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Nikolai Käfer nikolai.kaefer@tu-dresden.de
Christel Baier christel.baier@tu-dresden.de
Martin Diller martin.diller@tu-dresden.de
Clemens Dubslaff clemens.dubslaff@tu-dresden.de
Sarah Alice Gaggl sarah.gaggl@tu-dresden.de
Faculty of Computer Science
Technische Universität Dresden
Dresden, Germany

Holger Hermanns hermanns@cs.uni-saarland.de

Saarland Informatics Campus

Saarland University

Saarbrücken, Germany

Institute of Intelligent Software

Guangzhou, China

Abstract

Abstract argumentation is a prominent reasoning framework. It comes with a variety of
semantics and has lately been enhanced by probabilities to enable a quantitative treatment
of argumentation. While admissibility is a fundamental notion for classical reasoning in
abstract argumentation frameworks, it has barely been reflected so far in the probabilistic
setting. In this paper, we address the quantitative treatment of abstract argumentation
based on probabilistic notions of admissibility. Our approach follows the natural idea
of defining probabilistic semantics for abstract argumentation by systematically imposing
constraints on the joint probability distribution on the sets of arguments, rather than on
probabilities of single arguments. As a result, there might be either a uniquely defined
distribution satisfying the constraints, but also none, many, or even an infinite number of
satisfying distributions are possible. We provide probabilistic semantics corresponding to
the classical complete and stable semantics and show how labeling schemes provide a bridge
from distributions back to argument labelings. In relation to existing work on probabilistic
argumentation, we present a taxonomy of semantic notions. Enabled by the constraint-
based approach, standard reasoning problems for probabilistic semantics can be tackled by
SMT solvers, as we demonstrate by a proof-of-concept implementation.

1. Introduction

In its basic form, an abstract argumentation framework (AF) (Dung, 1995) consists of a
set of abstract arguments together with a binary relation that represent conflicts between
arguments, the so-called attack relation. AFs are popular to describe contentious informa-
tion and draw conclusions from it using formalized arguments. The popularity of the AF
concept has led to a variety of extensions like notions to handle preferences and values on
arguments (Amgoud & Cayrol, 2002; Bench-Capon, 2003), weights (Dunne et al., 2011),
probabilities (Li, Oren, & Norman, 2011; Thimm, 2012; Hunter, 2013) or introducing a
positive influence relation between arguments, so-called supports (Amgoud et al., 2008;
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Figure 1: Exemplary sensor layout of a semi-autonomous vehicle

Nouioua & Risch, 2011). Furthermore, abstract dialectical frameworks (ADFs) as a pow-
erful generalization of Dung’s framework have been introduced (Brewka & Woltran, 2010;
Brewka et al., 2013; Straß & Wallner, 2015; Gaggl et al., 2021), which also allow to handle
probabilities (Polberg & Doder, 2014).

In this paper, we focus on the emerging field of AFs in the probabilistic setting. As a
concrete example to ground our discussion, we consider an argumentation-based decision
framework for a semi-autonomous vehicle as depicted in Figure 1. Here, a central decision
entity (the “supervisor”, see Faqeh et al., 2020) has access to possibly conflicting information
from several sensors (left/right camera, lidar sensor) with overlapping sensing areas in front
of the vehicle. The sensor values are assumed to be of a Boolean nature and indicate
whether an obstacle is detected. They together induce reasons to assume that there is – or
is not – an obstacle in some specific area in front of the vehicle. The supervisor aggregates
this information in order to decide whether to continue moving forward.

We translate this scenario into an argumentation setting as follows. We use literals cl
and cl to denote arguments expressing that the left camera has detected an obstacle or not,
and similar for the right camera (cr and cr) and for the lidar sensor (ld and ld). Slightly
more complex arguments represent reasons for and against an obstacle being either on the
left (l and l), the right (r and r), or in the middle (m and m) of the area ahead of the
vehicle. For example, the argument cl⇒l expresses that a “silent” left camera sensor backs
the conclusion that there is no obstacle on the left. The literals ct and st indicate that the
vehicle should continue ahead or stop respectively.

The resulting argument graph is depicted in Figure 2, with nodes representing arguments
and directed edges representing attacks. In particular, we see first of all that contrary sensor
readings attack each other (e.g., cr and cr). Also, arguments about sensors can “undermine”
arguments about the location of obstacles (e.g., cl undermines cl⇒l) while arguments about
the location can “rebut” each other when they make contradictory claims (e.g., cl⇒m and
ld⇒m rebut each other). Moreover, arguments for an obstacle being in the middle can
counter the decision to continue (e.g., ld⇒m attacks ct), while the decision to continue
invalidates the decision to stop (ct attacks st). This reflects that if there is no reason to
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Figure 2: Argument graph for the vehicle example

assume that there is an obstacle in the middle, the vehicle will continue driving. Otherwise,
it will need to stop1.

We are now interested in the situation where the degree of acceptance of arguments lies
on a continuum. For instance, object detection by the right camera might fail with some
probability (false negatives), spurious detections may be possible (false positives), and the
spatial layout of the overlapping camera views may give quantitative information where to
expect an object, albeit the information provided may not be clear-cut. This implies that
there will be different degrees of uncertainty whether to continue moving forward or not.

This motivation helps to understand why there is a growing body of inspiring research
on probabilistic abstract argumentation frameworks (PrAFs). In this paper, we contribute
to this research spectrum taking a probability-theoretic perspective based on the epistemic
approach (see Section 4 for an overview). We start off from the idea that a PrAF induces
probability distributions over various arguments being accepted or not. Just like classical
AFs can induce potentially multiple valid interpretations (called extensions2 in the litera-
ture), a PrAF can induce multiple such distributions. We embark on extending the basic
notions of classical argumentation theory to the probabilistic setting in a conservative man-
ner. In this, we take the fairly natural view that no argument and its attackers may be
accepted at the same time. This does not mean that both views on an argument and its
attacker cannot have non-zero probability, but simply that the probability of an argument

1. To model the arguments and obtain the argument graph we base ourselves on the ASPIC+ frame-
work (Modgil & Prakken, 2018). Specifically, we use ASPIC+ with possibly non-symmetric nega-
tion. Then the ASPIC+ framework underlying our example consists of the ordinary premises
{cl, cr, ld, cl, cr, ld, ct, st} (i.e., these are uncertain and can be attacked) and defeasible rules {cl ⇒ l, cl ⇒
m, cl ⇒ l, cl ⇒ m, cr ⇒ r, cr ⇒ m, cr ⇒ r, cr ⇒ m, ld ⇒ m, ld ⇒ m}. Note that in our example we use
the same notation for arguments as for the rules underlying them. There are no axiom premises nor are
there strict rules in our example. Dual literals (e.g., cl and cl as well as m and m) are contradictories of
each other while m is the contrary of ct and ct is the contrary of st.

2. In this paper, we avoid using “extension” in this sense, and instead use this term to identify probabilistic
semantics that are conservative extensions of classical AF semantics, see Definition 5.
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and its attacker being simultaneously accepted is zero by construction. Similarly, we would
like to ensure that accepted arguments are defended, meaning that each of their attackers
are attacked with a probability of one. This is indeed needed for making sense of scenar-
ios like the vehicle example above, but is in contrast to earlier work on PrAFs (Hunter &
Thimm, 2017) where probabilities of single arguments were put in focus. When lifting the
classical concepts from AFs to PrAFs, especially the notion of admissibility gives rise to a
hierarchy of different interpretations and leads to an entire taxonomy of semantics. Along
this discussion, it becomes apparent that each lifted semantics concept imposes a set of
constraints on the joint probability distributions of arguments to be accepted or not. We
will show in this paper that, with one exception, all these sets of constraints we consider are
linear, i.e., they are expressible in the linear arithmetic theory of the reals. Among others,
this gives us decidability and bridges to the world of SMT solvers, which are nowadays
well capable of handling large sets of linear and even non-linear constraints. Indeed, we
present a prototypical tool for studying a variety of questions arising in a PrAF. Specifi-
cally, we apply the tool to the above vehicle example to pinpoint some fine details that help
to understand our contribution as well as getting an impression of practical relevance. For
example, the tool can compute a distribution maximizing the value of ct assuming that cl
and ld are accepted almost surely with additional constraints on the rate of false positives
for the sensors, while satisfying a particular semantics (or even sets thereof). The tool and
all experimental data are publicly available at

https://www.perspicuous-computing.science/cpraa

In summary, our contribution is fourfold:

(i) We provide a profound study of admissibility as well as complete and stable semantics
in a probability-theoretic approach to abstract argumentation,

(ii) discuss a hierarchy of resulting semantics in the context of earlier work,

(iii) investigate the complexity of established computational problems lifted to the proba-
bilistic setting, and

(iv) present prototypical tool support for experimenting with these semantics and further
context-specific constraints.

We structured the paper as follows. In Section 2 we introduce the necessary background
on abstract argumentation, as well as notations needed for the probabilistic setting such
as assignments and distributions. Our probabilistic argumentation framework is presented
in Section 3, where we lift classical argumentation semantics to the probabilistic setting
and discuss our probabilistic notions of admissibility, complete semantics, saturation, and
labeling schemes. We relate our semantics to the existing (probabilistic) semantics and
further related work in Section 4 before we discuss the complexities of various probabilis-
tic argumentation decision problems in Section 5. Details about our implementation and
experimental studies on the vehicle example are provided in Section 6. We close the paper
with concluding remarks and further work (Section 7).

This paper is the journal version of the conference publication (Baier, Diller, Dubslaff,
Gaggl, Hermanns, & Käfer, 2021), containing full proofs and enhancing our framework by
saturation semantics, labeling schemes, and complexity-theoretic considerations.
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2. Preliminaries

In this section, we introduce the basics of abstract argumentation along with classical argu-
mentation semantics on which we base our probabilistic abstract argumentation framework.
We start with a definition of abstract argumentation frameworks following (Dung, 1995).
For a detailed discussion on argumentation semantics we refer to (Baroni, Caminada, &
Giacomin, 2011).

Definition 1. An abstract argumentation framework (AF) is a pair F = 〈Arg ,Att〉 where
Arg is a finite set of arguments and Att ⊆ Arg ×Arg an attack relation.

A pair (A,B) ∈ Att means that argument A attacks argument B. We denote the set
of attackers of A by →A := {B ∈ Arg : (B,A) ∈ Att} and the set of A’s attackees by
A→ := {B ∈ Arg : (A,B) ∈ Att}. A is called initial if it has no attackers, i.e., if →A is
empty. These notions naturally extend to sets of arguments S ⊆ Arg by →S :=

⋃
A∈S

→A and
S→ :=

⋃
A∈S A

→. Two arguments A and B are in conflict if (A,B) ∈ Att or (B,A) ∈ Att ,
i.e., either one is attacking the other. S defeats an argument B if B ∈ S→, i.e., at least
one argument in S attacks B. An argument C is defended by S if S defeats all attackers
B ∈ →C. The set of all arguments defended by S is thus given by

Defend(S) := {C ∈ Arg : B ∈ S→ for each B ∈ →C}.

2.1 Classical Argumentation Semantics

Semantics for AFs are given by collections of argument sets that do not exhibit conflicts.

Definition 2. For an AF F = 〈Arg ,Att〉, a set S ⊆ Arg is said to be conflict-free (Cf) if
(A,B) /∈ Att for all arguments A,B ∈ S. A conflict-free argument set S is

(St) stable if S ∪ S→ = Arg,

(Adm) admissible if S ⊆ Defend(S),

(Cmp) complete if S = Defend(S),

(Gr) grounded if there is no complete T ⊆ Arg with T ⊂ S, and

(Prf) preferred if there is no complete T ⊆ Arg with T ⊃ S.

The classical argumentation semantics σ for F with σ ∈ {Cf,St,Adm,Cmp,Gr,Prf} is
the set [F ]σ of all argument sets S ⊆ Arg where condition σ as above holds.

Classical argumentation semantics thus require the absence of conflicts in their contained
argument sets, a property that takes over to the set of defended arguments.

Lemma 3 (Dung, 1995). Let F = 〈Arg ,Att〉 be an AF. If a set S ⊆ Arg is conflict-free,
then so is Defend(S).
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2.2 Assignments

In the probabilistic setting, each argument A of a given AF F = 〈Arg ,Att〉 is treated as a
Boolean random variable with the same name. An assignment is a function β : Arg → {T, F}
that determines for each variable, whether the argument is accepted (T) or not (F). The set of
all assignments for Arg is denoted by Asg(Arg). An event φ is a set of assignments, i.e., φ ⊆
Asg(Arg). There exists a straight-forward one-to-one correspondence between argument sets
and assignments: Given an argument set S ⊆ Arg , the corresponding assignment is given
by its characteristic function idS defined by idS(A) := T if A ∈ S and idS(A) := F otherwise.
Conversely, each assignment β ∈ Asg(Arg) naturally induces an argument set Argβ := {A ∈
Arg : β(A) = T}. The switch between argument sets and assignments is thus merely of
syntactic nature, and we may use both representations interchangeably. In the same vein
an assignment is admissible (or complete, stable, . . . ) if the corresponding argument set
is admissible (or complete, stable, . . . ). Further, we use propositional logic formulas over
arguments to specify sets of assignments, e.g., we write A ∧ ¬B with A,B ∈ Arg for the
set of assignments φ ⊆ Asg(Arg) where φ = {β ∈ Asg(Arg) : β(A)=T, β(B)=F}. Using
such kind of notation, we define the set of assignments whose corresponding argument sets
defend an argument C ∈ Arg by

∆(C) :=
∧

B∈→C

∨
A∈→B

A

Note that as usual, empty conjunctions stand for T and empty disjunctions for F. To this
end, e.g., in case →B is empty, ∆(C) necessarily is the empty set.

2.3 Distributions

A probability distribution over a set X is a function µ : X → [0, 1] where
∑

β∈X µ(β) = 1.
The set of all distributions over X is denoted by Distr(X). The support of a distribution µ
is defined by Supp(µ) := {β : µ(β) > 0}. µ is a Dirac distribution if µ(β) ∈ {0, 1} for all
β ∈ Asg(Arg), or, equivalently, if Supp(µ) is a singleton. For a fixed β ∈ X, we write Diracβ
for the uniquely defined Dirac distribution where Diracβ(β) = 1.

In the following, we are only concerned with distributions over the set of assignments
Asg(Arg). For brevity, we write Distr(F) for Distr(Asg(Arg)), the set of all possible distri-
butions for an AF F . Each distribution µ ∈ Distr(F) induces a probability measure over
events, denoted by µ as well, i.e., a function µ : 2Asg(Arg) → [0, 1] with µ(φ) :=

∑
β∈φ µ(β)

for events φ ⊆ Asg(Arg). Note that ∆(C) is an event for any argument C ∈ Arg . As usual,
we say that µ has outcome φ almost surely in case µ(φ) = 1. For argument sets S ⊆ Arg ,
we use DiracS as a short form for DiracidS . Finally, for two events φ, ψ ⊆ Asg(Arg) with
µ(ψ) > 0, the conditional probability of φ given ψ is defined as

µ(φ | ψ) :=
µ(φ ∧ ψ)

µ(ψ)
.
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3. Probabilistic Argumentation Semantics

A probabilistic argumentation semantics ρ assigns to each AF F = 〈Arg ,Att〉 a subset JFKρ
of Distr(F). While for any classical argumentation semantics σ the argument sets in [F ]σ
only specify which arguments can be jointly accepted, distributions in JFKρ give rise to a
probabilistic interpretation of the arguments, e.g., to specify the belief in, the acceptance
of, or the frequency of arguments to be accepted.

Definition 4 (Likelihood of arguments). For an AF F = 〈Arg ,Att〉, a distribution µ ∈
Distr(F), and an argument A ∈ Arg, we refer to µ(A) as the µ-likelihood of A.

We denote by Argµ := {A ∈ Arg : µ(A) = 1} the set of almost-surely accepted argu-
ments, i.e., arguments with a µ-likelihood of one. Note that here, A stands for a (basic)
propositional logic formula over arguments that specifies the set of all events β where
β(A)=T.

Classical semantics for AFs can be lifted naturally to the probabilistic setting by Dirac
distributions corresponding to the semantics’ argument sets. Likewise, probabilistic seman-
tics can be restricted to the classical case by considering the argument sets corresponding to
the Dirac distributions induced by the semantics. Under this view, a probabilistic semantics
where all induced Dirac distributions agree with the Dirac distributions of the argument
sets of a classical semantics is called a conservative extension.

Definition 5 (Conservative extension). A probabilistic argumentation semantics ρ is a con-
servative extension of a classical argumentation semantics σ if for all AFs F = 〈Arg ,Att〉
and argument sets S ⊆ Arg, we have

S ∈ [F ]σ iff DiracS ∈ JFKρ.

When looking for a probabilistic semantics that reflects one of the classical notions, con-
stituting a conservative extension is by itself clearly not sufficient. However, we deem it a
necessary criterion, and will show that all probabilistic semantics introduced later on are
conservative extensions of their corresponding classical semantics.

As a basic instance of a conservative extension, we present the element-wise lifting of
classical argumentation semantics, first introduced by (Thimm, Baroni, Giacomin, & Vicig,
2017).

Definition 6 (Element-wise lifting). Let F = 〈Arg ,Att〉 be an AF. Then, for a classical
argumentation semantics σ, the element-wise-σ semantics Elm-σ is defined by

JFKElm-σ :=
{
µ ∈ Distr(F) : Argβ ∈ [F ]σ for all β ∈ Supp(µ)

}
.

For instance, JFKElm-Adm comprises exactly those distributions where only the assignments
corresponding to the admissible sets of F may have positive probability. Conversely, Elm-σ
semantics enforce µ(βS) = 0 for all argument sets S ∈ 2Arg\[F ]σ that are not part of the
classical argumentation semantics σ.

Lemma 7. Element-wise lifting of classical semantics yields conservative extensions.
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Proof. Let σ be a classical semantics and S ⊆ Arg . According to Definition 5, we have to
show that S ∈ [F ]σ iff DiracS ∈ JFKElm-σ.
(⇒): Let S ∈ [F ]σ. We have to show Argβ ∈ [F ]σ for all assignments β ∈ Supp(DiracS).
This holds as the support of DiracS only contains the characteristic function idS of S with
Arg idS = S and thus Arg idS ∈ [F ]σ by assumption.
(⇐): Let DiracS ∈ JFKElm-σ. Then, Arg idS ∈ [F ]σ since Supp(DiracS) = {idS} and thus,
by Arg idS = S we obtain S ∈ [F ]σ.

The converse of Lemma 7 does not hold, i.e., the notion of conservative extension is more
liberal than element-wise lifting.

3.1 Assignment Distribution Properties

Before we discuss probabilistic extensions of admissible and complete semantics, we define
the notions of conflict-freeness and defense in the probabilistic setting.

3.1.1 Almost-surely Conflict-free

Recall that a set of arguments S is said to be conflict-free if there is no attack (A,B) ∈ Att
for all A,B ∈ S. By the one-to-one correspondence of argument sets to assignments, an
assignment β is thus conflict-free if there is no (A,B) ∈ Att with β(A) = β(B) = T. This
notion of conflict-freeness naturally transfers to distributions over assignments.

Definition 8 (Almost-surely conflict-free). Let F = 〈Arg ,Att〉 be an AF. A distribution
µ ∈ Distr(F) is called almost-surely conflict-free iff

µ(A ∧B) = 0 for all (A,B) ∈ Att . (asCf)

Notably, asCf does not imply that attacker and attackee cannot both have nonzero µ-
likelihood. However, the probability of both being jointly accepted (constituting a classical
conflict) is zero. As it turns out, this definition of almost-sure conflict-freeness coincides
with the element-wise lifting of conflict-free argument sets.

Lemma 9 (asCf ⇔ Elm-Cf). For an AF F = 〈Arg ,Att〉, a distribution µ ∈ Distr(F) is
almost-surely conflict-free iff the set Argβ is conflict-free for each assignment β ∈ Supp(µ).

Proof. (⇒): Suppose µ is almost-surely conflict-free and assume by contradiction that
there is some assignment β ∈ Supp(µ) that is not conflict-free. Then, there are arguments
A,B ∈ Argβ such that A attacks B and β(A) = β(B) = T. As µ satisfies asCf, we have
µ(A ∧B) = 0. The assignment β satisfies A ∧B, so µ(A ∧B) > µ(β) holds. However, by
β ∈ Supp(µ), we have µ(β) > 0, which directly leads to a contradiction:

0 = µ(A ∧B) > µ(β) > 0.

(⇐): We now assume that each β ∈ Supp(µ) is conflict-free but µ is not almost-surely
conflict-free. Then there is some pair (A,B) ∈ Att with µ(A ∧ B) > 0, and thus an
assignment β′ with β′(A) = β′(B) = T and µ(β′) > 0. However, then β′ ∈ Supp(µ) but β′

is not conflict-free, a contradiction.

By Lemma 7 and 9, the set of almost-surely conflict-free distributions conservatively extends
the set of conflict-free argument sets.
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Figure 3: AF fragment for an argument C with attackers Bi and defenders Ai

3.1.2 Almost-sure Defense

In the classical setting, an argument is defended by defeating each of its attackers. Likewise,
we say that a distribution almost-surely defends an argument if all attackers are in turn
attacked with probability one.

Definition 10 (Almost-sure defense). For F = 〈Arg ,Att〉 an AF, a distribution µ ∈
Distr(F) almost-surely defends an argument C ∈ Arg iff

µ
(
∆(C)

)
= 1.

The set of all arguments defended almost surely by µ is denoted by asDefend(µ).

Example 11. In the AF from Figure 3, argument C is almost-surely defended by a distri-
bution µ if the following constraint holds:

µ
(
∆(C)

)
= µ

( ∧
B∈→C

∨
A∈→B

A
)

= µ
(
(A1 ∨A2) ∧A3

)
= 1.

That is, the event where argument A3 as well as arguments A1 or A2 are accepted needs
to occur almost-surely. This entails that µ(A3) = 1 is required for C to be almost-surely
defended by µ. Argument B1 is attacked but has no defenders. Recalling that an empty
disjunction stands for F, this yields

µ
(
∆(B1)

)
= µ

( ∧
A∈→B1

∨
D∈→A

D
)

= µ(F ∧ F) = 0 6= 1.

Thus, B1 (and likewise B2) cannot be almost-surely defended by any distribution. Finally,
for unattacked arguments like A1, we always get

µ
(
∆(A1)

)
= µ(T) = 1.

Initial arguments are thus almost-surely defended by any distribution.

Equivalently, the set asDefend(µ) is also characterized by the arguments that are de-
fended by each assignment in the support of µ.

Lemma 12. Let F = 〈Arg ,Att〉 be an AF and µ ∈ Distr(F). Then:

asDefend(µ) =
⋂

β∈Supp(µ)

Defend(Argβ).

965
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Proof. (⊆): Let C ∈ asDefend(µ) and β ∈ Supp(µ). To prove C ∈ Defend(Argβ), we pick
an attacker B of C and show B ∈ Argβ

→. By definition of the almost-surely defended sets,
we have µ

(
∆(C)

)
= 1. This implies β(A) = T for at least one attacker A of B. Thus,

A ∈ Argβ and B ∈ Argβ
→.

(⊇): Let C be an argument such that C ∈ Defend(Argβ) for all β ∈ Supp(µ). Then for
each attacker B ∈ →C and each β ∈ Supp(µ) there is at least one argument A ∈ →B such
that β(A) = T. This yields µ

(
∆(C)

)
= 1 for each B ∈ →C and thus, C ∈ asDefend(µ).

Corollary 13. For any AF F = 〈Arg ,Att〉 and distribution µ ∈ Distr(F):

(a) asDefend(µ) is conflict-free if µ is almost-surely conflict-free;

(b) asDefend(DiracS) = Defend(S) for each S ⊆ Arg.

Proof. (a): If µ is almost-surely conflict-free, then each assignment in Supp(µ) is conflict-free
(Lemma 9). But then the claim follows from Lemma 12 and the facts that (1) Defend(Argβ)
is conflict-free if β is conflict-free (cf. Lemma 3) and (2) the intersection of conflict-free
argument sets is conflict-free.
(b): Let µ = DiracS and β = idS . Thus, β is the unique assignment with Argβ = S and µ
is the (unique) Dirac distribution with Supp(µ) = {β}. But then Lemma 12 directly yields
asDefend(µ) = Defend(S).

In other words, an argument set S defends an argument C if and only if DiracS almost-surely
defends C.

3.1.3 Relative Defense Constraint

Several of the semantics proposed in the next sections will impose constraints relating the
probability of an argument to the probability of the argument being almost-surely defended.
For a distribution µ and a comparison relation ∼ ∈ {6,=,>}, we define the relative defense
constraint (∼µ∆) as the set of constraints

µ(C) ∼ µ
(
∆(C)

)
for all arguments C ∈ Arg . For example, the constraint (6µ∆) is satisfied if for all arguments
the probability that the argument is defended is at least as high as the likelihood of the
argument itself.

3.2 Admissibility

Recall that a set of arguments S is called admissible if and only if S is conflict-free and
defends all its elements. In this section, we provide several notions of admissibility in the
probabilistic setting. They all have in common to require almost-surely conflict-free distri-
butions but have different approaches to capture the “self-defense” aspect of admissibility.

The first one directly reflects the classical definition and states that almost-surely ac-
cepted arguments need to be defended almost-surely.

Definition 14 (wAdm). Let F = 〈Arg ,Att〉 be an AF and µ ∈ Distr(F) an almost-surely
conflict-free distribution. Then µ is called weakly admissibleiff

Argµ ⊆ asDefend(µ).
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In other words, an almost-surely conflict-free distribution µ is weakly admissible iff for all
arguments C, we have that

µ(C) = 1 implies µ
(
∆(C)

)
= 1.

The semantics is weak in the sense that all distributions where no argument has a likeli-
hood of one are trivially weakly admissible. As such, weak admissibility is more of a basic
requirement like almost-sure conflict-freeness and also weak in the sense that it is implied
by all our other probabilistic notions of admissibility (which we show in the following). Our
notion of weak admissibility should hence not be confused with the recent notion of weak
admissibility in the non-probabilistic setting (Baumann, Brewka, & Ulbricht, 2020). This
non-probabilistic notion focuses on relaxing requirements on defense, e.g., to not require
self-attacking arguments to be defended in case they also attack the set of arguments under
consideration.

Towards a stronger probabilistic notion of admissibility, we relate the likelihood of each
argument to the probability of its strongest attacker, or, equivalently, the attacker against
which the defense is weakest.

Definition 15 (minAdm). Let F = 〈Arg ,Att〉 be an AF and µ ∈ Distr(F) an almost-surely
conflict-free distribution. Then µ is called min-admissible iff for all C ∈ Arg, we have

µ(C) 6 min
B∈→C

µ
( ∨
A∈→B

A
)
.

That is, for every argument C the probability of being accepted is bounded from above by
the lowest probability of C being defended against any of its attackers. Equivalently,

µ(C) 6 µ
( ∨
A∈→B

A
)

needs to hold for each attacker B ∈ →C.

Example 16. Consider the AF from Figure 3 and assume we have an almost-surely conflict-
free distribution µ with µ(A1 ∨A2) = 0.7 and µ(A3) = 0.4. Then min-admissibility requires
µ(C) 6 0.4 as this is the probability with which C is defended against its strongest attacker,
B2. This entails µ(C) 6 0.7 = µ(A1 ∨A2) also for the remaining attacker B1.

Next, instead of considering each attacker separately, we require that the probability of
defense against the joint attacks is an upper bound on each argument’s likelihood. This is
a first instance of the relative defense constraint introduced in Section 3.1.3.

Definition 17 (jntAdm). Let F = 〈Arg ,Att〉 be an AF. A distribution µ ∈ Distr(F) is
called joint-attack admissible iff µ is almost-surely conflict-free and (6µ∆) holds, i.e., for
all C ∈ Arg, we have

µ(C) 6 µ
(
∆(C)

)
.
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A1

A2

B
C1

C2

A1

A2

B
C1

C2

Figure 4: Under prAdm, µ(C1 ∨ C2) ≤ µ(A1 ∨A2) needs to hold

Example 18. Continuing Example 11, joint-admissibility requires for argument C that

µ(C) 6 µ
(
(A1 ∨A2) ∧A3

)
.

For arguments B1 and B2, we have µ
(
∆(B1)

)
= µ

(
∆(B2)

)
= 0, so µ(B1) = µ(B2) = 0

needs to hold for all joint-admissible distributions. Note that for initial arguments like A1,
the resulting constraint

µ(A1) 6 µ
(
∆(A1)

)
= 1

is trivially fulfilled by every distribution.

For our last notion of admissibility we shift the view from arguments C that need to be
defended to arguments B which are attackers of such arguments.

Definition 19 (prAdm). Let F = 〈Arg ,Att〉 be an AF. A distribution µ ∈ Distr(F) is
called probabilistically admissible iff µ is almost-surely conflict-free and for all B ∈ Arg,
we have

µ
( ∨
C∈B→

C
)
6 µ

( ∨
A∈→B

A
)
.

Recall that if an argument set S is admissible, then each argument B attacking arguments
in S is itself attacked by some argument in S. Likewise, if B attacks arguments that are
almost-surely accepted, we would expect that B is attacked with likelihood one, which is
implied by weak admissibility. Now prAdm further generalizes this relation and requires
for each argument B that the probability of accepting arguments attacked by B is bounded
by the probability of accepting the arguments which themselves attack B.

Example 20. On the AF from Figure 3, prAdm yields the same constraints as jntAdm
(see Example 18). This changes when considering the AF from Figure 4 where argument B
attacks two arguments C1 and C2. For probabilistically admissible distributions µ, we get
for B the constraint

µ(C1 ∨ C2) ≤ µ(A1 ∨A2),

whereas joint-attack admissible distributions need to satisfy both µ(C1) ≤ µ(A1 ∨ A2) and
µ(C2) ≤ µ(A1 ∨A2).

Finally, Definition 6 provides the notion of element-wise admissibility, which requires
that all assignments in the support of a distribution µ are admissible. This can be rephrased
as a conditional probability constraint: For each argument C with positive µ-likelihood, the
probability of assignments defending C must equal one when conditioned on the event that
C is accepted.
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Lemma 21. Let F = 〈Arg ,Att〉 and µ ∈ Distr(F). Then µ is element-wise admissible iff
µ is almost-surely conflict-free and for each argument C ∈ Arg with µ(C) > 0, it holds

µ
(

∆(C)
∣∣ C

)
= 1.

Proof. As µ(C) > 0, the constraint µ
(
∆(C)

∣∣ C) = 1 is equivalent to µ
(
∆(C)∧C

)
= µ(C),

so it suffices to show that ∆(C) ∧ C and C describe the same event iff µ is element-wise
admissible.

(⇒): Let µ be element-wise admissible and C ∈ Arg . Then for all assignments β ∈ Supp(µ)
we have Argβ ⊆ Defend(Argβ). For those β with β(C) = T, we thus have C ∈ Defend(Argβ).
Recall that ∆(C) is the set of all assignments whose argument sets defend C, so we have
β ∈ ∆(C).

(⇐): Let µ
(
∆(C) ∧ C

)
= µ(C) for all C ∈ Arg and assume by contradiction there exists

a β ∈ Supp(µ) with Argβ being not admissible. Then either Argβ is not conflict-free
(contradiction) or Argβ 6⊆ Defend(Argβ), i.e., there is a C ′ ∈ Argβ that is not defended by
Argβ. But then β 6∈ ∆(C ′), which contradicts µ

(
∆(C ′) ∧ C ′

)
= µ(C ′).

All five presented admissibility notions for distributions are conservative extensions of
the non-probabilistic notion of admissibility, as stated in the following lemma.

Lemma 22 (Conservative extension Adm). Let F = 〈Arg ,Att〉 be an AF and S ⊆ Arg
be conflict-free. Then, S is admissible iff DiracS is κ admissible for κ ∈ {element-wise,
probabilistically, joint-attack, min-, weakly}.

Proof. As weak admissibility is the weakest notion and element-wise admissibility the
strongest one (in anticipation of Lemma 23, 24, and 25), it suffices to show the implications
Adm⇒ Elm-Adm and wAdm⇒ Adm. The first implication is obvious by Lemma 7. For
the second implication we suppose that DiracS is weakly admissible. Hence:

S = ArgDiracS ⊆ asDefend(DiracS).

Corollary 13 yields:

asDefend(DiracS) = Defend(S).

Thus, S ⊆ Defend(S) holds and S is admissible.

3.2.1 Relationships

We now investigate how our probabilistic notions of admissibility relate to each other. First,
we provide implications that hold between the different semantics and then give concrete
examples that show these implications to be strict.

Element-wise admissibility is the most restricted variant, i.e., each distribution that
satisfies Elm-Adm also satisfies the other notions of admissibility. Exemplarily, for an
attack (B,C) ∈ Att , whenever β(C) = T for some admissible assignment β, there must
be some attacker A of B with β(A) = T as well. Thus, all admissible assignments that
contribute to the probability on the left-hand side of the prAdm constraint also appear on
the right, so all element-wise admissible distributions are also probabilistically admissible.
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Lemma 23 (Elm-Adm ⇒ prAdm, Elm-Adm ⇒ jntAdm). Let F be an AF and µ ∈
Distr(F). If µ is element-wise admissible, then µ is probabilistically and joint-attack ad-
missible.

Proof. (Elm-Adm ⇒ prAdm): Let µ be element-wise admissible. Then each assignment
β ∈ Supp(µ) is admissible, so given an attack (B,C) ∈ Att , we have:

If β(C) = T then β(A) = T for some attacker A of B.

Thus, if β is an assignment satisfying
∨
C∈B→ C, then β also satisfies

∨
A∈→B A. Hence,

prAdm holds, which shows that µ is probabilistically admissible.
(Elm-Adm ⇒ jntAdm): Since all assignments β ∈ Supp(µ) are admissible, it suffices to
show that for each admissible β and C ∈ Arg , we have:

If β(C) = T then for each B ∈ →C there is some A ∈ →B s.t. β(A) = T.

This, however, is clear as the argument set Argβ = {C ∈ Arg : β(C) = T} defends all
its arguments. So, β(C) = T implies that for each attacker B of C (i.e., each argument
B ∈ →C) there is an attacker of B in Argβ (i.e., there is some argument A ∈ →B with
β(A) = T).

Lemma 24 (prAdm ⇒ minAdm, jntAdm ⇒ minAdm). Let F be an AF and µ ∈
Distr(F). If µ is probabilistically or joint-attack admissible, then µ is min-admissible.

Proof. (prAdm ⇒ minAdm): Let µ be probabilistically admissible. For any argument C,
we have to show

µ(C) 6 min
B∈→C

µ
( ∨
A∈→B

A
)
.

For this it suffices to pick any attacker B ∈ →C and show that µ(C) 6 µ
(∨

A∈→B A
)
. But

this follows directly from prAdm as C ∈ B→, which yields:

µ(C) 6 µ
( ∨
C∈B→

C
)
6 µ

( ∨
A∈→B

A
)
.

(jntAdm⇒ minAdm): Let µ be joint-attack admissible, i.e., the relative defense constraint
(6µ∆) is satisfied. Then we have

µ(C) 6 µ
(
∆(C)

)
= µ

( ∧
B∈→C

∨
A∈→B

A
)
6 min

B∈→C
µ
( ∨
A∈→B

A
)

because each assignment β which satisfies ∆(C) also satisfies
∨
A∈→B A for all B ∈ →C.

Note that the notions joint-attack and min-admissibility collapse in AFs where each argu-
ment has at most one attacker.

As weak admissibility only imposes constraints on the likelihood of arguments belonging
to Argµ, it is strictly weaker than min-admissibility, and hence the most liberal of the
considered admissibility notions.

Lemma 25 (minAdm⇒ wAdm). Let F = 〈Arg ,Att〉 be an AF and µ ∈ Distr(F). If µ is
min-admissible, then µ almost-surely defends all arguments in Argµ.
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Elm-Adm

jntAdm

prAdm

minAdm wAdmElm-Adm

jntAdm

prAdm

minAdm wAdm

Figure 5: Hierarchy of the admissible semantics from Definitions 14, 15, 17, and 19

Proof. Suppose C ∈ Argµ. Then, µ(C) = 1. The task is to show that each attacker of C
is attacked almost surely. Pick an attacker B of C. As µ(C) = 1, the constraint minAdm
directly yields

µ
( ∨
A∈→B

A
)

= 1.

Thus, µ almost-surely defends C.

The results so far establish a hierarchy of the five notions of admissibility for distributions
as illustrated in Figure 5. The following examples show the inclusions within this hierarchy
to be strict.

Example 26 (minAdm 6⇒ prAdm,minAdm 6⇒ jntAdm). As an example for a min-
admissible distribution that is not element-wise admissible and neither joint-attack nor prob-
abilistically admissible, let µ be the distribution for the AF depicted on the right with the
probabilities given on the left:

µ(¬A ∧ ¬B ∧ C ∧ D) = 1/3

µ( A ∧ ¬B ∧ ¬C ∧ ¬D) = 1/4

µ(¬A ∧ B ∧ ¬C ∧ ¬D) = 1/6

µ(¬A ∧ ¬B ∧ C ∧ ¬D) = 1/4

A

D

B C

A

D

B C

That is, µ(β) = 0 for all other assignments β. Then µ is almost-surely conflict-free (since
all assignments in its support are conflict-free, cf. Definition 8) and satisfies minAdm:

• Argument C has likelihood µ(C) = 1/3 + 1/4 = 7/12 and a single attacker B, which is
attacked by A and D with probability 1/4 + 1/3 = 7/12.

• Argument B has likelihood µ(B) = 1/6. Its attackers A and D are attacked with
probability 1/3 resp. 1/4.

• Argument D has likelihood µ(D) = 1/3, and so is the probability for its attacker A to
be attacked. The analogous statement holds for A.

So, µ is min-admissible, but µ is not element-wise admissible as ¬A ∧ ¬B ∧ C ∧ ¬D and
¬A∧B∧¬C∧¬D induce the non-admissible argument sets {C} and {B}, respectively, that
do not defend their arguments.

Further, µ is not joint-attack admissible, since the argument B has no joint attack of
its attackers A and D:

µ(B) =
1

6
66 0 = µ(A ∧D) = µ

(
∆(B)

)
.
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Indeed, in this example there is no admissible argument set containing B, since B’s attackers
A and D attack each other.

To see why µ is not probabilistically admissible, consider argument D. We have D→ =
{A,B} and →D = {A}. But then

µ
( ∨
C′∈D→

C ′
)

= µ(A ∨B) =
1

4
+

1

6
66 1

4
= µ(A) = µ

( ∨
A∈→D

A
)
.

Thus, the constraint prAdm is violated for argument D. Analogously, prAdm does not
hold for A.

The following two examples illustrate that probabilistic admissibility and joint-attack
admissibility are incomparable.

Example 27 (jntAdm 6⇒ prAdm). Consider the AF depicted on the right below and the
distribution µ with the following probabilities for assignments in its support:

µ( A ∧ ¬B ∧ C ∧ ¬D) = 1/3

µ(¬A ∧ B ∧ ¬C ∧ ¬D) = 1/3

µ(¬A ∧ ¬B ∧ ¬C ∧ D) = 1/3

A

D

B C

A

D

B C

µ obviously is almost-surely conflict-free and the µ-likelihood of all four arguments is 1/3.
As each argument has exactly one attacker, µ is joint-attack admissible: For example, the
jntAdm constraint is satisfied for argument C since →C = {B}, →B = {A}, and

µ(C) =
1

3
6

1

3
= µ(A) = µ(

∨
A′∈→B

A′) = µ
(
∆(C)

)
.

However, µ does not satisfy the constraint prAdm for argument B:

µ
( ∨
C′∈B→

C ′
)

= µ(C ∨D) =
1

3
+

1

3
66 1

3
= µ(A) = µ

( ∨
A′∈→B

A′
)
.

Hence, µ is not probabilistically admissible.

Example 28 (prAdm 6⇒ jntAdm). Consider the following almost-surely conflict-free dis-
tribution µ for the AF depicted on the right:

µ( A ∧ ¬B ∧ ¬C ∧ ¬D) = 1/4

µ(¬A ∧ B ∧ ¬C ∧ ¬D) = 1/4

µ(¬A ∧ ¬B ∧ C ∧ D) = 1/4

µ(¬A ∧ ¬B ∧ C ∧ ¬D) = 1/4

A

BC

DA

BC

D

We have µ(A) = µ(B) = µ(D) = 1/4, and µ(C) = 1/2. This implies that Argµ is empty,
such we can immediately infer that µ is weakly admissible. To see why µ is probabilistically
admissible, we have to check that µ satisfies prAdm for all arguments:
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• For argument A, we have A→ = {B,D} and →A = {C}, such that µ(B ∨D) 6 µ(C)
has to hold. This is in fact the case due to µ(B ∨D) = µ(C) = 1/2.

• For argument B, we have B→ = {C,D}, →B = {A,D}, and µ(C ∨D) = 1/2 6 1/2 =
µ(A ∨D).

• For argument C, we have C→ = {A}, →C = {B}, and µ(A) = 1/4 6 1/4 = µ(B).

• For argument D, we have D→ = {B}, →D = {A,B}, and µ(B) = 1/4 6 1/2 =
µ(A ∨B).

Thus, µ is probabilistically admissible.
To see why µ is not joint-attack admissible, we observe that the µ-likelihood of argument

B is positive, but there is no joint attack on B’s attackers A and D. More precisely:

µ(B) =
1

4
66 0 = µ

(
C ∧ (A ∨B)

)
= µ

(
∆(B)

)
.

Here, C stands for the attacks on A, and A ∨ B for the attacks on D. This shows that µ
violates the constraint jntAdm for argument B.

3.3 Complete Semantics

In the non-probabilistic setting, complete semantics imposes stronger constraints than ad-
missibility, as it additionally requires that all arguments defended by a set S ⊆ Arg are
contained in S, i.e., S = Defend(S). Based on the notions of admissibility for distributions
from the previous section, we now extend complete semantics towards five notions in the
probabilistic setting. Again, Elm-Cmp is an instantiation of Definition 6.

Definition 29. Let F = 〈Arg ,Att〉 be an AF and µ ∈ Distr(F) an almost-surely conflict-
free distribution. Then µ is called

(wCmp) weakly complete iff Argµ = asDefend(µ),

(minCmp) min-complete iff µ satisfies minAdm and (>µ∆),

(jntCmp) joint-attack complete iff µ satisfies (=µ∆),

(prCmp) probabilistically complete iff µ satisfies prAdm and (>µ∆), and

(Elm-Cmp) element-wise complete iff µ ∈ JFKElm-Cmp.

It is clear that each of the five notions of complete semantics imposes stricter constraints
than the corresponding notion of admissibility, so each κ complete distribution is also κ
admissible for κ ∈ {element-wise, weakly, probabilistically, min-, joint-attack}. Before we
establish the relationships between the five semantics, we remark on the particular choice
of constraints for min- and probabilistically complete semantics.

Remark 30. Joint-attack and weakly complete semantics have been defined by requiring,
respectively, the joint-attack admissibility constraint (6µ∆) and the weak admissibility con-
traint Argµ ⊆ asDefend(µ), plus the analogous “reverse condition”, namely (>µ∆) and
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Argµ ⊇ asDefend(µ), resulting in the equality constraints as stated in Definition 29. One
might wonder why min- and probabilistically complete semantics are not defined in an anal-
ogous way. We argue that the resulting notions would be too strong. For probabilistically
complete semantics, the requirement

µ
( ∨
C∈B→

C
)

= µ
( ∨
A∈→B

A
)

would imply for arguments B which do not attack other arguments (i.e., B→ = ∅) that
all their attackers C ∈ →B are unacceptable under µ, as for those µ(

∨
A∈→B A) = 0 would

need to hold. This condition appears very strong and lacks an intuitive meaning in the
spirit of the non-probabilistic complete semantics. Likewise, for min-complete semantics
the condition

µ(C) = min
B∈→C

µ
( ∨
A∈→B

A
)

also appears questionable as a criterion for complete semantics as it implies that each ar-
gument C with likelihood 0 has at least one attacker B that is not attacked under µ (in
the sense that µ(

∨
A∈→B A) = 0 holds). This needlessly excludes cases where more than

one argument contributes to the attack on C, but none of them is completely unattacked
under µ.

Analogous to Lemma 21, element-wise complete semantics can be characterized by
element-wise admissibility and the constraint that any defended argument has a conditional
likelihood of one.

Lemma 31. Let F = 〈Arg ,Att〉 and µ ∈ Distr(F). Then µ is element-wise complete iff µ
is element-wise admissible and for all arguments C ∈ Arg where event ∆(C) has positive
probability under µ we have

µ
(
C | ∆(C)

)
= 1.

Proof. As µ
(
∆(C)

)
> 0, the conditional probability constraint µ

(
C | ∆(C)

)
= 1 is equiva-

lent to µ
(
C∧∆(C)

)
= µ

(
∆(C)

)
. Thus it suffices to show that C∧∆(C) and ∆(C) describe

the same assignments iff µ is element-wise complete.

(⇒): Let µ be element-wise complete and C ∈ Arg . Then for all assignments β ∈ Supp(µ),
we have Argβ = Defend(Argβ). Now if β ∈ ∆(C), then C ∈ Defend(Argβ) and hence
C ∈ Argβ, leading to β also satisfying C ∧∆(C).

(⇐): Let µ be element-wise admissible, µ
(
C ∧ ∆(C)

)
= µ

(
∆(C)

)
for all C ∈ Arg, and

assume by contradiction there exists a β ∈ Supp(µ) such that Argβ is not complete, i.e.,
Argβ 6= Defend(Argβ). Since β is admissible, we have Argβ 6⊇ Defend(Argβ), i.e., there is
an argument C ′ which is defended by Argβ but not element of the set. But then β only
satisfies ∆(C ′) but not C ′ ∧∆(C ′), which contradicts µ

(
C ′ ∧∆(C ′)

)
= µ

(
∆(C ′)

)
because

µ(β) > 0 due to β ∈ Supp(µ).

All five complete semantics from Definition 29 are conservative extensions of the non-
probabilistic complete semantics for argument sets.
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Lemma 32 (Conservative extension Cmp). Let F = 〈Arg ,Att〉 be an AF and S ⊆ Arg.
Then, S is complete iff DiracS is κ complete for κ ∈ {element-wise, weakly, probabilistically,
min-, joint-attack}.

Proof. By the relationship results between the different complete semantics established in
Section 3.3.1, it suffices to prove the following two implications:

S is complete ⇒ DiracS is element-wise complete and

DiracS is weakly complete ⇒ S is complete.

The first implication is obvious as DiracS is element-wise complete iff idS is a complete
assignment, which again is equivalent to S being a complete argument set. For the second
implication, suppose that DiracS is weakly complete. Using Corollary 13 we obtain:

Defend(S) = asDefend(DiracS) = ArgDiracS = S.

This directly yields that S is complete.

Recall that Argµ denotes the set of arguments that are accepted almost-surely under a
distribution µ. Given a probabilistic semantics ρ, one may ask if there are arguments that
are almost-surely accepted under all ρ-distributions. For the various admissibility semantics,
the answer is negative as the Dirac distribution corresponding to the empty argument set
is always part of the semantics and no argument is almost-surely accepted under it. This
is no longer the case when turning to the complete semantics from Definition 29: Here, it
turns out that the arguments almost-surely accepted under all distributions from one of the
semantics are exactly those arguments in the grounded argument set of the AF.

Lemma 33. Let F = 〈Arg ,Att〉 be an AF with grounded argument set SGr and let ρ be
any of the complete semantics from Definition 29. Then:⋂

µ∈JFKρ

Argµ = SGr.

Proof. (⊆): If A /∈ SGr, then DiracSGr
(A) = 0. As SGr is complete, DiracSGr

is contained
in JFKρ for every semantics ρ by Lemma 32. Thus, A is not in

⋂
µ∈JFKρ Argµ.

(⊇): Now let A ∈ SGr. We consider the constructive characterization of the grounded
semantics from (Dung, 1995) as the least fixed-point of the Defend(·) function, i.e., S0

Gr =

Defend(∅), SiGr = Defend(Si−1
Gr ) for i > 0, and SGr = SjGr s.t. SjGr = Sj+1

Gr . We show
inductively that for every weakly complete distribution µ, we have µ(A) = 1 for each
A ∈ SiGr.

Base case: Let A ∈ S0
Gr = Defend(∅). As A is defended by the empty set, it must be

initial. Then A is also almost-surely defended by µ, which implies µ(A) = 1 as µ is weakly
complete.

Step of induction: Let A ∈ SiGr = Defend(Si−1
Gr ) for i > 0. We can assume µ(C) = 1

for all C ∈ Si−1
Gr . Now consider µ

(
∆(A)

)
= µ

(∧
B∈→A

∨
C∈→B C

)
. As A ∈ Defend(Si−1

Gr ), we

know that for each attacker B of A, there is a defender C ∈ Si−1
Gr with µ(C) = 1. Therefore,

µ
(
∆(A)

)
= 1 which again implies µ(A) = 1.

Thus, for A ∈ SGr, we have µ(A) = 1 for all weakly complete distributions. As we will
see all other notions of completeness imply wCmp, which concludes the proof.
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3.3.1 Relationships

Similar as for the notions of admissibility, we draw relationships between the five complete
semantics introduced in Definition 29. This yields connections between them analogously
to the case of admissibility (cf. Figure 5).

Lemma 34 (Elm-Cmp ⇒ jntCmp, Elm-Cmp ⇒ prCmp). Let F be an AF and µ ∈
Distr(F). If µ is element-wise complete, then µ is joint-attack and probabilistically complete.

Proof. Let us first observe that each conflict-free assignment β ∈ Asg(Arg) is complete iff

∀C ∈ Arg .
(
β(C) = T ⇔ ∀B ∈ →C. ∃A ∈ →B. β(A) = T

)
.

In other words, C is assigned value T under β iff C is defended in β: β(C) = T iff β ∈ ∆(C).

(Elm-Cmp ⇒ jntCmp): Now let µ be element-wise conflict free and C ∈ Arg . Then all
assignments in the support of µ are complete, so we have

µ(C) =
∑

β(C)=T

µ(β) =
∑

β∈∆(C)

µ(β) = µ
(
∆(C)

)
.

Thus, all arguments C satisfy the constraint (=µ∆) and hence µ is joint-attack complete.

(Elm-Cmp ⇒ prCmp): We have to show that µ is probabilistically admissible and satis-
fies (>µ∆). The latter is clearly implied by µ being joint-attack complete as established
above. For the former, recall that element-wise complete semantics implies element-wise
admissibility. By Lemma 23, this implies probabilistic admissibility, so µ is probabilistically
complete.

Lemma 35 (prCmp⇒ minCmp, jntCmp⇒ minCmp). Let F be an AF and µ ∈ Distr(F).
If µ is probabilistically or joint-attack complete, then µ is min-complete.

Proof. Recall that min-complete semantics requires min-admissibility and that the con-
straint (>µ∆) holds. For the case where µ is joint-attack complete, the statement is obvious,
since jntCmp directly implies minAdm and (>µ∆). Let us suppose now that µ is proba-
bilistically complete. Then, µ is probabilistically admissible and therefore min-admissible
by Lemma 24. Furthermore, by definition of prCmp, µ also satisfies (>µ∆). Thus, µ is
min-complete.

Lemma 36 (minCmp⇒ wCmp). Let F be an AF and µ ∈ Distr(F). If µ is min-complete,
then µ is weakly complete.

Proof. Let µ be min-complete, i.e., µ satisfies minAdm and (>µ∆). Lemma 25 yields Argµ ⊆
asDefend(µ) and it remains to show that asDefend(µ) ⊆ Argµ. Let C ∈ asDefend(µ). Then
µ attacks each attacker B of C with probability 1, which is equivalent to µ

(
∆(C)

)
= 1.

Then (>µ∆) yields µ(C) = 1 and hence C ∈ Argµ.

We now provide an examples illustrating that the implications between the different
complete semantics are strict.
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Example 37. An example for a distribution that is both joint-attack and probabilistically
complete, but without being element-wise complete, is a distribution µ that assigns probabil-
ity 1

3 to the assignments id{A}, id{B}, and id{C} for the simple odd-length cycle AF on the
right below. Neither {A}, {B}, nor {C} are complete sets, so µ is not element-wise com-
plete. Because A, B, and C are isomorphic in the AF under µ, for all constraints imposed
by prCmp and jntCmp the left-hand side equals the right-hand side, so µ is probabilistically
and joint-attack complete.

For an example of a weakly complete distribution that is not complete w.r.t. any of the
other four complete semantics, consider the distribution ν provided through the following
probabilities of the assignments in its support:

ν( A ∧ ¬B ∧ ¬C) = 1/2

ν(¬A ∧ B ∧ ¬C) = 1/3

ν(¬A ∧ ¬B ∧ C) = 1/6

A B

C

A B

C

Then Argν = ∅ = asDefend(ν) and hence ν is weakly complete. However,

ν(A) =
1

2
66 1

6
= ν(B) = min

C′∈→A
ν
( ∨
B′∈→C′

B′
)

and thus the minAdm constraint is violated for argument A. To this end, ν is not min-
complete and thereby not probabilistically, joint-attack, or element-wise complete.

The distribution of Example 27 is joint-attack complete, but not probabilistically admissi-
ble, and therefore not probabilistically complete. Vice versa, the distribution µ of Example 28
is probabilistically complete, but not joint-attack admissible, and therefore not joint-attack
complete. Note that µ satisfies the jntCmp constraint for the arguments A, C, and D but
not for B, since jntAdm is violated due to µ(B) = 1/4 > 0 = µ

(
∆(B)

)
. However, the latter

inequation also implies that µ satisfies prCmp for B and together with prAdm holding for
A, C, and D, µ satisfies prCmp for all arguments.

3.4 Saturation

We recall that in the non-probabilistic setting an argument set S ⊆ Arg is called stable if
S is conflict-free and S ∪ S→ = Arg . Equivalently, S is conflict-free and each B ∈ Arg\S is
attacked by S: S ∩→B 6= ∅. Stable sets S can thus be thought of as “perfectly saturated”
in the sense that an argument is either in S or attacked by S. This is a quite strong
constraint, and the existence of stable sets and thus also element-wise stable distributions is
not guaranteed. In particular, this is the case for AFs where the underlying graph structure
constitutes a simple cycle of odd length, e.g., as in the graph of Example 37. In the
classical setting, the semi-stable semantics (Caminada, Carnielli, & Dunne, 2006) addresses
this issue, being defined as all complete argument sets S where S ∪S→ is maximal w.r.t. set
inclusion. This entails that if stable argument sets exist, they coincide with the semi-stable
sets, and that semi-stable sets always exist even when there is no stable set. However,
for distributions such a maximization criterion is not readily expressible as a polynomial
constraint. In the following, we provide a different approach of carefully weakening the
strong notion of “perfect saturation”.
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The idea is to require probabilistic justifications for µ(B) = 0 or µ(B) < 1. 0-saturation
requires that if argument B is accepted with likelihood 0, then B is attacked almost surely,
i.e., µ(

∨
A∈→B A) = 1. Likewise, 1-saturation imposes the constraint that all arguments B

where µ(B) < 1 are attacked with positive probability.

Definition 38 (0- and 1-saturated distributions). Let F = 〈Arg ,Att〉 be an AF and µ ∈
Distr(F) be almost-surely conflict-free. Then µ is called

(Elm-St) element-wise stable iff µ ∈ JFKElm-St,

(0-Sat) 0-saturated iff µ(
∨
A∈→B A) = 1 for each B ∈ Arg with µ(B) = 0,

(1-Sat) 1-saturated iff µ(
∨
A∈→B A) > 0 for each B ∈ Arg with µ(B) < 1, and

(0/1-Sat) 0/1-saturated iff µ is 0-saturated and 1-saturated.

We first note that element-wise stable distributions are both 0- and 1-saturated.

Lemma 39 (Elm-St ⇒ 0/1-Sat). Let F = 〈Arg ,Att〉 be an AF and µ ∈ Distr(F). If µ
is element-wise stable then µ is 0/1-saturated.

Proof. Let µ be element-wise stable. This implies that µ is almost-surely conflict-free. By
contradiction, assume µ is not 0/1-saturated. Then there is a B ∈ Arg such that either
µ(B) = 0 but µ(

∨
A∈→B) 6= 1, or µ(B) < 1 but µ(

∨
A∈→B) 6> 0. In both cases, there is an

assignment β ∈ Supp(µ) with β(B) = F and β(A) = F for all attackers A ∈ →B. But then
Argβ ∩→B = ∅, which contradicts β being a stable assignment.

On the other hand, 0/1-saturated distributions are not necessarily element-wise stable
as the following example shows.

Example 40 (0/1-Sat 6⇒ Elm-St). As mentioned before any AF F where the underlying
graph constitutes a simple cycle of odd length n > 3 (for instance the AF from Example 37)
does not have stable argument sets and hence no element-wise stable distributions. However,
the distribution that assigns probability 1/n to each assignment idA for every A ∈ Arg is 0/1-
saturated because the likelihood of each argument is then strictly between 0 and 1.

Nevertheless, the definitions of element-wise stable, 0-saturated, and 1-saturated distri-
butions agree for Dirac distributions. This implies, in particular, that 0-saturation as well
as 1-saturation are conservative extensions of the non-probabilistic stable semantics.

Lemma 41 (Conservative extension St). If S ⊆ Arg is conflict-free then the following
statements are equivalent:

(a) S is stable.

(b) DiracS is element-wise stable.

(c) DiracS is 0-saturated.

(d) DiracS is 1-saturated.

(e) DiracS is 0/1-saturated.
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Proof. The equivalence of statements (a) and (b) is trivial. The conditions required for
0-saturation and 1-saturation of the Dirac distribution µ = DiracS collapse to the following
requirement:

If B /∈ S then S ∩→B = ∅.

This yields the equivalence of (a) to statements (c), (d), and (e).

3.4.1 Existence of 0/1-saturated Distributions

As mentioned above there are AFs that do not have stable argument sets and thus no
element-wise stable distributions, so no guarantee can be given for the existence of 0- or
1-saturated Dirac distributions. Nevertheless, 0/1-saturated distributions always exist pro-
vided there are no self-attacks in the AF. Specifically, we show how in those cases the
grounded argument set can be extended to a 0/1-saturated distribution.

Lemma 42 (Existence of 0/1-saturated distributions). For every argumentation framework
F = 〈Arg ,Att〉 where Att is irreflexive, there is at least one 0/1-saturated distribution.

Proof. We partition the set Arg of all arguments as follows: SGr ⊆ Arg is the unique
grounded argument set, i.e., [F ]Gr = {SGr}, SGr

→ is the set of all arguments attacked by
the grounded set, and H = Arg \(SGr∪SGr

→) contains the remaining arguments. Note that
if H is not empty, then it contains at least two arguments: A single argument in H would
either be initial or attacked from within SGr

→, but in both cases it would be defended by
SGr. However, the grounded set is complete, so the argument would need to be contained
in SGr. By the same reasoning we get that all arguments in H are non-initial and have at
least one attacker that is also in H.

The assumption that F has no self-attacks then yields the existence of a subset C of 2H

such that (1) all argument sets in C are conflict-free, (2) each argument B ∈ H is contained
in at least one S ∈ C, (3) for each argument B ∈ H there is at least one set S ∈ C with
B /∈ S. For example, the set C = {∅} ∪

{
{B} : B ∈ H

}
satisfies (1)–(3).

We now consider an arbitrary distribution µ such that Supp(µ) = {idS∪SGr
: S ∈ C}.

Each assignment idS∪SGr
is conflict-free as both S and SGr are conflict-free, S ∩ SGr

→ = ∅
holds as S ⊆ H, and S→ ∩ SGr = ∅ as SGr is admissible. Thus, µ is almost-surely
conflict-free by Lemma 9. We conclude the proof by checking the constraints imposed by
0/1-saturation for each argument B ∈ Arg :

• B ∈ SGr: Then by the construction of µ, we have µ(B) = 1 and are done.

• B ∈ SGr
→: Then µ(B) = 0, but also µ(

∨
A∈→B) = 1.

• B ∈ H: Then 0 < µ(B) < 1 by (2) and (3). As noted before, B is non-initial and has
at least one attacker A ∈ H, so µ(

∨
A∈→B) > 0.

Example 43 (AFs with self-attacks). To illustrate why the restriction to AFs without self-
attacks can be necessary to ensure the existence of 0/1-saturated distributions, consider an
AF containing an argument B with →B = {B}, i.e., B is self-attacking and has no other
attackers. Then B is not contained in any conflict-free argument set, so µ(B) = 0 holds
for each almost-surely conflict-free distribution µ. Subsequently, µ(

∨
A∈→B A) = µ(B) = 0
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and thus no 0-saturated distribution exists. For the same reason there is no 1-saturated
distribution since µ(B) < 1 holds but the attack probability of B is not positive.

However, the existence of a self-attacking argument is not sufficient to prevent the exis-
tence of 0/1-saturated distribution. Consider the following AF:

A BA B

Then the unique distribution µ with µ(A) = 1 and µ(B) = 0 is almost-surely conflict-free.
As µ(

∨
A∈→B A) = 1 and µ(

∨
B∈→AB) = 0, µ is 0/1-saturated. In fact, µ is also element-

wise stable because {A} is a stable argument set. An example for an AF with a self-loop
that has no stable argument set but still a 0/1-saturated distribution is readily constructed
by adding a three-node cycle to the example above.

An algorithm to decide whether a 1-saturated distribution exists for a given AF is
detailed in Section 5.3.3.

3.4.2 Relationships

We now consider the relationships between the saturation semantics from Definition 38 and
the admissible and complete semantics from Sections 3.2 and 3.3. As shown by Example 43,
existence of saturated distributions is not guaranteed. This indicates that none of the
admissible and complete semantics are subsumed by any of the saturation semantics. In
the other direction, we obtain the following lemma.

Lemma 44 (0-Sat ⇒ wAdm, 0/1-Sat ⇒ wCmp). Let F = 〈Arg ,Att〉 be an AF and
µ ∈ Distr(F) be conflict-free. Then:

(a) If µ is 0-saturated then µ is weakly admissible, i.e., Argµ ⊆ asDefend(µ).

(b) If µ is 1-saturated then asDefend(µ) ⊆ Argµ.

(c) If µ is 0/1-saturated then µ is weakly complete, i.e., Argµ = asDefend(µ).

Proof. To prove (a), we suppose that µ is 0-saturated and pick an argument C ∈ Argµ. The
task is to show that µ almost-surely defends C, i.e., the attack probability for each attacker
of C is 1. Let B ∈ →C. As C ∈ Argµ we have µ(C) = 1. As µ is conflict-free we obtain
µ(B) = 0. By the 0-saturation of µ we obtain:

µ
( ∨
A∈→B

B
)

= 1.

Hence, B is attacked with probability 1. This shows Argµ ⊆ asDefend(µ).

To prove (b), we suppose that µ is 1-saturated and aim to show asDefend(µ) ⊆ Argµ. For
this, we pick an argument C ∈ asDefend(µ) and show µ(C) = 1. Suppose by contradiction
that µ(C) < 1. But then 1-saturation yields

µ
( ∨
B∈→C

B
)
> 0.
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So, there is some attacker B of C with µ(B) > 0. On the other hand, as C ∈ asDefend(µ),
the attack probability of B under µ equals 1. That is, for each assignment β ∈ Supp(µ)
there exists an argument A with β(A) = T and (A,B) ∈ Att . But then β(B) = F as
otherwise β would not be conflict-free. This shows β(B) = F for all β ∈ Supp(µ). This
yields µ(¬B) = 1 and therefore µ(B) = 0. Contradiction.

Statement (c) is a direct consequence of (a) and (b).

From Lemma 44 and the fact that weakly complete semantics are also weakly admissible,
it is clear that also 0/1-saturated argument sets are weakly admissible. The following exam-
ples suffice to show that there are no further inclusion relationships between the saturation,
admissible, and complete semantics.

Example 45 (1-Sat 6⇒ wAdm). Consider the following almost-surely conflict-free distri-
bution for the AF on the right.

µ(A ∧ ¬B ∧ ¬C ∧ ¬D) = 8/10

µ(A ∧ ¬B ∧ C ∧ ¬D) = 1/10

µ(A ∧ ¬B ∧ ¬C ∧ D) = 1/10

A B C DA B C D

Then µ is 1-saturated as µ(A) = 1, while B, C, and D are attacked with positive probability.
But µ is not weakly-admissible as µ(A) = 1 but µ

(
∆(A)

)
= µ(C) = 1/10 6= 1.

Example 46 (0-Sat 6⇒ wCmp). Consider the AF with only a single argument and no
attacks F = 〈{A}, {}〉 and the almost-surely conflict-free distribution µ with support µ(A) =
9/10 and µ(⊥) = 1/10. Then µ is 0-saturated trivially. On the other hand, µ

(
∆(A)

)
= 1 but

µ(A) 6= 1.

Example 47 (0/1-Sat 6⇒ minAdm). Consider the following almost-surely conflict-free
distribution for the AF on the right.

µ( A ∧ ¬B ∧ ¬C) = 1/10

µ(¬A ∧ B ∧ ¬C) = 1/10

µ(¬A ∧ ¬B ∧ C) = 8/10

A B CA B C

Then µ is 0-saturated trivially and 1-saturated as all arguments are attacked with positive
probability. But µ is not min-admissible as µ(C) = 8/10 > minX∈→C µ

(∨
Y ∈→X Y

)
=

µ(A) = 1/10.

3.5 Labelings

We established that our probabilistic notions of admissible and complete semantics conser-
vatively extend classical admissibility and complete semantics for argument sets. For most
classical argumentation semantics, an alternative formulation in terms of labelings is avail-
able (see Baroni et al. (2011) for an overview). In this section, we investigate ways to get
from distributions to labelings, so-called labeling schemes, and present a novel approach un-
der which conservative extensions in the argument set view carry over to the labeling-based
semantics.
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A labeling is a function L : Arg → {in, out, undec} that assigns to each argument in an
AF one of the three statuses in, out, or undec (undecided). A labeling L is conflict-free iff
no attack between any two arguments that are both labeled with in exists. For admissible
labelings, the in and out labels need to be justified; complete labelings additionally also
require a justification for the undec labels.

Definition 48 (Admissible and complete labelings Adm-L and Cmp-L). For an AF F =
〈Arg ,Att〉, a labeling L : Arg → {in, out, undec} is admissible if for each A ∈ Arg the follow-
ing two conditions hold:

1. If L(A) = in, then L(B) = out for all attackers B ∈ →A.

2. If L(A) = out, then L(B) = in for at least one attacker B ∈ →A.

L is complete if it is admissible and the following additional condition holds:

3. If L(A) = undec, then L(B) 6= in for all attackers B ∈ →A and L(B) 6= out for at least
one attacker B ∈ →A.

Given a conflict-free argument set S, a corresponding labeling LS can be constructed by
assigning the label in to all arguments in S, out to all arguments attacked by S, and undec

to the remaining arguments in Arg \ (S ∪ S→):

LS(A) =


in if A ∈ S
out if A ∈ S→

undec otherwise.

Conversely, given a labeling L, the corresponding argument set ArgL is given by all argu-
ments labeled in by L. The following lemma by (Caminada & Gabbay, 2009) connects the
two approaches to classical argumentation for admissibility and complete semantics.

Lemma 49. Let F = 〈Arg ,Att〉 be an AF, S ⊆ Arg a conflict-free argument set, and L a
labeling on F .

1. If S is admissible, then the labeling LS is admissible.

2. If L is admissible, then the set ArgL is admissible.

3. L is complete iff there is a complete set S ′ ⊆ Arg with L = LS′.

The last statement of Lemma 49 implies that for each AF, a bijection between the complete
argument sets and the complete labelings exists. This is not the case for admissibility, as
several admissible labelings may correspond to the same admissible argument set.

3.5.1 Labeling Schemes

In the probabilistic setting, we are interested in labelings induced by distributions. To this
end, various labeling schemes are imaginable, each specifying how to get from a distribution
µ ∈ Distr(F) to a labeling Lµ : Arg → {in, out, undec}. Arguably the most intuitive approach
is to choose the label for each argument A based on its likelihood µ(A). All labeling schemes
implementing this approach by a three-way partitioning of the unit interval are instances
of the following interval labeling scheme.
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Definition 50 (Interval labeling scheme). Let F = 〈Arg ,Att〉 be an AF and µ ∈ Distr(F).
Given three disjoint intervals i, o, and u that form a partition of the unit interval, i.e.,
i ∪ o ∪ u = [0, 1], the interval labeling Li,o,uµ is defined for each A ∈ Arg as

Li,o,uµ (A) =


in if µ(A) ∈ i
out if µ(A) ∈ o
undec if µ(A) ∈ u.

An instance of the interval labeling scheme with i = (0.5, 1], o = [0, 0.5), and u = {0.5}
can be found in (Hunter & Thimm, 2017), which we will call the Hunter-Thimm-labeling
scheme LHT. We will also consider an instance called the cautious labeling scheme Lcts
where only arguments with likelihood 1 or 0 are, respectively, labeled in or out, and all other
arguments are labeled undec. That is, Lctsµ = Li,o,uµ with i = {1}, o = {0}, and u = (0, 1).

Given the correspondence between argument sets and their induced Dirac distributions,
we can check if the labeling for the argument set agrees with the labeling yielded by a
labeling scheme for the respective Dirac distribution. If these two labelings coincide for
every argument set, we say that the labeling scheme is a conservative extension of argument
set induced labelings.

Definition 51 (Conservative extension of labelings). A labeling scheme Lx conservatively
extends the labelings induced by argument sets iff for all conflict-free sets S ∈ Arg:

LS = LxDiracS .

Example 52. Consider the following AF and the admissible argument set S = {A}.

A B CA B C

Then the induced labeling LS is given by LS(A) = in, LS(B) = out, and LS(C) = undec. The
distribution DiracS yields the likelihoods DiracS(A) = 1 and DiracS(B) = DiracS(C) = 0.
Now both under the cautious and the Hunter-Thimm-labeling scheme, the labeling induced
by DiracS assigns argument C the label out. Thus, neither LctsDiracS

nor LHT
DiracS

equals LS . In
fact, no instance of the interval labeling scheme is a conservative extension: As DiracS(B) =
DiracS(C), we also have Li,o,uDiracS

(B) = Li,o,uDiracS
(C) regardless of the chosen intervals i, o,

and u.

Nevertheless, for each argument set S the labeling LS is contained in the set of all
cautious labelings Lctsµ induced by distributions over the assignments for Arg , under the
condition that the given AF has no self-attacks.

Lemma 53. Let F = 〈Arg ,Att〉 be an AF where the attack relation Att is irreflexive. Then
for each conflict-free argument set S ⊆ Arg there is a conflict-free distribution µ ∈ Distr(F)
such that LS = Lctsµ .

Proof. Let β = idS be the assignment corresponding to S and let Y denote the set of all
arguments C ∈ Arg \ S that do not have an attacker in S, i.e.,

Y =
{
C ∈ Arg \ S : S ∩→C = ∅

}
.
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As Y ∩ S = ∅, we have β(C) = F for all C ∈ Y. For each C ∈ Y, let βC denote the
assignment that agrees with β for all arguments in Arg \{C} but assigns βC(C) = T. Using
the assumption that (C,C) /∈ Att , the assignments βC are conflict-free. Let now µ be an
arbitrary distribution with Supp(µ) = {β} ∪ {βC : C ∈ Y}. Then each argument in Arg is
either in S, Y, or Arg \ (S ∪ Y):

• For A ∈ S, we have β(A) = βC(A) = T for all C ∈ Y. Hence, µ(A) = 1 and
Lctsµ (A) = in = LS(A).

• For C ∈ Y, we have µ(C) = µ(βC). By βC ∈ Supp(µ), we know µ(βC) > 0, and
further µ(βC) < 1 as there are other assignments in Supp(µ). Hence, Lctsµ (C) =
undec = LS(C).

• For B ∈ Arg \ (S ∪ Y), we have β(B) = βC(B) = F for all C ∈ Y. Hence, µ(B) = 0
and Lctsµ (B) = out = LS(B).

This shows Lctsµ = LS . From Lemma 9 we obtain that µ is also conflict-free.

Lemma 53 excludes the case of self-attacks. Indeed, the statement of Lemma 53 does
not hold, e.g., for the empty argument set S = ∅ in an argumentation framework where
all arguments are self-attacking. In this case, the only conflict-free distribution is the Dirac
distribution µ assigning 1 to the assignment A 7→ F for all A ∈ Arg . But then Lctsµ labels
all arguments out. On the other hand, the labeling induced by S = ∅ labels all arguments
undec. The same phenomenon would occur for the Hunter-Thimm-labeling scheme.

3.5.2 Conservative Labeling Scheme

We now introduce a labeling scheme that is a conservative extension of labelings induced
by argument sets.

Definition 54 (Conservative labeling scheme). Let F = 〈Arg ,Att〉 be an AF and µ ∈
Distr(F). The conservative labeling Lconsµ is defined as follows for each argument A ∈ Arg:

Lconsµ (A) =


in if µ(A) = 1
out if µ

(∨
B∈→AB

)
= 1

undec otherwise.

Lemma 55. For each conflict-free argument set S ⊆ Arg, the labeling LS agrees with the
conservative labeling of the induced Dirac distribution. That is, LS = LconsDiracS

.

Proof. For any argument A ∈ Arg , we have

LS(A) = in iff A ∈ S iff DiracS(A) = 1 iff LconsDiracS (A) = in.

For the out label, we have

LS(A) = out iff →A ∩ S 6= ∅ iff DiracS
( ∨
B∈→A

B
)

= 1 iff LconsDiracS (A) = out.

This yields the claim.
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We can observe that the condition for the out label, µ
(∨

B∈→AB
)

= 1, implies µ(A) =
0 for each conflict-free distribution µ. This yields the following connection between the
cautious and the conservative labeling scheme:

Lctsµ (A) = in ⇔ Lconsµ (A) = in

Lctsµ (A) = out ⇐ Lconsµ (A) = out

Lctsµ (A) = undec ⇒ Lconsµ (A) = undec

From this relation it is easy to see that for any distribution µ where µ(A) = 0 implies
µ
(∨

B∈→AB
)

= 1, both labeling schemes induce the same labeling. This exact condition is
enforced by the notion of 0-saturation from Definition 38. Hence, we obtain:

Lemma 56. If µ is a 0-saturated distribution then Lctsµ = Lconsµ .

We conclude the excursus on labelings with an example from Thimm (2012) that high-
lights how probabilistic semantics may induce labelings that do not appear in the corre-
sponding classical semantics but are still sensible.

Example 57. Consider the following AF and the two admissible argument sets S1 = {A1}
and S2 = {A2}:

A1

A2

B

A1

A2

B

Both induce a labeling function LSi where B is labeled out as B’s attacker Ai is labeled
in with respect to Si. The distribution µ assigning probability 1

2 to the corresponding as-
signments idS1 and idS2 is element-wise admissible, and the arguments’ likelihoods are
µ(A1) = µ(A2) = 1

2 and µ(B) = 0. Further, we have µ(A1 ∨ A2) = 1, so µ is 0-saturated
and by Lemma 56 the labeling Lctsµ thus coincides with the labeling Lconsµ : B is labeled out

whereas A1 and A2 are labeled undec. This labeling is not admissible as no attacker of B is
labeled in, and likewise no argument set exists which could induce it.

Nevertheless, we argue that the classification of B as out is rather natural given the
probabilistic background: B is attacked with probability 1, and µ describes a situation where
either A1 or A2 is accepted. Both are equally likely, but regardless of the outcome B is
attacked in either case. This is reflected in the labeling which is undecided about A1 and A2

but certain in its judgment of B as out.

4. Taxonomy and Related Work

Most closely related to our approach is the work by Hunter and Thimm (2017). Based on
earlier works (Thimm, 2012; Hunter, 2013), the authors extend AFs towards a probabilistic
setting by attributing a degree of belief to arguments. Inspired by notions from classical
argumentation, they introduce several probabilistic semantics featuring constraints on the
likelihood of single arguments that can be compared to our semantics. Adapted to our
notation, we recall these semantics below for the sake of self-containedness.
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Definition 58. Let F = 〈Arg ,Att〉 be an AF and µ ∈ Distr(F). Then µ is called

(Fou) founded iff µ(A) = 1 for all initial A ∈ Arg,

(sFou) semi-founded iff µ(A) > 1/2 for all initial A ∈ Arg,

(Opt) optimistic iff µ(¬A) 6
∑

B∈→A µ(B) holds for all A ∈ Arg,

(sOpt) semi-optimistic iff (Opt) holds for all non-initial A ∈ Arg,

(Coh) coherent iff µ(A) 6 µ(¬B) for all (A,B) ∈ Att,

(Inv) involutary iff µ(A) = µ(¬B) for all (A,B) ∈ Att,

(Jus) justifiable iff µ is coherent and optimistic,

(Rat) rational iff µ(A) > 1/2 implies µ(B) 6 1/2 for all (A,B) ∈ Att,

(Min) minimal iff µ(A) = 0 for all A ∈ Arg,

(Neu) neutral iff µ(A) = 1/2 for all A ∈ Arg, and

(Max) maximal iff µ(A) = 1 for all A ∈ Arg.

Figure 6 gives an overview of all semantics introduced in this paper in perspective to
the semantic notions from (Hunter & Thimm, 2017) and the element-wise lifted classical
semantics by Thimm et al. (2017) as given in Definition 6. An arrow from one semantics to
another, e.g., wCmp ⇒ Jus, indicates that JFKwCmp ⊆ JFKJus holds for arbitrary AFs F .
In this context, Bot denotes the empty semantics and Top the universal semantics, with
JFKBot = ∅ and JFKTop = Distr(F). Further, there is at least one AF for each arrow such
that the set inclusion is strict, and no other arrows (except for the transitive closure) exist.
Proofs for Elm-St⇒ Jus and Elm-Cf⇒ Coh (and thus asCf⇒ Coh by Lemma 9) are
given in (Thimm et al., 2017).

All probabilistic semantics introduced in this paper entail or require that the distri-
butions are almost-surely conflict-free, so they all imply coherency. However, apart from
Elm-St, no other semantics entails Jus. We show this by the following examples. First,
Example 59 covers the admissible and complete semantics (which all subsume Elm-Gr and
Elm-Prf), followed by Example 60 considering the saturation semantics.

Example 59 (Elm-Gr 6⇒ sOpt,Elm-Prf 6⇒ sOpt). Consider again the odd cycle AF F
appearing in Example 37 and the assignment β = {A=F, B=F, C=F}. The distribution
Diracβ is element-wise preferred and grounded as the corresponding empty argument set is
the only element in both [F ]St and [F ]Gr. However, Diracβ is not optimistic (and thus not
justifiable) as, e.g., Diracβ(¬A) = 1 66 0 = Diracβ(C).

Example 60 (0/1-Sat 6⇒ sOpt). Recall from Example 40 that the distribution µ assigning
probability 1/3 to the assignments id{A}, id{B}, and id{C} for the odd cycle AF in Example 37
is 0/1-saturated. But µ does not satisfy sOpt: for instance, µ(¬A) = 2/3 66 1/3 = µ(C).

In turn, all our notions of complete semantics are founded: They all imply weak com-
pleteness, and initial arguments have maximal likelihood in weakly complete distributions
since they are always almost-surely defended.
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Figure 6: Hierarchy of probabilistic argumentation semantics. Light gray boxes indicate
trivial semantics, the boxes on the left-hand side stand for element-wise lifted
classical semantics, the boxes on the right refer to the probabilistic semantics
introduced by Hunter and Thimm (2017), and the boxes in the middle to the
new notions of admissibility (Section 3.2), complete semantics (Definition 29),
and saturation (Definition 38).

Lemma 61 (wCmp⇒ Fou). If µ is weakly complete, then µ is founded.

Proof. Let A ∈ Arg be initial. Due to →A = ∅, A is trivially almost-surely defended by
µ, i.e., A ∈ asDefend(µ). By wCmp, Argµ = asDefend(µ), so A ∈ Argµ holds and thus
µ(A) = 1.

Since any 0/1-saturated distribution is weakly complete, Lemma 61 also implies that 0/1-
saturated distributions are founded. The latter holds already for 1-saturated distributions:

Lemma 62 (1-Sat⇒ Fou). If µ is 1-saturated, then µ is founded.

Proof. Assume that µ is 1-saturated but not founded. This means there is some initial A
for which µ(A) < 1. But then since µ is 1-saturated, A must be attacked with positive
probability, which cannot be the case as A is initial.

On the other hand, 0-Sat does not imply Fou as the next example shows.

Example 63 (0-Sat 6⇒ sFou). Consider the AF with only one argument A and no attacks
and the distribution µ with µ(A) = 2/5 and µ(⊥) = 3/5. Then µ is 0-saturated trivially but
µ is not semi-founded (and, hence, also not founded) as µ(A) < 1/2.

In the setting of Hunter and Thimm (2017), Coh and Jus are generalizations of conflict-
free argument sets and the complete semantics, respectively. By our definition (cf. Defini-
tion 5), coherence is a conservative extension of Cf, though this is not the case for Jus and
Cmp: The assignment β from Example 59 is complete but Diracβ is not justifiable.

Example 64. To illustrate some of the differences between our semantics and, in particular,
justifiability semantics, we return to our motivating example from the introduction where we
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considered an AF for a semi-autonomous car. Consider the following distribution µ given
below as the probabilities of all events in its support, where µ(S) abbreviates µ(idS).

µ({st, cl, cl⇒l, cl⇒m, cr, cr⇒m, cr⇒r, ld}) = 0.2

µ({st, ld, cl, cl⇒l, cl⇒m, cr, cr⇒m, cr⇒r}) = 0.1

µ({st, cr, cr⇒r, ld, cl, cl⇒l, cl⇒m}) = 0.3

µ({st, cr, cr⇒m, cr⇒r, ld, ld⇒m, cl, cl⇒l}) = 0.1

µ({st, cl, cl⇒m, cr, cr⇒m, cr⇒r, ld}) = 0.1

µ({st, cl, cl⇒m, cr, cr⇒m, cr⇒r, ld, ld⇒m}) = 0.2

Based on Figure 2, we depict the resulting µ-likelihood of each argument in the figure below:
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1.0

0.70.3

0.3

0.7

0.7

0.0

0.3
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Though not visible when looking only at the likelihoods, argument st (bottom center, red)
with µ(st) = 1 is only defended by the three (underlined) attackers of ct (center, green) with
a total probability of

µ(cl⇒m ∨ ld⇒m ∨ cr⇒m) = 0.4.

That is, st is not almost-surely defended. However, this is required by weak admissibility
(and thus by all of our notions of admissibility and complete semantics) for arguments like
st that are almost-surely accepted.

Justifiability, instead, considers solely the likelihoods of the immediate attackers. For
the arguments in question, the optimism constraints for argument st and argument ct hold:

µ(¬st) = 0 6 0 = µ(ct)

µ(¬ct) = 1 6 0.3 + 0.3 + 0.4

= µ(cl⇒m) + µ(ld⇒m) + µ(cr⇒m)

In fact, Opt holds for all arguments, so µ is justifiable as coherency is given as well.

Example 65. In the figure below, we show the argument likelihoods induced by a distribu-
tion µ that is joint-attack complete but not justifiable.
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We see µ is not justifiable as, e.g., for argument st, the Opt constraint is violated: µ(¬st) =
0.6 66 0 = µ(ct). Note that jntCmp cannot be verified from the likelihoods alone and re-
quires reasoning on the full joint distribution on arguments. We refer to Example 78 for
details on how µ was constructed.

The Bigger Picture. Apart from the technical relations between the probabilistic ar-
gumentation semantics shown in Figure 6, there is a foundational difference between the
semantical notions by Hunter and Thimm (2017) and the notions we propose. The former
only impose constraints on the likelihood of single arguments and therefore tend to be more
coarse than our semantics from Section 3. The latter crucially exploit the possibility to
impose constraints across the joint probability distributions, and this makes it possible to
express dependencies as needed already to spell out admissibility in an adequate manner.

Specifically, when restricting oneself to constraints over the likelihood of single argu-
ments, dependencies between the truth values of arguments cannot be expressed: When-
ever a system of constraints for µ(A) can be satisfied by at least one distribution, then the
solution space contains at least (i) one distribution µ where the arguments are pairwise in-
dependent and (ii) one distribution µ such that for all arguments A,B where µ(A) > µ(B),
it is implied that B → A holds for every assignment in the support of µ. If B attacks A and
the likelihood of B is positive then both (i) and (ii) are in contrast to standard argumen-
tation semantics. In particular, linear constraints for µ(A) cannot express that arguments
are complements of each other and thus mutually exclusive, which is however required to
faithfully model our vehicle example. This observation should not be read as a critique at
the earlier work by Hunter and Thimm as their focus is on modeling the belief of arguments
and the induced three-values labelings, rather than a conservative extension of standard
concepts (such as conflict-freeness or admissibility) on the level of distributions.

4.1 Further Related Work

There is a large body of work on probabilistic extensions of AFs. In general, one distin-
guishes between the constellations approach (Dung & Thang, 2010; Li et al., 2011; Hunter,
2012; Fazzinga, Flesca, & Parisi, 2015) where uncertainty pertains the topology of the
framework, and the epistemic approach (Hunter & Thimm, 2017; Potyka, 2019) where the
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framework is fixed and uncertainty revolves around the acceptance of arguments. This
paper falls into the latter category.

Baroni, Giacomin, and Vicig (2014) approach epistemic probabilities from the angle of
de Finetti’s theory of subjective probabilities (de Finetti, 1974). They consider rationality
conditions based on the notions of defense and reinstatement, which are closely related to
admissibility and complete semantics.

An investigation of variants of semantics giving uniform distributions over the com-
plete, preferred, and semi-stable labelings of an AF is given by Rienstra, Thimm, Liao, and
van der Torre (2018). They show that the schemes investigated produce semantics which are
founded, rational, and coherent (see Definition 58). The authors introduce new principles
for probabilistic semantics based on SCC-decomposability and SCC-factorability.

Hunter, Polberg, and Thimm (2020) extended the approach by Hunter and Thimm
(2017) and proposed epistemic graphs. Besides the notion of support3 of arguments, a
notion that complements attacks (Boella, Gabbay, van der Torre, & Villata, 2010), they
augment argument graphs by constraints that restrict the degree of beliefs in arguments
as well as how these beliefs influence each other. These constraints can be formulated as
Boolean combinations of polynomial inequalities over terms that stand for the probability
of acceptance of argument sets (represented with propositional atoms). The semantics
considered by Hunter et al. (2020) associates sets of distributions over the powerset of
arguments with each epistemic graph. The authors consider three forms of semantics or
types of constraints on the distributions, the simplest being the satisfaction semantics,
which simply returns the distributions consistent with the constraints of an argument graph.
A central impulse for the development of epistemic graphs appears to be work on using
argumentation for persuasion (Hadoux, Hunter, & Polberg, 2021), which was already in
part also addressed in Hunter et al. (2020). Epistemic graphs are a very general framework.
As a matter of fact, all constraints appearing in our work can be cast into the setting of
epistemic graphs and its satisfaction semantics.

5. Reasoning Problems and Complexity

Classically, a number of different reasoning problems are of interest given an AF and a
specific argumentation semantics. Foremost, one might ask whether there exists an argu-
ment set satisfying the semantics’ constraints. Further, one is surely interested in whether
a particular argument set satisfies the constraints of a semantics. Finally, checking credu-
lous and skeptical acceptance of single arguments is of interest, that is, deciding whether
a given argument is contained in at least one argument set or, respectively, all argument
sets that satisfy the semantics’ constraints. A comprehensive overview is given by Dvořák
and Dunne (2018). Based on these tasks, we define five reasoning problems for probabilistic
argumentation semantics.

Definition 66 (Reasoning problems). Let ρ be any probabilistic argumentation semantics.
We define the following reasoning problems:

(NE-ρ) Non-emptiness: Given an AF F, decide whether JFKρ is non-empty.

3. Not to be confused with the support of a distribution as defined in Section 2.3.
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(NTNE-ρ) Non-trivial non-emptiness: Given an AF F , decide whether JFKρ\{Dirac∅} is
non-empty.

(CA-ρ) Credulous acceptance: Given an AF F = 〈Arg ,Att〉, an argument A ∈ Arg, and
a threshold θ ∈ Q ∩ (0, 1], decide if there is at least one µ ∈ JFKρ with µ(A) > θ.

(SA-ρ) Skeptical acceptance: Given an AF F = 〈Arg ,Att〉, an argument A ∈ Arg, and a
threshold θ ∈ Q ∩ (0, 1], decide if µ(A) > θ holds for all µ ∈ JFKρ.

(M-ρ) Membership: Given an AF F and a distribution ν ∈ Distr(F) as input, decide
whether ν ∈ JFKρ.

When considering the complexity of these reasoning problems, we assume a simple graph
encoding for the input AF and a binary encoding of the rational threshold θ. The input
distribution for the membership problem is encoded explicitly as vector of rational values
in Q ∩ [0, 1], one for each assignment.

For the first three decision problems, i.e., both variants of non-emptiness and credulous
acceptance, a positive answer would usually be accompanied by a witness distribution. For
skeptical acceptance, in case of a negative answer one might be interested in a distribution
acting as a counterexample.

In the following sections we investigate how the reasoning problems provided in Defini-
tion 66 can be algorithmically solved and investigate their complexities when instantiated
with the probabilistic semantics introduced in this paper. An overview of all results is given
in Table 1.

5.1 Generic Upper Bounds

We show how each of the reasoning problems from Definition 66 can be computed in a
generic way for all semantics introduced in this paper. This establishes decidability for each
of the decision problems and yields a general upper bound on their time complexity.

With the exception of their weak variants, the introduced admissible and complete se-
mantics share the characteristics that each of them imposes a certain set of linear constraints
on the joint probability distributions over assignments. The non-emptiness problem NE-ρ
is thus solvable in exponential time since the feasibility of linear constraint systems can be
checked in polynomial time and the number of variables grows exponentially in the number
of arguments. For weak admissibility, weak complete semantics, and the saturation seman-
tics, the imposed constraints are non-linear as they contain implications that condition the
likelihood of arguments. However, an exponential time bound for the existence problem
under these semantics can still be obtained by enumerating all subsets of Arg as candi-
dates for the arguments which are accepted with the respective likelihood and checking the
feasibility of the resulting—then linear—constraint system for each of them.

NE-ρ is trivially solved if ρ is any semantics implied by Min in Figure 6, as Min always
contains the distribution µ0 = Dirac∅ with µ0(A) = 0 for all arguments. This motivated
the formulation of the non-trivial non-emptiness problem NTNE-ρ where µ0 is excluded.
The switch from NE-ρ to NTNE-ρ can be achieved by adding a single linear constraint,
such that the exponential time bound remains the same for all semantics. The same holds
for the credulous acceptance problem CA-ρ which can be phrased as existence problem
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semantics ρ NE-ρ NTNE-ρ CA-ρ SA-ρ M-ρ

Elm-Cf trivial in P in P trivial in P
Elm-Gr trivial in P P -c P -c P -c

wAdm trivial in P NP -h trivial in P
minAdm trivial NP -h trivial in P
jntAdm trivial NP -h trivial in P
prAdm trivial NP -h trivial in P

Elm-Adm trivial NP -c NP -c trivial in P

wCmp trivial in P NP -h P -c in P
minCmp trivial NP -h P -c in P
jntCmp trivial NP -h P -c in P
prCmp trivial NP -h P -c in P

Elm-Cmp trivial NP -c NP -c P -c in P

0-Sat NP -h in P
1-Sat in P in P in P in P in P

0/1-Sat NP -h in P
Elm-St NP -c NP -c NP -c coNP -c in P

Table 1: Summary of complexity results for the reasoning problems from Definition 66.
EXPTIME is an implicit upper bound for all empty fields and entries where only
a hardness result is given (see Section 5.1), entries for the element-wise lifted
semantics are discussed in Section 5.2, results for NE-ρ and NTNE-wAdm and
NTNE-wCmp in Section 5.3.1, and skeptical acceptance SA-ρ in Section 5.3.2.
1-Sat is covered in Section 5.3.3 and the hardness results for CA-ρ are given in
Section 5.4. Note that for the membership problem M-ρ, the polynomial time
bounds are subject to a trivial full encoding of the input distribution.

with an additional linear constraint encoding µ(A) > θ for the given argument A and
threshold θ. For the skeptical acceptance problem SA-ρ, we can check for the existence of
a counterexample by looking for a distribution which satisfies the constraints of ρ but also
the linear constraint encoding µ(A) < θ.

For the membership problem M-ρ, the constraints enforced by a semantics ρ for a given
AF have to be evaluated under the given distribution. The number of constraints is linear in
the number of arguments in the AF, though the size of each constraint can be exponentially
large. However, given the trivial encoding of the input distribution as a full list of entries
for each possible assignment, the distribution is itself exponentially large compared to the
AF. In that case, taking into account the whole input size, evaluating the constraints is
possible in polynomial time. The complexity of M-ρ is left open in case the distribution is
given by some more efficient encoding, e.g., when the zero entries for the assignments that
are not in the support of the distribution are omitted.
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In summary, EXPTIME is a general upper bound on the time complexity for all rea-
soning problems. Upper and lower bounds can however be sharpened for many problem
instances, as we show in the following sections.

5.2 Classical Semantics Instances

Decision problems for element-wise lifting semantics inherit their complexity from the cor-
responding decision problems in the classical setting.

Lemma 67 (Reasoning problems under element-wise lifting). Let F = 〈Arg ,Att〉 be an AF
and σ a classical argumentation semantics. Then the following equivalences hold for the
respective reasoning problem:

(a) Non-emptiness: [F ]σ = ∅ iff JFKElm-σ = ∅.

(b) Non-trivial non-emptiness: [F ]σ\{∅} = ∅ iff JFKElm-σ\{Dirac∅} = ∅.

(c) Credulous acceptance: For any argument A ∈ Arg, there is a set S ∈ [F ]σ with A ∈ S
iff there is a distribution µ ∈ JFKElm-σ and a threshold θ ∈ (0, 1] s.t. µ(A) > θ.

(d) Skeptical acceptance: For any A ∈ Arg, A is contained in each S ∈ [F ]σ iff there is
threshold θ ∈ (0, 1] s.t. µ(A) > θ holds for all µ ∈ JFKElm-σ.

Proof. (a) and (b): The existence of an argument set S ∈ [F ]σ implies DiracS ∈ JFKElm-σ,
and the existence of a distribution µ ∈ JFKElm-σ implies there is at least one assignment
β ∈ Supp(µ) such that Argβ ∈ [F ]σ.

(c): If argument A is contained in at least one argument set S ∈ [F ]σ, then DiracS ∈
JFKElm-σ and DiracS(A) = 1 > θ for ever θ ∈ (0, 1]. Vice versa, if µ(A) > θ for any θ > 0
and a distribution µ ∈ JFKElm-σ, then there is at least one β ∈ Supp(µ) with β(A) = T.
Thus, A ∈ Argβ and Argβ ∈ [F ]σ.

(d): If A is in each set S ∈ [F ]σ, then β(A) = T for each assignment β ∈ Supp(µ) where
µ ∈ JFKElm-σ and thus µ(A) = 1. For the reverse direction, note that for every element-wise
lifted semantics σ there is a distribution µ̂ ∈ JFKElm-σ where Supp(µ̂) = {idS : S ∈ [F ]σ}.
Now if µ(A) > θ holds for all µ ∈ JFKElm-σ, we also have µ̂(A) > θ and thus A ∈ S for all
S ∈ [F ]σ.

Using complexity results from classical abstract argumentation (see Dvořák and Dunne
(2018) for a summary), the non-trivial non-emptiness problem and the credulous acceptance
problem are NP -complete (notated as NP -c) for the element-wise lifted versions of admis-
sible, complete, and stable semantics. Further, for Elm-St also the regular non-emptiness
problem is NP -complete and the skeptical acceptance problem is coNP -complete.

5.3 Tractable Instances

Apart from the membership problem and the non-emptiness problem for the various ad-
missibility semantics, several other decision problems can be solved in polynomial time.
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5.3.1 Non-trivial Non-emptiness

Every argumentation framework has a uniquely defined grounded argument set SGr (see
Definition 2) which is also a complete set and can be computed in polynomial time. As each
of our probabilistic variants of complete semantics conservatively extends classical complete
semantics, they always contain the distribution DiracSGr

, thus trivializing the non-emptiness
problem. However, as the grounded argument set can be the empty set, this does not effect
the non-trivial non-emptiness problem NTNE-ρ.

For the weakly admissible semantics, the constraint Argµ ⊆ asDefend(µ) is trivially
satisfied for all distributions µ where µ(A) < 1 holds for each argument A. At first glance
this fact might suggest that hence also a non-trivial distribution always exists where µ(A) >
0 for at least one argument. However, special care is needed in case there are self-attacking
arguments. As every weakly admissible distribution needs to be almost-surely conflict-free,
we get µ(A) = 0 for each self-attacking argument A. Thus, if all arguments of an AF are self-
attacking (which can be checked in polynomial time) then no non-trivial weakly distribution
exists. Otherwise, let Arg 6� ⊆ Arg denote the set of non-self-attacking arguments and
consider the distribution µ̃ with

µ̃
(
id∅
)

=
1

|Arg 6�|+ 1
and µ̃

(
id{A}

)
=

1

|Arg 6�|+ 1
for each A ∈ Arg 6�.

Then µ̃ is almost-surely conflict-free, weakly admissible, and different to the trivial distri-
bution Dirac∅. Thus, the problem NTNE-wAdm lies in P .

Similarly, a polynomially time-bounded algorithm to compute a non-trivial weakly com-
plete distribution can be obtained. Again, we first check whether all arguments are self-
attacking. If so, no non-trivial weakly complete distribution exists. Otherwise, we proceed
to compute the unique grounded argument set SGr. If it is non-empty, we are finished and
return the distribution DiracSGr

. Otherwise, when SGr = ∅, we know that all arguments in
the AF must be attacked (as unattacked arguments necessarily appear in the grounded set).
In those cases, the distribution µ̃ is weakly complete: µ̃

(
∆(C)

)
< 1 holds for all non-initial

arguments C by the construction of µ̃ as µ̃
(
id∅
)
> 0 and the assignment id∅ only appears

in ∆(C) for initial arguments. Thus, NTNE-wCmp is in P as well.

5.3.2 Skeptical Acceptance

The skeptical acceptance problem SA-ρ asks whether the likelihood of a given argument A
exceeds a given positive threshold θ under all ρ-distributions. Like the non-emptiness prob-
lem, this problem is trivially solvable for all semantics that necessarily contain the distribu-
tion µ0 = Dirac∅, as µ0(A) = 0 6> θ for any θ > 0. Further, for all our notions of complete
semantics, the problem is equivalent to deciding if the argument A is part of the grounded
set SGr, as shown by the following corollary of Lemma 33. By (Dvořák, 2012), checking if
an argument is in the grounded argument set is P -complete.

Corollary 68. Let ρ be any of the complete semantics from Definition 29. Given an AF
F = 〈Arg ,Att〉, an argument A ∈ Arg is skeptically accepted w.r.t. to any threshold θ ∈ (0, 1]
under ρ if and only if A is in the grounded argument set SGr of F .

994



Admissibility in Probabilistic Argumentation

Proof. By Lemma 33, we have SGr =
⋂
µ∈JFKρ Argµ. For A ∈ SGr, this entails µ(A) = 1 ≥ θ

for any threshold in (0, 1], so A is skeptically accepted under ρ. Vice-versa, for θ = 1 the
set
⋂
µ∈JFKρ Argµ contains exactly the skeptically accepted arguments.

5.3.3 1-saturation Semantics

As shown in Section 3.4.1, a non-trivial 0/1-saturated distribution always exists for AFs
that do not contain any self-attacking arguments, though the presence of self-attacks alone
is not sufficient for no 0/1-saturated distribution to exist. We now focus on 1-saturation and
present a polynomial-time bounded algorithm to decide whether a (non-trivial) 1-saturated
distribution exists. The algorithm suffices to answer almost all reasoning problems for
1-Sat (see Lemma 72). The exception is credulous acceptance checking under a threshold
of θ = 1, which is subsequently covered with the help of a second algorithm in Lemma 74.

The general idea is as follows. Due to almost-sure conflict-freeness, all self-attacking ar-
guments must have a likelihood of zero. If an argument is attacked solely by such arguments
(or, alternatively, has no attackers), 1-saturation requires its likelihood to be one. Now again
by conflict-freeness, arguments attacked by at least a single argument with likelihood one
necessarily have a likelihood of zero. Thus, originating from self-attacking arguments, we
can iteratively construct two sets of arguments that need to have a likelihood of zero or one
under every 1-Sat distribution. The existence of a (non-trivial) 1-saturated distribution
then hinges on the coverage and disjointness of these two sets. For example, a self-attacking
argument with no other attackers would need to belong to both sets. As this cannot be,
no 1-saturated distribution exists for AFs containing arguments that are solely attacked by
themselves.

Formally, let F = 〈Arg ,Att〉 be an AF and let X0 := {A ∈ Arg : (A,A) ∈ Att} denote
the set of self-attacking arguments. We define two set-valued functions G,H : 2Arg → 2Arg

as follows:

G(X ) :=
{
B ∈ Arg : →B ⊆ X

}
H(X ) := X0 ∪ G(X )→

That is, G(X ) denotes the set of all arguments where all attackers belong to X , and an
argument is in H(X ) iff it is self-attacking or has an attacker in G(X ). Note that both
G and H are monotonic, i.e., for all A,B ∈ 2Arg with A ⊆ B, we have G(A) ⊆ G(B) and
H(A) ⊆ H(B). By the Knaster-Tarski theorem, the monotonicity of H implies the existence
of a least fixed-point which we denote by X ∗. Further, let Y∗ := G(X ∗). Now consider the
two increasing sequences (Xn) and (Yn) given by Xn+1 := H(Xn) and Yn := G(Xn) for n ∈ N
and X0 as above. Then X ∗ and Y∗ are the limits of the sequences (Xn) and (Yn), i.e., there
exists k 6 |Arg | such that X ∗= Xk =

⋃
nXn and Y∗= Yk =

⋃
n Yn. This entails that the

sets X ∗ and Y∗ can be computed in polynomial time by determining X0 and iterating H on
X0 until X ∗ is found, which also yields Y∗= G(X ∗).

Example 69. We demonstrate the algorithm on the AF from Figure 7. Argument A is the
only self-attacking argument, so X0 = {A}. Then Y0 = G(X0) = {B,C}, as →B = {A} ⊆ X0

and →C = {A} ⊆ X0 holds. While D and A itself are also attacked by A, note that they are
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Figure 7: Under 1-saturated distributions the arguments A and E must have likelihood
zero, B and C must have likelihood one, and no constraints arise for D and F

not part of Y0 as they each have another attacker not in X0. For the next iteration, we get:

X1 = H(X0) = {A} ∪ {B,C}→ = {A,E}
Y1 = G

(
{A,E}

)
= {B,C}.

That is, X1 contains all self-attacking arguments as well as those attacked by Y0, namely
A and E. As E does not have any outgoing attacks, Y1 remains unchanged and equals Y0.
Subsequently, we also get X2 = X1, thus X ∗ = {A,E} and Y∗ = {B,C}.

Now assume we remove the attack from B to A. Then A is also part of Y0 and we get:

X0 = {A}
Y0 = G(X0) = {A,B,C}

X1 = H(X0) = {A} ∪ {A,B,C}→ = {A,B,C,D,E}
Y1 = G(X1) = {A,B,C,D,E, F}.

In that case, both X ∗ and Y∗ would contain all arguments of the AF.

Lemma 70. For each 1-saturated distribution µ, we have

(a) µ(A) = 0 for each A ∈ X ∗, and

(b) µ(B) = 1 for each B ∈ Y∗.

Proof. We show µ(A) = 0 for each A ∈ Xn and µ(B) = 1 for B ∈ Yn by induction on n.
Base case. (a): Each A ∈ X0 is self-attacking, so µ(A) = 0 follows from the fact that µ is
almost-surely conflict-free. (b): For B ∈ Y0, we know each attacker of B is in X0 and thus
µ(
∨
A∈→B A) = 0. By the 1-Sat constraint, this implies µ(B) = 1.

Step of induction. (a): Let A ∈ Xi+1 = H(Xi) = X0∪G(Xi)→. If A ∈ X0 the same reasoning
as in the base case applies. For A ∈ G(Xi)→ = Yi→, there is a B ∈ Yi which attacks A and,
by the induction hypothesis, µ(B) = 1. Then µ(A) must be zero by the conflict-freeness
of µ. (b): Let B ∈ Yi+1 = G(Xi+1). Then each attacker A of B is in Xi+1, so as before we
have µ(A) = 0 and thus µ(

∨
A∈→B A) = 0 and µ(B) = 1 as µ is 1-saturated.

An immediate consequence of Lemma 70 is that no 1-saturated distribution can exist for
AFs where X ∗ and Y∗ are not disjoint, i.e., where X ∗ ∩Y∗ 6= ∅. Let Z∗ := Arg \ (X ∗ ∪Y∗)
denote the set of remaining arguments that are neither in X ∗ or Y∗. We will need the
following observations about the arguments in X ∗, Y∗, and Z∗.
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Lemma 71. For an AF F where X ∗ and Y∗ are disjoint, it holds:

(a) For each C ∈ Z∗, the set Y∗ ∪ {C} is conflict-free.

(b) Each C ∈ Z∗ has at least one attacker in Z∗, i.e., →C ∩ Z∗ 6= ∅.

(c) Each A ∈ X ∗ has at least one attacker in Y∗ or Z∗, i.e., →A ∩ (Y∗ ∪ Z∗) 6= ∅.

Proof. (a): First note that Y∗ is conflict-free as →B ⊆ X ∗ for all B ∈ Y∗. As C /∈ X ∗,
this entails that C does not attack any argument in Y∗. Further, as X ∗ = H(X ∗) =
X0 ∪ G(X ∗)→ = X0 ∪ Y∗→, we have C /∈ Y∗→, so C has no attackers in Y∗.
(b): As C /∈ Y∗, we have →C 6⊆ X ∗, so →C is non-empty. By (a), we also have →C ∩Y∗ = ∅,
thus →C ∩ Z∗ 6= ∅ must hold.

(c): Suppose by contradiction that →A∩(Y∗∪Z∗) = ∅ for some A ∈ X ∗. Then →A ⊆ X ∗. But
then A ∈ G(X ∗) = Y∗, which contradicts the assumption that X ∗ and Y∗ are disjoint.

With Lemmas 70 and 71 at hand, we are now ready to show how the reasoning problems
NE-1-Sat, NTNE-1-Sat, CA-1-Sat (for θ < 1), and SA-1-Sat can be answered given the
sets X ∗ and Y∗. Thus, they are tractable in polynomial time.

Lemma 72 (Reasoning problems for 1-Sat). Let F = 〈Arg ,Att〉 be an AF and X ∗,Y∗,Z∗ ⊆
Arg as before.

(a) There is a 1-saturated distribution for F iff X ∗ ∩ Y∗ = ∅.

(b) There is a non-trivial 1-saturated distribution for F iff X ∗ ∩ Y∗ = ∅ and Z∗ or Y∗
are non-empty.

(c) For A ∈ Arg and a threshold θ ∈ (0, 1), there is a 1-saturated distribution for F with
µ(A) > θ iff X ∗ ∩ Y∗ = ∅ and A ∈ Y∗ or A ∈ Z∗.

(d) For A ∈ Arg and θ ∈ (0, 1], then µ(A) > θ holds for all 1-saturated distributions for
F iff either X ∗ ∩Y∗ is non-empty (in which case there is no 1-saturated distribution)
or X ∗ ∩ Y∗ = ∅ and A ∈ Y∗.

Proof. For (a), the direction 1-Sat ⇒ X ∗ ∩ Y∗ = ∅ follows directly from Lemma 70. The
other direction follows from (b) in case Z∗ or Y∗ are non-empty, otherwise it is easy to see
that the distribution DiracY∗ is 1-saturated.

(b) immediately follows from (c). From Lemma 70, we also get µ(A) > θ for all A ∈ Y∗,
θ ∈ (0, 1], and 1-saturated distributions µ. It remains to show the case A ∈ Z∗ for (c)
and (d), i.e., that there is a 1-saturated distribution µ with µ(A) > θ for A ∈ Z∗, but this
does not hold for all 1-saturated distributions. We show this by constructing a 1-saturated
distribution µθA with µθA(A) = θ for A ∈ Z∗ and any θ ∈ (0, 1).

For any C ∈ Z∗, let βC denote the assignment idY∗∪{C}. Then we define the distribution

µθA as follows:

µθA(βA) = θ and µθA(βC) =
1− θ
|Z∗| − 1

for C ∈ Z∗ \ {A}.
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For all C ∈ Z∗\{A}, we then have a positive likelihood µθA(C) > 0 as |Z∗| > 2 (from
Lemma 71b) and θ < 1. The distribution µθA is 1-saturated iff it is almost-surely conflict-
free and µθA(B) < 1 implies µθA(

∨
C∈→B C) > 0 for all B ∈ Arg . The former follows as

each assignment βC in the support of µθA is conflict-free by Lemma 71a. For B ∈ Y∗,
we have µθA(B) = 1, so the condition holds trivially. For B ∈ Z∗, we have µθA(B) < 1,
but also µθA(

∨
C∈→B C) > 0 by Lemma 71b. For B ∈ X ∗, we have µθA(B) = 0, but again

µθA(
∨
C∈→B C) > 0 by Lemma 71c.

Example 73. Continuing Example 69, we have X ∗ = {A,E}, Y∗ = {B,C}, and Z∗ =
{D,F} for the AF from Figure 7. By Lemma 72, as X ∗ and Y∗ are disjunct and Z∗ is
non-empty, we know that a non-trivial 1-saturated distributions exists. On the other hand,
when dropping the edge from B to A, X ∗ and Y∗ both contain all arguments, thus no 1-Sat
distribution can exist.

Note that Lemma 72 (c) covers the credulous acceptance problem only for thresholds
θ that are strictly less than one. This is because requiring µ(C) = 1 for a 1-saturated
distribution comes with a number of implications:

1. µ(A) = 1 implies µ(B) = 0 for B ∈ →A ∪A→ by asCf.

2. µ(A) < 1 implies µ(
∨
B∈→AB) > 0 by 1-Sat.

3. µ(
∨
B∈→AB) = 0 implies µ(A) = 1 by 1-Sat.

Therefore, when argument C belongs to Z∗, requiring µ(C) = 1 can lead to more arguments
that need to be added to X ∗ and Y∗. However, the credulous acceptance problem is still
tractable for threshold θ = 1 as shown by Algorithm 1 and Lemma 74. Intuitively, the
algorithm tries to add C to X ∗ while keeping track of the three implications from above.
If a violation occurs, C is not credulously accepted, otherwise a 1-Sat distribution with
µ(C) = 1 necessarily exists.

Lemma 74. For an AF F = 〈Arg ,Att〉 and an argument C ∈ Arg, Algorithm 1 decides in
polynomial time whether C is credulously accepted under 1-saturated semantics and threshold
θ = 1.

Proof. C is credulously accepted iff there is a distribution µ ∈ JFK1-Sat with µ(C) = 1.
Lines 2–6 of Algorithm 1 are covered by Lemma 72, for the remainder we can assume
C ∈ Z∗. Note that the algorithm observes the following invariants when a 1-saturated
distribution µ with µ(C) = 1 exists:

• µ(A) = 0 for all A ∈ S0,

• µ(A) = 1 for all A ∈ S1,

• µ(
∨
A∈S A) > 0 for all S ∈ D.

We first consider the case that the algorithm returns no, i.e., we end up in line 14, 21, or
27. In line 14, the current argument B is contained in S0 (and thus µ(B) = 0), but should
be added to S1, which would imply µ(B) = 1. Hence, no such distribution µ can exist. The
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Algorithm 1: Decide credulous acceptance for argument C under 1-Sat and θ = 1

Input: C ∈ Arg
Output: yes or no

1 Function IsCredAccept(C)
2 Compute X ∗, Y∗, Z∗ as above
3 if X ∗ ∩ Y∗ 6= ∅ or C ∈ X ∗ then
4 return no

5 if C ∈ Y∗ then
6 return yes

7 S0 ← X ∗ // S0 collects all arguments that are set to zero

8 S1 ← Y∗ // S1 collects all arguments that are set to one

9 D← {→A ∩ Z∗ : A ∈ S0 where →A ∩ S1 = ∅}
// D collects sets of arguments that cannot all be set to zero

10 SetToOne(C)
11 return yes

12 Function SetToOne(B)
13 if B ∈ S0 then
14 return no

15 S1 ← S1 ∪ {B}
16 D← {S ∈ D : B /∈ S} // Remove all sets in D that contain B

17 for B′ ∈ (→B ∪B→) \ S0 do
18 SetToZero(B′) // All arguments attacked by or attacking B are set to zero

19 Function SetToZero(B)
20 if B ∈ S1 then
21 return no

22 S0 ← S0 ∪ {B}
23 D←

{
S \ {B} : S ∈ D

}
// Remove B from all sets in D

24 if →B ∩ S1 = ∅ then
25 D← D ∪ {→B \ S0}
26 if ∅ ∈ D then
27 return no // all arguments in a set in D were set to zero

28 for B′ ∈ B→ \ S1 do
29 if →B′ \ S0 = ∅ then
30 SetToOne(B′)

// All its attackers are set to zero, so B′ is set to one
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same holds for line 21 with S0 and S1 switched. In line 27, we have ∅ ∈ D. But then, by
the invariant, µ(

∨
A∈∅A) = 0 6> 0.

Now assume the algorithm returns yes. Let S? = Arg \(S0∪S1). Then any distribution
µ̃ with support Supp(µ̃) = {idS1}∪{id{A}∪S1 : A ∈ S?} satisfies µ̃(C) = 1 and 0 < µ̃(A) < 1

for all A ∈ S?. We show that any such distribution µ̃ is 1-saturated. Let A ∈ S?. Since
µ̃(A) < 1, we have to show µ̃(

∨
B∈→AB) > 0. Note that no attacker of A can belong to

S1 as each argument in S1 either is in Y∗ (which does not attack Z∗ by Lemma 71a) or
is added by SetToOne, in which case A would have been added to S0 by line 18. Further,
at least one attacker of A belongs to S?: By Lemma 71c there is at least one attacker in
Z∗, and not all attackers can belong to S0 as otherwise A would be added to S1 by line 30.
Thus, µ̃(

∨
B∈→AB) > 0 holds.

Finally, note that the algorithm always terminates as the set Z∗ is finite and SetToOne

and SetToZero are called at most once for each argument. All set operations are possible
in polynomial time and the size of D is bounded by the number of arguments, so the overall
runtime is polynomial.

5.4 Hardness Results

We now show NP -hardness of the credulous acceptance problem for most of our semantics
via a polynomial reduction from 3SAT. We make use of the “standard translation” of
a CNF formula as given in (Dvořák & Dunne, 2018). Let ψ be a 3CNF formula over
variables in X = {x1, . . . , xn} with k clauses κ1, . . . , κk. That is, ψ = κ1 ∧ κ2 ∧ . . . ∧ κk
where κi = ξ1,i ∨ ξ2,i ∨ ξ3,i and the ξi,j ’s are literals in Lit = {x1, . . . , xn,¬x1, . . . ,¬xn}
(for j ∈ {1, . . . , k} and i ∈ {1, 2, 3}). W.l.o.g. ψ has no tautologic clauses, i.e., there is
no j ∈ {1, . . . , k} and no x ∈ X with {x,¬x} ⊆ {ξ1,j , ξ2,j , ξ3,j}. Now we define an AF
Fψ = 〈Argψ,Attψ〉 induced by ψ as follows. The set Argψ contains arguments for all
literals, all clauses, and the formula ψ itself. That is:

Argψ :=
{
Az : z ∈ Lit ∪ Clauses ∪ {ψ}

}
where Clauses =

{
κ1, . . . , κk

}
.

The attack relation Attψ consists of the following pairs (where we identify each clause with
the set of its literals, i.e., κj is identified with {ξ1,j , ξ2,j , ξ3,j}):

• (Ax, A¬x) and (A¬x, Ax) for each variable x ∈ X,

• (Aξ, Aκ) for each κ ∈ Clauses and each literal ξ ∈ κ,

• (Aκ, Aψ) for each κ ∈ Clauses.

Thus, →Aκj =
{
Aξ1,j , Aξ2,j , Aξ3,j

}
, Aκj

→ =
{
Aψ
}

, and →Aψ =
{
Aκ1 , . . . , Aκk

}
. An example

is given in Figure 8.

Lemma 75. Let ψ be a 3CNF formula and Fψ = 〈Argψ,Attψ〉 the corresponding AF
obtained by the standard construction. Then the following statements are equivalent:

(a) ψ is satisfiable.

(b) Fψ has a stable set containing Aψ.
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Aψ

Ax,y,z Ax,¬y,z A¬x,y,¬z

Ax A¬x Ay A¬y Az A¬z

Aψ

Ax,y,z Ax,¬y,z A¬x,y,¬z

Ax A¬x Ay A¬y Az A¬z

Figure 8: The AF Fψ corresponding to the formula ψ = (x∨y∨z)∧(x∨¬y∨z)∧(¬x∨y∨¬z).

(c) There is an element-wise stable distribution µ for Fψ with µ(Aψ) = 1.

(d) There is a weakly admissible distribution µ for Fψ with µ(Aψ) = 1.

Proof. The equivalence of (a) and (b) follows from the construction of Fψ and is detailed in
(Dvořák & Dunne, 2018). Intuitively, the formula ψ holds iff all its clauses are satisfied, and
likewise, argument Aψ is in a stable set iff all its attackers, the arguments corresponding
to the clauses, are not in the set. Each clause κ is satisfied iff at least one of its literals
is true. Likewise, Aκ is not in a stable set if at least one of its attackers, the arguments
corresponding to the literals, is part of the set. Finally, a model for ψ is boolean assignment
to all variables in X, whereas in a stable set either Ax or A¬x need to be contained for
every variable x ∈ X.

(b) ⇐⇒ (c) follows from Lemma 7, and (c) =⇒ (d) from the established relationships
as summarized in Figure 6. To complete the proof it suffices to show (d) =⇒ (a). Assume
µ ∈ Distr(Fψ) is weakly admissible and µ(Aψ) = 1. Then argument Aψ is almost-surely
defended, i.e., µ

(
∆(Aψ)

)
= 1, and there is at least one assignment β ∈ Supp(µ) which

satisfies

∆(Aψ) =
∧

Aκ∈→Aψ

∨
Aξ∈→Aκ

Aξ =

k∧
j=1

(Aξ1,j ∨Aξ2,j ∨Aξ3,j ).

As β |= ∆(Aψ), we have β |= Aξ1,j ∨Aξ2,j ∨Aξ3,j for every j ∈ {1, . . . , k}. That is, for each
clause κ of ψ there is a literal ξ ∈ κ with β(Aξ) = T.

Let α ∈ Asg(X) be given by α(x) = β(Ax) for each variable x ∈ X. We now show
that α is a satisfying assignment for ψ. Let X ′ denote the set of variables x ∈ X such that
β(Ax) = T or β(A¬x) = T, and Lit ′ = {x,¬x : x ∈ X ′}. (The variables in X \X ′ are those
where β(Ax) = β(A¬x) = F. These variables are, however, irrelevant for the proof that α is
satisfying for ψ.) As β is conflict-free and the literals x and ¬x attack each other:

For each literal ξ ∈ Lit ′: α |= ξ iff β(Aξ) = T .

But then, the above yields that for each clause κ of ψ there is a literal ξ ∈ κ ∩ Lit ′ with
α |= ξ. Thus, α is a satisfying assignment for the 3CNF formula ψ.

Corollary 76. Deciding the credulous acceptance problem CA-ρ is NP-hard for the admis-
sibility and complete semantics from Definitions 14–19 and 29, as well as the 0-Sat and
0/1-Sat semantics.
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6. Implementation and Evaluation

We have developed a prototypical implementation to support the understanding and evalu-
ation of abstract argumentation frameworks and the proposed probabilistic semantics. Our
tool is capable of solving the reasoning problems specified in Definition 66 for all seman-
tics given in the taxonomy overview in Figure 6, including those by Hunter and Thimm
(2017). The non-emptiness problem is covered by the basic functionality to synthesize one
(or more) distributions that satisfy the given semantics’ constraints, or to assert that no
such distribution exists. The non-trivial non-emptiness problem can easily be checked us-
ing the features to enforce multiple semantics simultaneously and to consider complement
semantics: A synthesized distribution then satisfies all the constraints of each regular se-
mantics, but violates at least one constraint of each specified complement semantics. Thus,
to check if a non-trivial distribution exists under some semantics, one simply requires the
complement of the Min semantics to hold as well.

Further features and use cases supported by the tool include the following:

Likelihood optimization. For a given AF F , an argument A, and a semantics ρ, find
a distribution µ ∈ JFKρ such that µ(A) is maximal (or minimal) w.r.t. all other
distributions in JFKρ. This task requires the chosen semantics ρ to be linear, i.e., to
induce only linear constraints. As mentioned before all semantics except the weakly
admissible, weakly complete, and the saturation semantics are linear.

Solution space enumeration. For each linear semantics ρ, the solution space (i.e., the
set JFKρ as subspace of Rn when each distribution is viewed as n-dimensional vector)
is a convex polytope. This feature allows to export the distributions at the corner of
this polytope, yielding a finite representation of all solutions even in case there are
infinitely many. Then each distribution in JFKρ arises as convex combination from
these corner distributions.

SMT constraints. In addition to the semantics’ constraints, context specific constraints
can be added to an AF in SMT-LIB format (Barrett, Fontaine, & Tinelli, 2016).
Among others, this allows to specify the following constraints on a probability distri-
bution µ over arguments A and B:

• Interval containment constraints µ(A) ∈ [u, `] specify that argument A is ac-
cepted with some probability u 6 µ(A) 6 `.

• Complement constraints µ(A) = 1− µ(B) specify that the interpretation of the
arguments A and B are complementary, i.e., their likelihoods sum up to one as
counter events do.

• Scalar dependency constraints µ(A) = k · µ(B) specify that the likelihoods of
arguments A and B are proportional w.r.t. some factor k ∈ R.

• Conditional probability constraints µ(A | B) = p specify that p is the probability
of A being accepted given that argument B is accepted. This constraint can be
represented by a variant of the scalar dependency: µ(A ∧B) = p · µ(B).
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Back-end selection. A number of different state-of-the-art SMT solvers can be selected
as back-end via the pySMT interface (Gario & Micheli, 2015) and number of linear
solvers is available via CVXOPT (Andersen, Dahl, & Vandenberghe, 2014).

Labelings. All labeling schemes discussed in Section 3.5 can be used to generate one or
all labelings for the chosen semantics.

Let us now provide some examples for the application of our tool on instances of our running
example.

Example 77. Example 64 was in fact produced by our tool, synthesizing a distribution
that satisfies all constraints of the semantics Jus and Elm-Cf, as well as the complement
semantics of wCmp. Additionally, we imposed the following constraints on the likelihoods of
some of the arguments: µ(cl) = 0.7, µ(ld) = 0.7, µ(cr⇒r) ∈ [0.7, 1], and µ(cr⇒m) ∈ [0.4, 1].
Intuitively, e.g., the latter means that the probability of camera right truly detecting an object
in the middle in front of the car is between 0.4 and 1.

Example 78. For Example 65, the semantics jntCmp and the complement of Jus were
enforced, along with the same constraints on argument likelihoods as above. Furthermore,
some context-specific constraints were imposed in an additional file in SMT-LIB format:

• In the example, the arguments for the three sensors come with a complement, e.g., ld
and ld. We added constraints such that these arguments are in fact their respective
inverse by complement constraints such as µ(ld) = 1− µ(ld).

• A maximum 2% risk of a false positive detection was enforced via the conditional
probability constraint µ(cr⇒r ∨ cr⇒m | cr) > 0.98.

• In line with the sensor arrangement visualized in Figure 1, we enforced a scalar de-
pendency of arguments cr⇒r and cr⇒m by the constraint µ(cr⇒r) = 2 · µ(cr⇒m).
Intuitively, this means that one third of the right camera view angle is monitoring the
(overlapping) middle.

6.1 Tool Architecture

Each semantics is implemented as a function that takes a representation of an AF as input
and returns a set of constraints on the induced joint distribution. This approach enables the
combination of semantics as needed, including the option to consider complement semantics,
and supports easy addition of new probabilistic semantics to the tool. Tasks like credulous
or skeptical acceptance checking are tackled by adding additional constraints as described
in Section 5.1.

Two kinds of solver back-ends are available to tackle different tasks. First, SMT solvers
like Z3 (de Moura & Bjørner, 2008) are able to handle arbitrary polynomial constraints in
the existential theory of the reals. This covers all semantics considered in this paper as
well as their complements. Second, linear-optimization solvers can be used for likelihood
optimization and solution space enumeration, provided the selected semantics’ constraints
are linear.

1003
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instance #nodes distribution synthesis max probability of ct solution polytope

cl-ld-cr 6 0.017 (0.004) 0.006 (0.003) 0.022 (0.003)
cl-ld-cr 8 0.055 (0.018) 0.030 (0.018) 1.076 (0.018)
cl-ld-cr 12 1.286 (0.651) 2.736 (0.762) > 600 timeout
cl-ld-cr 14 7.423 (3.913) 43.093 (15.887) > 600 timeout
cl-ld-cr 18 361.033 (119.800) > 600 timeout > 600 timeout

Table 2: Running times in seconds on subgraphs of the vehicle example with increasing size
for different tasks. cl-ld-cr is the full example, otherwise the arguments in grey
stand for omitted sensors that are dropped including related edges. The time to
generate the constraints is given in parenthesis.

Example 79 (Constraint encoding). For a simplistic AF F = 〈{A,B}, {(A,B)}〉 with two
arguments A and B and a single attack A→ B, a constraint like µ(A) = 1/2 is encoded as
SMT constraint as follows: First of all, for each assignment β ∈ Asg({A,B}), a floating-
point variable vβ is created, along with the constraints vβ > 0 and vβ 6 1. Exemplary,
for β = {A=T, B=F}, we obtain the variable vAB. Additionally, we have to enforce the
constraint

∑
β µ(β) = 1, i.e., vAB + vAB + vAB + vAB = 1. Then µ(A) = 1/2 is encoded as

vAB + vAB = 0.5.

For linear constraints, µ is seen as a vector of length 4. We always get the constraints
〈1 1 1 1〉 · µ = 1 as well as 〈1 0 0 0〉 · µ > 0, 〈1 0 0 0〉 · µ 6 1, etc. Then µ(A) = 1/2 is
encoded as 〈0 0 1 1〉 · µ = 0.5.

The tool is implemented in Python and can either be used via a rich command-line
interface or directly by including the provided Python package. Further implementation
details are given in (Käfer, 2020).

6.2 Running Times

All experiments were conducted on an Intel i9-10900K machine with 64GB of RAM, running
Ubuntu 20.10 and Python 3.8.6. Computing solutions according to Example 77 took seventy
minutes, while less than five minutes were required to compute the solution for Example 78.
Table 2 provides further statistics for typical tasks applied to the vehicle example and some
of its subgraphs under prCmp semantics. The majority of the time spend in the tool itself is
taken up by the constraint generation (given in parentheses), the remaining time is mostly
used by the back-end solvers to solve the imposed constraint system.

With distributions ranging over all possible assignments of an AF’s arguments, it is
clear that increasing the number of arguments in an AF leads to an exponential growth of
the associated distributions. This also affects the size of the generated constraints and is
reflected both in the time spend in the tool as well as the time needed by the solver, as
evident by the timings for the distribution synthesis task. The optimization task to find a
distribution under which µ(ct) is maximal is more involved but still succeeds in time for all
but the largest instance. The final task of finding the distributions at the corner points of the
solution polytope comes with the additional challenge that especially for larger instances the
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number of such corner distributions can become very large itself, so memory consumption
may arise as additional limiting factor.

The tool, further documentation, and all experimental data are publicly available at
https://www.perspicuous-computing.science/cpraa/.

7. Conclusion

In this paper we contributed to the quest for quantitative abstract argumentation frame-
works from a probability-theoretic perspective. At the core of our approach, we are view-
ing each semantics as inducing sets of constraints on the joint distribution over argument
sets. We have provided a profound study of admissibility and complete semantics and have
discussed a hierarchy of resulting semantics, also in relation to earlier work. We have for-
mulated decision problems for probabilistic semantics and provided a range of complexity
results.

We experimented with these semantic notions on a probabilistic abstract argumentation
framework inspired by an autonomous driving scenario. For this, we implemented a tool
based on SMT solvers to harvest present and future advances. In particular, by providing
generic support for including additional constraints, our tool is capable of addressing a
variety of adapted semantic notions well beyond the notions of admissibility and complete
semantics spelled out in this paper, as well as adapting them towards context-specific needs.
Our tool is a research prototype, built for the ease of experimentation with semantic notions
across the wider spectrum of probabilistic abstract argumentation frameworks. Indeed, it
turned out very helpful for the authors of this paper to sharpen their intuition.

7.1 Future Work

The tool already offers some elementary optimization tasks like maximizing the likelihood of
selected arguments. Expanding on this functionality, we plan to investigate quantifications
of how close distributions are to satisfy a certain semantics. This could allow to find, e.g., the
“most” min-admissible distribution even if no distribution exists that completely satisfies
the minAdm constraints, or pave the way for a probabilistic adaption of the semi-stable
semantics.

Finally, we identified two further directions that might be worthwhile to explore under
the lens of our probabilistic approach. In dynamic abstract argumentation, nodes and edges
can be added or removed from an initial AF, giving rise to the question of how these dynamic
interventions affect, e.g., the accepted argument sets (see, e.g., Diller, Haret, Linsbichler,
Rümmele, and Woltran (2018) or Doutre and Mailly (2018) for a survey). In the proba-
bilistic setting, changes to the resulting distributions could be quantified. Secondly, several
logical languages for abstract argumentation have been developed (see, e.g., YALLA (Dupin
de Saint-Cyr, Bisquert, Cayrol, & Lagasquie-Schiex, 2016)). Such languages allow to encode
and subsequently reason about the basic notions of abstract argumentation, and extensions
in the probabilistic domain could prove useful.
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