S, and the labels of the tree
contain all the minimal sets of axioms satisfying the property; in our case, all
minimal change sets contained in the diagnosis.

There are two common optimizations for HST algorithms, which are also used
in Algorithm 2. The first one is called early path termination. The idea behind
this optimization is that if one can distinguish parts of the tree that will yield no
new minimal sets of axioms, then one can stop exploring those branches. The two
conditions for early path termination described in Line 1 of expand-hst test for a
path where the search space is contained in a search space already explored in a

Algorithm 2 HST to compute all minimal CS contained in a diagnosis

Procedure compute-all-CS(S, β)
Input: S: diagnosis; β = (c, 6≥ `g, `t): boundary constraint;
Output: C: all minimal CS for β contained in S
1: Global C,H := ∅
2: T :=compute-one-CS(S, β)
3: C := {T }
4: for each a ∈ T do
5: expand-hst(S, (c, 6≥ `g, `t ⊕ lab(a)), {a})
6: return C

Procedure expand-hst(S, β,H)
Input: S: diagnosis; β = (c, 6≥ `g, `t): boundary constraint; H: list of axioms
Side effects: modifications to C,H

1: if exists some H ′ ∈ H such that H ′ ⊆ H or
H ′ contains a prefix path P with P = H then

2: return (early path termination)
3: T ′ := ∅
4: if exists some T ∈ C such that `t ⊕

⊕
a∈S\T lab(a) ∝ `g then

5: T ′ := T (CS reuse)
6: else
7: T ′ :=compute-one-CS(S, β)
8: if T ′ 6= ∅ then
9: C := C ∪ {T ′}

10: for each a ∈ T ′ do
11: expand-hst(S, (c, 6≥ `g, `t ⊕ lab(a)), H ∪ {a})
12: else
13: H := H ∪ {H} (normal termination)

previous branch. The second optimization is the reuse of sets. When expanding
a tree, we only ask for a set of axioms satisfying the property that is contained in
the current search space. If these conditions hold in a previously computed label,
then we can reuse it, avoiding this way a possibly expensive call to Algorithm 1.

To find all “global” minimal change sets, we use an additional HST algo-
rithm that computes all diagnoses, and for each of these, calls Algorithm 2. This
algorithm uses the same kind of optimizations. However, to improve the func-
tionality of the reuse of solutions, the set of all change sets computed so far is
kept in a global variable, accessible from every call to compute-all-CS. Thus, a
change set that has been previously computed from a diagnosis S, can be reused
in a call with a different diagnosis S ′.

It is worth noticing that in some cases, a diagnosis may contain several axioms
labeled with the same lattice element. Moreover, the condition for obtaining a
minimal CS from Lemma 10 depends only on the labeling, and not in the axiom
itself. Thus, it is sometimes possible to optimize the search for the minimal
CS by considering only the labels and not the individual axioms, as described
in Algorithm 3. The correctness of this algorithm is justified by the following
lemma, whose proof is analogous to the one of Lemma 10.

Algorithm 3 Compute one minimal CS contained in a diagnosis (optimized)

Procedure compute-one-CS(S, β)
Input: S: diagnosis; β = (c, 6≥ `g, `t): boundary constraint;
Output: T ⊆ S: minimal CS for β

1: if `t ≥ `g then
2: return no CS
3: T := S
4: ` := `t
5: L := {lab(a) | a ∈ S}
6: for every m ∈ L do
7: if `⊕m 6≥ `g then
8: T := T \ {a | lab(a) = m}
9: ` := `⊕m

10: return T

Lemma 13. Let S be a diagnosis for O, c, β = (c, 6≥ `g, `t) a boundary con-
straint, and LS = {lab(a) | a ∈ S}. If M ⊆ LS is such that `t ⊕

⊕
`∈M ` 6≥ `g,

then S \ {a | lab(a) ∈M} is a CS for β.

As in the case for positive conditions, these algorithms can be further op-
timized if one is only interested in a change set of minimal cardinality. Notice
simply that in Algorithms 1 and 3, whenever the condition in the for loop is
violated, then at least an axiom is ensured to belong to the output change set.
Thus, it is easy to adapt these algorithms to include a cardinality bound, return-
ing a partial CS once it has reached a given size. Since our method uses an HST
approach, the proofs of correctness of the variant of HST capable of exploiting
cardinality restrictions [8] hold also in this case. In other words, Algorithm 2 can
be further optimized to compute only one change set of minimal cardinality.

4 Conclusions

We have presented algorithms for correcting the boundary of a consequence in
a more flexible manner than previous approaches. Our framework allows the
knowledge engineer to set bounds on what the new boundary should be, and
specify a label as the target of the relabeling. This flexibility is useful if, for
instance, she wants to grant access to a consequence to some user, but is not
willing to specify the exact set of users that should access it.

We developed algorithms that output all the minimal change sets. Addition-
ally, we show how these algorithms can be optimized if one is only interested in
an arbitrary change set of minimal cardinality.

As future work, we will first implement and test the performance of our
methods on large-scale real-world ontologies and applications. We also plan to
generalize our framework to allow axioms to be relabeled to different elements
of the lattice, according to an adequate minimality criterion.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

2. F. Baader, M. Knechtel, and R. Peñaloza. A generic approach for large-scale onto-
logical reasoning in the presence of access restrictions to the ontology’s axioms. In
A. B. et al., editor, Proceedings of the 8th International Semantic Web Conference
(ISWC 2009), Washington, DC, 2009.

3. F. Baader and R. Peñaloza. Axiom pinpointing in general tableaux. Journal of
Logic and Computation, 20(1):5–34, February 2010. Special Issue: Tableaux and
Analytic Proof Methods.

4. F. Baader, R. Peñaloza, and B. Suntisrivaraporn. Pinpointing in the description
logic EL+. In J. Hertzberg, M. Beetz, and R. Englert, editors, Proceedings of the
30th German Annual Conference on Artificial Intelligence (KI’07), volume 4667 of
Lecture Notes in Artificial Intelligence, pages 52–67, Osnabrück, Germany, 2007.
Springer-Verlag.

5. C. Farkas and S. Jajodia. The inference problem: a survey. SIGKDD Explor.
Newsl., 4(2):6–11, 2002.

6. A. Kalyanpur, B. Parsia, M. Horridge, and E. Sirin. Finding all justifications of
OWL DL entailments. In K. Aberer, K.-S. Choi, N. F. Noy, D. Allemang, K.-I.
Lee, L. J. B. Nixon, J. Golbeck, P. Mika, D. Maynard, R. Mizoguchi, G. Schreiber,
and P. Cudré-Mauroux, editors, Proc. of the 6th Int. Semantic Web Conf. and 2nd
Asian Semantic Web Conf. (ISWC’07,ASWC’07), volume 4825 of LNCS, pages
267–280, Busan, Korea, 2007. Springer-Verlag.

7. M. Knechtel and R. Peñaloza. Correcting access restrictions to a consequence.
In V. Haarslev, D. Toman, and G. Weddell, editors, Proceedings of the 2010 In-
ternational Workshop on Description Logics (DL’10), volume 573 of CEUR-WS,
Waterloo, Canada, 2010.

8. M. Knechtel and R. Peñaloza. A generic approach for correcting access restric-
tions to a consequence. In L. Aroyo, G. Antoniou, E. Hyvönen, A. ten Teije,
H. Stuckenschmidt, L. Cabral, and T. Tudorache, editors, Proceedings of the 7th
Extended Semantic Web Conference (ESWC 2010), volume 6088 of Lecture Notes
in Computer Science, pages 167–182, 2010.

9. R. Peñaloza. Using sums-of-products for non-standard reasoning. In A.-H. Dediu,
H. Fernau, and C. Mart́ın-Vide, editors, Proceedings of the 4th International Con-
ference on Language and Automata Theory and Applications (LATA 2010), volume
6031 of Lecture Notes in Computer Science, pages 488–499. Springer-Verlag, 2010.

10. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32(1):57–95, 1987.

11. S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging
of description logic terminologies. In G. Gottlob and T. Walsh, editors, Proc.
of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI’03), pages 355–362,
Acapulco, Mexico, 2003. Morgan Kaufmann, Los Altos.

12. B. Suntisrivaraporn. Polynomial-time Reasoning Support for Design and Mainte-
nance of Large-scale Biomedical Ontologies. PhD thesis, Technische Universität
Dresden, 2009.

