
Characterization of the Expressivity of Existential Rule Queries

Sebastian Rudolph and Michaël Thomazo ∗

Technische Universität Dresden, Germany
{sebastian.rudolph,michael.thomazo}@tu-dresden.de

Abstract

Existential rules (also known as Datalog± or tuple-
generating dependencies) have been intensively
studied in recent years as a prominent formalism
in knowledge representation and database systems.
We consider them here as a querying formalism,
extending classical Datalog, the language of deduc-
tive databases. It is well known that the classes of
databases recognized by (Boolean) existential rule
queries are closed under homomorphisms. Also,
due to the existence of a semi-decision proce-
dure (the chase), these database classes are recur-
sively enumerable. We show that, conversely, ev-
ery homomorphism-closed recursively enumerable
query can be expressed as an existential rule query,
thus arriving at a precise characterization of exis-
tential rules by model-theoretic and computational
properties. Although the result is very intuitive,
the proof turns out to be non-trivial. This result
can be seen as a very expressive counterpart of the
prominent Lyndon-Łos-Tarski-Theorem character-
izing the homomorphism-closed fragment of first-
order logic. Notably, our result does not presume
the existence of any additional built-in structure on
the queried data, such as a linear order on the do-
main, which is a typical requirement for other char-
acterizations in the spirit of descriptive complexity.

1 Introduction
The field of logic-based knowledge representation comprises
a great variety of formalisms for specifying and querying
knowledge. Given the tradeoff between declarative expres-
sivity on the one hand and computational cost on the other
hand, there is no unique formalism universally deployable in
all of the numerous different usage scenarios. Thus, the avail-
able formalisms need to be categorized along the dimensions
of expressive power and hardness of computation. For both
aspects, the categorization can be relative or absolute.

Considering relative expressivity means to ask if every sen-

∗Research supported by the Alexander von Humboldt Founda-
tion.

tence or query1 of one logic formalism can be equivalently
expressed in the other. Investigating relative computational
properties means to determine if the satisfaction problem in
one formalism can be translated into the satisfaction problem
in the other formalism using appropriate reductions (such as
many-to-one or Turing reductions).

While these comparative investigations allow to relate and
rank the considered formalisms, absolute characterizations
typically provide much more profound insights into the true
nature of logical languages. Absolute results relate logical
formalisms to external measures of expressivity and compu-
tation. Among other benefits, such findings help establishing
non-expressibility and non-reducibility results which are hard
to obtain otherwise.

An absolute computational characterization of a logical
formalism is achieved by determining the complexity or de-
cidability or recursive enumerability of the corresponding sat-
isfaction problem. Proving such computational properties of
a given formalism is often a standard exercise. Contrari-
wise, showing that a logical formalism is capable of express-
ing every query exhibiting certain computational properties
is usually a nontrivial undertaking and constitutes the sub-
ject of the field of descriptive complexity theory [Immerman,
1999]. As an example result from that line of research, it
was established that first-order logic sentences exactly corre-
spond to the properties of interpretations verifiable in AC0,
i.e., they can be checked by polynomial-size Boolean circuits
of bounded depth.

One way of absolutely categorizing expressivity aspects of
logical languages in a syntax-independent way, is via model-
theoretic considerations. Intuitively, a formalism is more ex-
pressive than another if it allows for distinguishing two in-
terpretations which are indistinguishable by the other formal-
ism. Indistinguishability often can be characterized by the
set of models of a certain type of queries being closed un-
der certain operations. Examples for this are manifold: clo-
sure under intersection for Horn logics, bisimulation invari-
ance in modal logics, closure under disjoint union of first-
order sentences where no universal quantifier occurs inside
the scope of an existential quantifier, and many more (see,

1Since we are only concerned with satisfaction, we do not dis-
tinguish between the notions of a logical sentence and a (Boolean)
query in this paper. All queries dealt with in this paper are assumed
to be Boolean.

e.g., [Chang and Keisler, 1973] for more examples). A very
natural such property is closure under homomorphism. It par-
ticularly holds for query languages that are supposed to check
if substructures of a certain shape exist in an interpretation or
database, a prominent example being Datalog and its various
fragments (cf. [Rudolph and Krötzsch, 2013]). While it is
typically not difficult to establish that such a model class clo-
sure property holds for a logical formalism, showing a con-
verse property tends to be much more intricate. Next to a few
others, a classical example of such a non-trivial result is the
Lyndon-Łos-Tarski-Theorem stating that the set of models of
a first-order sentence is homomorphism-closed if and only if
it can be expressed in positive existential first-order logic, i.e.,
without using negation or universal quantification.

Inspecting this last result, we find that the obtained charac-
terization of positive existential first-order logic is still some-
what relative since it refers to general first-order logic. How-
ever, with the aforementioned descriptive complexity result in
place, one could combine the model-theoretic and the com-
putational perspective to arrive at a characterization not re-
ferring to any other logical formalism: The class of queries
expressible in positive existential first-order logic coincides
with the class of queries that can be evaluated in AC0 and
whose set of models is closed under homomorphisms.

After making clear the general motivation and the thrust
of our investigation by means of this low-level example, we
now set out to achieve an absolute characterization for a very
expressive formalism which has drawn a lot of attention in
the last years: existential rules, which are known under a va-
riety of other names (tuple-generating dependencies [Abite-
boul et al., 1994], Datalog± [Calı̀ et al., 2013], conceptual
graph rules [Mugnier, 2009]). Their original use was to im-
pose integrity constraints on a database, but they have been
more recently used as a modeling language for ontologies.
This formalism can also be seen, as in this paper, as a query
language, as it was originally the case for its parent, Datalog,
the language of deductive databases.

Surprisingly enough, an absolute characterization of plain
existential rule queries has not been attempted so far. Trivial
upper bounds can be proposed: First, the well-known chase
procedure constitutes a semi-decision procedure for answer-
ing existential rule queries. Consequently, the set of finite re-
lational structures (also referred to as databases) satisfying an
existential rule query must be recursively enumerable.2 Sec-
ond, it is well-known and easy to show that this set is also
closed under homomorphisms. The central contribution of
this paper is to show that these two conditions together are in
fact tight: any query Q, where the set of databases satisfying
Q is both recursively enumerable and closed under homomor-
phisms, is equivalent to an existential rule query. Thereby, we
arrive at the wanted characterization:

A query is expressible with existential rules iff its
set of satisfying databases is recursively enumer-
able and homomorphism-closed.

2More precisely, we should say recursively enumerable up to iso-
morphism. To avoid these technicalities, we assume the individuals
of databases to come from a countably infinite reservoir of standard
names.

While this result fits very well with intuition and may seem
rather straightforward, establishing the “if” part is not at all
trivial. To prove it, we simulate the computation of a Turing
machine recognizing a query with the given properties.3 Sim-
ulating a Turing machine given a correctly represented tape is
classical with existential rules [Baget et al., 2011a]. How-
ever, creating the representation of a tape from a database
only through the use of existential rules requires some work.
Indeed, existing techniques to create such a tape heavily rely
on the use of two ingredients: a linear order on the ele-
ments of the domain, and a restricted form of negation. The
first is in particular used to enumerate tuples, while the sec-
ond is used to check the absence of facts. The most promi-
nent use of these ingredients may be the capturing result of
PTIME queries by semi-positive Datalog on linearly ordered
databases [Abiteboul et al., 1994].

Instead of considering a linear order, the existential rule
query that we define for a given Turing machine will gener-
ate all finite lists containing elements of the domain. Some of
these lists do not correspond to a linear order of the domain
elements. We will present in Section 3 how to create a Turing
machine tape from a database and such a list. An important
question that needs to be tackled is the following: is it prob-
lematic if a Turing machine accepts when the tape has been
created based on an enumeration that was not a linear order?
Answering this question negatively is the topic of Section 4.

Last, we will need, given an enumeration of the terms of a
database, to generate the corresponding tape. Without input
negation, it is not possible to create a unique tape containing
exactly the information corresponding to the actual database.
Instead, we generate all possible databases on a given vocab-
ulary. From all those “database candidates”, we single out
those databases inconsistent with the initial data. We then run
the Turing machine on the tape corresponding to each can-
didate. We show that if each candidate is either inconsistent
with the original data or leads to an accepting state of the Tur-
ing machine, then the query recognizes the structure param-
eterized by the enumeration. This is the topic of Section 5.
Proofs not presented here are available at: https://ddll.inf.tu-
dresden.de/web/Techreport3019/en.

2 Preliminaries
We assume the reader to be familiar with Turing machines
(see [Papadimitriou, 1994] or [Arora and Barak, 2009]). A
language is recursively enumerable if there is a Turing ma-
chine that accepts on any word of the language and does not
terminate on any word that does not belong to the language.
We are interested in decision problems on databases: the en-
coding of the database on a Turing machine tape is of impor-
tance. We describe the considered encoding in Section 3.

We consider two countable disjoint sets V and ∆ of vari-
ables and domain elements, respectively. Elements of V ∪∆
are also called terms. We consider two finite disjoint sets Pi

3As made more formal later, it is convenient to “semantically
identify” a query with the set of databases satisfying it. This justifies
to speak of a query itself being recognized by a Turing machine or
closed under homomorphisms or recursively enumerable. For the
sake of brevity, we will make extensive use of such wordings.

and Pe of intensional predicates and extensional predicates.
Each predicate is either intensional or extensional and pos-
sesses an arity n ∈ N. We assume w.l.o.g. that all extensional
predicates have the same arity k. An atom is an expression a
of the form p(x1, . . . , xn) where p is a predicate of arity n and
x1, . . . , xn are terms. The terms of a are denoted by terms(a).
The terms of a set of atoms A are defined by ∪a∈Aterms(a).
Given two sets of atoms A and B, a homomorphism from A
to B is a mapping π from terms(A) to terms(B) such that if
p(x1, . . . , xn) ∈ A, then p(π(x1), . . . , π(xn)) ∈ B. An iso-
morphism from A to B is a bijective homomorphism π from
A to B for which π−1 is also a homomorphism. A database
(on some set P of predicates) is a finite set D of atoms with
terms from ∆ and predicates from P . We assume (w.l.o.g.)
that there exists a predicate p ∈ Pe, denoted by ACDom such
that ACDom(x) holds for every term x ∈ terms(D). Given a
set of extensional predicates Pe, a (Boolean) query is a subset
of the databases on Pe that is closed under isomorphism.4 A
query q is said to be closed under homomorphism if for all
D1 ∈ q, if there is a homomorphism from D1 to D2, then
D2 ∈ q. An existential rule is a first-order formula of the
form

∀x̄ ∀ȳ B[x̄, ȳ]→ ∃z̄ H[ȳ, z̄],

where x̄, ȳ and z̄ are tuples of variables, B is a conjunction
of atoms (of intensional or extensional predicates) such that
terms(B) = {x̄, ȳ} and H is a conjunction of atoms (of in-
tensional predicates) such that terms(H) = {ȳ, z̄}. A rule
∀x̄ ∀ȳ B[x̄, ȳ] → ∃z̄ H[ȳ, z̄] is applicable to a database D
if there is a homomorphism from B to D. The result of this
application is a new database D ∪ H ′, where H ′ is equal to
H with each variable replaced by its image under π if de-
fined, and by a some “new element” from ∆ \ terms(D).
We now briefly introduce the chase [Maier et al., 1979;
Beeri and Vardi, 1984]. Given a set of existential rules R, a
breadth-first application of applicable rules generates a poten-
tially infinite sequence of databases. Their union is uniquely
defined (up to homomorphic equivalence) and is called theR-
chase of D with respect to R. We call the domain elements
present in the chase but not in the original database (i.e., those
added by some rule application) fresh elements.

An existential rule query qR is a query represented by a
set R of existential rules with a special predicate goal. A
database D belongs to this query if goal belongs to the chase
of D with respect toR. It is clear that existential rule queries
are closed under homomorphisms. Moreover, as construct-
ing the chase and continuously checking for containedness of
goal is a semi-decision procedure for D ∈ qR, these queries
are also recursively enumerable.

For the sake of brevity, we will from now on omit quan-
tifiers from existential rules, adopting the following conven-
tion: all variables occurring in the body B are universally
quantified, all others existentially quantified.

4This definition reflects the common understanding of a query
that it “[...] should be independent of the representation of the data
in a data base and should treat the elements of the data base as un-
interpreted objects” [Chandra and Harel, 1980]. This understanding
also justifies why we do not distinguish the domain elements into
constants and labeled nulls, as it sometimes done in the literature,
and why we do not allow for constants in existential rules.

3 Turing Machine: Tape Representation
In this section, we describe the tape representation used to
simulate a Turing machine with existential rules. We split
the presentation in two: first, we describe how to transform
a database (i.e., a set of facts, endowed with some additional
structure) into a linearized tape representation. Second, we
explain how to represent such a tape as a relational struc-
ture and how to simulate the Turing machine using existential
rules.

3.1 Tape Representation of a Database
To represent deterministically a database on a tape, we make
use of a linear order on its terms. However, since we do not
have access to a linear order, we present a more general trans-
formation associating a database and a sequence (potentially
with repetitions) of its terms with a tape. Let us thus con-
sider a database D and ` a sequence of its domain elements.
The elements of ` are denoted by the binary representation of
their rank in the sequence. Let us remark that this implies that
a single domain individual of the database may have several
representations, as seen in Example 1.

Definition 1 (D-list) Let D be a database. A D-list is a se-
quence (possibly with repetitions) of terms of D, denoted by
(t1, . . . , tn). A representation of a term t of D appearing in a
D-list ` is a binary representation of a rank of t in `.

Since a term may appear several times in a D-list, it may
thus have several representations.

Example 1 (Representations of an individual) Let {a, b}
be the domain elements of a database D. A D-list is
(a, b, a, a). Thus, a has three representations, 00, 10 and 11,
while b has one representation 01.

A D-list naturally induces a linear order on the binary rep-
resentations of its elements. We next describe how, relying on
`, we can come up with a tape representation of D. Remem-
ber that we assume w.l.o.g. that all our database predicates
have a uniform arity of k. The linear order on representations
in ` induces a linear order on k-tuples of representations in
` which we use for constructing our tape: after a “beginning
of tape” symbol (#), we start from the first k-tuple according
to the mentioned order, write some information about it, and
proceed to the next tuple until the last tuple is treated. For
each tuple (r1, . . . , rk) of representations, we write for each
predicate (in lexicographic order) p if p(t1, . . . , tk) holds in
D or not, where where t1, . . . , tk are the domain elements
represented by r1, . . . , rk, respectively.

Example 2 Let us consider a databaseDe having as domain
{a, b} and two facts: r(a, b) and p(a, a). We consider the
following D-list, which is a linear order : (a, b). The repre-
sentation is the following:

#p1r0p0r1p0r0p0r0

The first p1 means that p(a, a) holds. The first r0 means
that r(a, a) does not hold. The rest is interpreted similarly.

Given a database D and a D-list `, we will denote by
T (D, `) the tape representation that we described so far.

Last, we already pointed out that Turing machines work on
strings that are representations of the input. More specifically,
by a recursively enumerable query q, we mean a query for
which there exists a Turing machine Mq which recognizes
the following language:

{T (D, `) | D is contained in q and
` is a linear order on the elements of D}.

3.2 Encoding a Tape in a Database
We now describe how a tape T (D, `) is represented by means
of database atoms.
Definition 2 (Relational representation of T (D, `)) Let D
be a database and let ` be a D-list. Let n be the number
of extensional predicates and t the number of tuples. The
relational representation of the tape T (D, `) is given by the
following atoms over some domain individuals db (represent-
ing the database itself) and cell0, . . . , cell2nt (representing
the tape cells) using the predicates begin (binary, associating
the database-representing individual with the first tape cell),
next (binary, associating each tape cell with the subsequent
one), as well as, for every symbol σ that might occur on the
tape, symbolσ (unary, used to assign to each cell its content):

• begin(tape, cell)

• symbol#(cell0)

• next(cell i, cell i+1) for every i < 2n(t+ 1)

• symbolp(cell2nj+2i) for p being the ith predicate and
j ≤ t
• symbol1(cell2nj+2i+1) if p(t1, . . . , tk) holds for the
ith predicate p and jth tuple (r1, . . . , rk) representing
(t1, . . . , tk)

• symbol0(cell2nj+2i+1) if not symbol1(cell2nj+2i+1).

Given such a representation of T (D, `) and an according
representative x` of `, crafting a set of existential rules RMq

that simulate a given Turing Mq machine on that tape and
derive rec(db, xell) exactly if Mq accepts T (D, `) is common
knowledge. The interested reader can consult [Baget et al.,
2011a] for this.

4 Correct and Incorrect Orderings
In the previous section, we presented the tape representation
of a pair (D, `), where D is a database and ` a D-list. We
now present how to create D-lists through existential rules.
We make use of the predicate ACDom that holds for each
individual of the database.

Definition 3 (List annotator) The list annotator, denoted by
Ra is the following set of rules:

• ACDom(x)→ link(x, y) ∧ first(y) ∧ last(y)

• ACDom(x)→ link(x, y) ∧ first(y) ∧ partial(y)

• ACDom(x) ∧ partial(y) → succ(y, z) ∧ link(x, z) ∧
partial(z)
• ACDom(x) ∧ partial(y) → succ(y, z) ∧ link(x, z) ∧

last(z).

a b

De

x1

first

x2 xl

last

p

link

r

succ succ

link
link

Figure 1: Partial effect of the D-annotator on Example 3

Intuitively, the list annotator makes, for every D-list `, the
representations of ` available as additional domain elements
in our database, defines a unary predicate first to mark the
first element of `, a unary predicate last to denote the last,
a binary predicate succ which connects a representation el-
ement with its immediate successor and a binary predicate
link which links a representation element back to the original
domain element it represents in `. Note that, with these pred-
icates in place, it is classical (see for instance [Abiteboul et
al., 1994]) to specify Datalog rules that define a linear order
on the set of all k-tuples of representation elements, (where k
is the maximum arity of a predicate in the original database).

Definition 4 (Representative of a D-list) Let D be a data-
base, and ` = (a1, . . . , an) be a D-list. Assume there are
fresh elements x1, . . . , xn such that:

• first(x1) and last(xn) hold in D;

• for all i such that 1 ≤ i < n, succ(xi, xi+1) holds in D;

• for all i such that 1 ≤ i ≤ n, link(ai, xi) holds in D;

• no other atom of predicates last, succ, link has some xi
as argument.

Then xn is called a representative of `.

Example 3 (`-annotation) Figure 1 shows part of the struc-
ture that is created by the list annotator on the database
p(a, a) ∧ r(a, b). x` is a representative of the D-list (a, b, b).

The list annotations that interest us are the ones that corre-
spond to some linear order. However, given the list annotator
introduced, many more will be generated: domain elements
might be left out or referenced multiple times. This raises the
following question: if q is a homomorphism-closed query,
Mq is a Turing machine for q, is it possible that Mq accepts
T (D, `) for some pair (D, `), while D does not belong to q?
In other words: may the creation of annotations that do not
correspond to proper linear orders lead to “false positives”?
Luckily, we can answer this question negatively, where the
intuitive argument is the following: with each pair (D, `),
we associate a pair (D′, `′) such that T (D, `) = T (D′, `′),
with the additional condition that `′ is a linear order on a sub-
set of the domain elements of D′. Therefore, Mq accepting
T (D′, `′) proves that D′ belongs to q. Then by showing that

there is a homomorphism from D′ to D allows to conclude
that D, in fact, belongs to q.

Definition 5 (Singularized Database) Let D be a database
instance, let ` be a D-list. The singularization sing(D, `) =
(D′, `′) of D with respect to ` is defined as follows:
• `′ has the same length as `, and the ith element of `′ is

the ith element of ` with an additional i superscript,

• p(xi11 , . . . , x
ik
k) ∈ D′ iff p(x1, . . . , xk) ∈ D.

Example 4 Let us consider the database De of Exam-
ple 2 with a D-list ` being (a, b, b). The singulariza-
tion of De with respect to ` is (D′e, `

′) with D′e =
{r(a1, b2), r(a1, b3), p(a1, a1)} and `′ = (a1, b2, b3).

Proposition 1 For any database D and any D-list `,
T (D, `) = T (sing(D, `)).

Proof: We put ` = (x1, . . . , xp) and `′ = (x′1, . . . , x
′
p). The

binary representation of xi and x′i are equal. By construc-
tion of sing(D, `), the every predicate that holds for the tuple
(x′1, . . . , x

′
k) holds as well for the tuple (x1, . . . , xk). For

each tuple, the same word is thus written on the tape, and
exactly the same tuples are considered. �

Proposition 2 Let D be a database, let ` be a D-list, and
(D′, `′) = sing(D, `). There is a homomorphism from D′ to
D.

Proof: Let us consider π, that associates the ith term of `′
with the ith term of `. This function is well-defined, since
all terms of `′ are distinct. π is a homomorphism from D
to D′: indeed, p(xi11 , . . . , x

ik
k) belongs to D′ if and only if

p(x1, . . . , xk) belongs to D. �

Proposition 3 Let q be a query closed under homomorphism.
Let Mq be a Turing machine recognizing q. If Mq recognizes
the tape representation of (D, `) with ` being an arbitrary
D-list, then D belongs to q.

Proof: Let us consider the singularization of D with respect
to `. By Proposition 1, the tape representing sing(D, `) =
(D′, `′) is the same as the tape representing (D, `). Thus, Mq

accepts on that tape. Since ` is a linear order on the terms
of D′, by definition of the Turing machine, D′ belongs to
q. Since q is closed under homomorphisms, and by Proposi-
tion 2, D belongs as well to q. �

5 Database Completion
5.1 General Description
We now describe how to initialize the tape of the Turing ma-
chine. The first step is, given a D-list `, to generate all the
possible databases on Pe with terms from `. Moreover, we
want to do this in such a way that through existential rules,
one can decide if a given atom is present or not in the gen-
erated database. The second step is to write the generated
databases on tapes (which are parameterized by theD-list un-
der consideration and the generated database).

To generate all possible databases, we enumerate tuples
according to the D-list, making every possible choice re-
garding the validity of atoms referring to the given tuple.
This choice is represented by fresh intensional predicates,

Ω = {ωP | P ⊆ Pe}. These predicates have arity k + 2.
The first k positions are filled with the tuple under consid-
eration. The k + 1th position is filled by a fresh element
representing the portion of the database that has been gen-
erated so far, while the last position is used to remember
(the representative of) the D-list currently used. Intuitively,
ωP (x1, . . . , xk, x, x`) holds if and only if, for any p ∈ Pe,
p(y1, . . . , yk) holds in the partial database represented by x
iff p ∈ P , where yi is the unique term such that link`(yi, xi).

Once these databases have been generated, we create the
corresponding tapes and simulate the Turing machine Mq on
each of those tapes. If a generated database contains (at least)
all the atoms of the original D, the simulation accepts. Oth-
erwise, the simulation may not terminate, but we shortcut
this case by “exceptionally accepting” all generated databases
where a we detect discrepancies to the original database.

5.2 Formalization of the Construction
Generation of the databases We finally introduce the rules
for the partRc of the query, dealing with database generation
and tape creation. For each tuple, we consider every possible
choice regarding which predicates hold for this tuple. We
create |Ω| rules for the first tuple:

firstk(x1, . . . , xk, x`)→ ω(x1, . . . , xk, x, x`), ω ∈ Ω. (1)

For each application of such a rule, the fresh element cre-
ated by the instantiation of x represents a database where the
atoms for the first tuple are fully specified, but no other tuple
is known. To make choices for the other tuples as well, one
uses the successor relation on tuples built from theD-list. We
allow for any possible choice, thus creating |Ω|2 rules.

ω(x1, . . . , xk, x, x`)

∧ succk(x1, . . . , xk, xk+1, . . . , x2k, x`)

→ step(x, y, x`) ∧ ω′(xk+1, . . . , x2k, y, x`)

for all ω, ω′ ∈ Ω. (2)

To ease the construction of the tape, we propagate the “Ω-
choices” already made for earlier tuples from one partial rep-
resentation to the next:

ω(x1, . . . , xk, x, x`)∧step(x, y, x`)→ ω(x1, . . . , xk, y, x`).
(3)

Of course, such “blind” choices may lead to inconsisten-
cies with the present facts: we may choose that p(a, b) does
not hold, whereas it is stated in the original data. We check
such inconsistencies (and trigger an “exceptional accept” as
explained before) as follows:

ωP (x1, . . . , xk, x, x`) ∧
k∧
i=1

link`(yi, xi) ∧ p(y1, . . . , yk)

→ allaccept(x, x`) if p 6∈ P. (4)

When reaching lastk(x1, . . . , xk, x`), a choice has been
made for every predicate and every tuple, thus we have ob-
tained a fully described database Dx,x`

over the representa-
tions of elements in `, which is represented by the fresh ele-
ment x. It remains to verify that this fully specified database
belongs to the query. To this end, we create a tape repre-
senting this database, and run the Turing machine Mq on it.
Before describing how to perform these tasks, let us assume
that if Dx,x`

belongs to the query, then rec(x, x`) is derived.
We propagate this information to the representatives of ever
more partial databases, starting from the complete ones (i.e.,
those where the lastk predicate holds for the tuple treated last:

ω(x1, . . . , xk, x, x`) ∧ lastk(x1, . . . , xk, x`)

→ complete(x, x`); (5)

complete(x, x`) ∧ rec(x, x`)→ allaccept(x, x`). (6)
The acceptance information (irrespective if exceptional or

regular) is then propagated through the tree of partial database
representations:∧

ω∈Ω

(
step(x, yω, x`) ∧ ω(x1, . . . , xk, yω, x`)

∧ allaccept(yω, x`)
)
→ allaccept(x, x`). (7)

If allaccept has been propagated up to the root, each possi-
ble way of completing the data associated with terms of ` is
either inconsistent withD or is finally encoded into a tape ac-
cepted by Mq . We mark then ` as an accepting enumeration.

firstk(x1, . . . , xk, x`) ∧
∧
ω∈Ω

ω(x1, . . . , xk, yω, x`)

∧ allaccept(yω, x`)→ accenum(x`). (8)

Creation of the tape We last present, for each x repre-
senting a database Dx,x`

the creation of the initial tape on
which the Turing machine is run. This is done as follows:
we enumerate the tuples in the order induced by `. For a
given tuple, (x1, . . . , xk), there is exactly one atom of the
form ωP (x1, . . . , xk, x, x`). We thus add at the end of the
tape built so far all the information regarding this tuple. We
first initialize by creating the first cell.

complete(x, x`)→ begin(x, y) ∧ symbol#(y)

∧ needed(y, x̄, x, x`) ∧ firstk(x̄, x`). (9)
The needed predicate indicates which tuple should be writ-

ten to the right of the current cell. This operation is done
thanks to the following rules:

needed(c0, x̄, x, x`) ∧ ωP (x̄, x, x`) ∧ succk(x̄, ȳ, x`)

→
2n−1∧
i=0

next(ci, ci+1) ∧
n∧
i=1

symbolpi(c2i−1)

∧ symbolδpi,P (c2i) ∧ needed(c2i, ȳ, x, x`), (10)

where there is such a rule for each P ⊆ Pe, and δpi,P
denotes 1 if pi ∈ P and 0 otherwise. In English, this rule
states that if at the cell c0 of the tape on which we write the
representation of Dx,x`

the information concerning the tuple
x̄ is required, if ωP describes this information, and if ȳ is
the next tuple in lexicographic order, then we create 2n new
cells with the relevant information and we declare that the
information regarding ȳ is needed at its right.

5.3 Sketch of Proof of the Construction
We now consider the query qR with R = Ra ∪ Rc ∪ RMq

.
Let D be a database, and ` be a D-list. We first prove
that for any guessed database D′ on the terms of sing(D, `),
there is a fresh element xD′ representing D′ (Proposition 4).
Then we show that the rules create the representation of the
tape associated with (D′, `) when applied from xD′ (Proposi-
tion 5). Finally, assuming that rec(xD′ , x`) is derived when-
ever T (D′, `) is accepted by Mq , we show that accenum(x`)
is derived whenever T (D, `) is accepted by Mq (Proposi-
tion 6).

Definition 6 (Alternative) Let D be a database, ` be a D-
list. An alternative D′ for (D, `) is a database on the terms of
sing(D, `). A representation ofD′ is a set of atoms of the form
ωP (t̄, x, x`), where x is a free variable, x` a representative
of `, and ωP is such that p(t̄) ∈ D′ if and only if p ∈ P .

Proposition 4 Let D be a database, ` a D-list. Let D′ be
an alternative for (D, `). There exists xD′ in the (Ra ∪Rc)-
chase ofD such that the set of atoms of the form ωP (t̄, xD′ , `)
in the chase is a representation of D′.

A fresh element xD′ as described in the previous property
is then called a representative of D′.

Proposition 5 Let D be a database, let ` be a D-list. Let D′
be an alternative for (D, `), xD′ a representative ofD′. There
exists a sequence of fresh elements in the (Ra ∪Rc)-chase of
D that form a representation of the tape T (D′, `).

Proposition 6 Let D be a database, let ` be a D-list.
T (D, `) is accepted by Mq if and only if there exists a rep-
resentative x` of ` in the (RMq ∪ Ra ∪ Rc)-chase of D for
which accenum(x`) holds.

Proof (sketch): Notice that an alternative for (D, `) is ei-
ther detected by Rule (4) or there is a homomorphism from
sing(D, `) into it. Thus, if D belongs to a homomorphism-
closed query, then rec(x, x`) holds for all representatives x of
alternatives of (D, `) in the canonical model, with x` being a
representative of `. We conclude by Rules (6) and (7). �

Last, by Proposition 3, we know that a database D belongs
to q if and only if there exists a D-list ` such that T (D, `) is
recognized by Mq . This thus proves the following theorem.

Theorem 1 Let q be a homomorphism-closed query, and Mq

a Turing machine recognizing it. The existential rule query
qR with R = RMq ∪ Ra ∪ Rc ∪ {accenum(x`) → goal} is
such that a database D on Pe belongs to q if and only if D
belongs to qR.

This in turn implies our main result: every homomor-
phism-closed recursively enumerable query is expressible as
an existential rule query.

6 Discussion and Future Work

In this work, we have considered existential rule queries. Ex-
istential rules have been intensively studied in recent years
as a prominent formalism in knowledge representation and
databases. Quite surprisingly, the expressivity of this for-
malism when considered as a query language has not been
studied so far. We provided a clear characterization of this
expressive power by showing that there are no further limits
beyond the obvious: existential rule queries are exactly those
queries which are preserved under homomorphisms and for
which a semi-decision procedure exists. The beauty of this
result lies in the absence of additional requirements regard-
ing the database (such as a linear order on the domain el-
ements or the presence of complement predicates). Conse-
quently the major hurdle to be overcome was to generate ap-
propriate tape representations without relying on a predefined
linear order nor on input negation. We showed that this can
be achieved by a brute force approach of creating all enumer-
ations of domain elements and for every such enumeration all
corresponding full databases. The final trick was to organize
these proliferating enumerations and guessed databases in a
way that a query match is correctly detected, despite the ex-
istence of “fake” linear orders and the side-by-side existence
of incoherent databases, overly filled databases, and correct
databases. The assumption that the query is preserved under
homomorphism had to be heavily exploited.

Besides its elegance, the established result can be useful
for clarifying expressivity questions. It is now clear that ev-
ery query for which homomorphism preservation and semi-
decidability in any Turing-equivalent computing paradigm
can be established (by whatever means) must be expressible
as an existential rule query. Conversely we know that ev-
ery query not expressible via existential rules must violate
one of these two conditions. Moreover, since we have shown
the formalism to be complete for the class of queries satis-
fying the two conditions, it does not make sense to look for
more expressive extensions of existential rule queries which
are homomorphism-closed. On a side note, since our proof
is constructive, we have provided a generic way of turning
a Turing machine formulation of the query into an existential
rule query, although in most cases certainly a suboptimal one.

Our ongoing work is focused on finding similar captur-
ing results for homomorphism-closed classes of queries on
different complexity levels (P, NP, PSPACE, EXPTIME, and
others) ideally linked to natural syntactic restrictions of ex-
istential rules. To this end, we may draw on prior work on
complexities of different decidable fragments of existential
rules [Baget et al., 2011b; Krötzsch and Rudolph, 2011], ex-
ploit existing results linking certain complexities to existen-
tial rules classes extended by mild forms of negation [Abite-
boul et al., 1994; Gottlob et al., 2014], and develop results in
the spirit of [Feder and Vardi, 2003], showing that negation
can be removed when considering only homomorphism pre-
served queries. However, results might not turn out as elegant
as desired. For instance, the natural candidate for capturing
the class of homomorphism-preserving polytime-computable
queries, Datalog, has recently been shown to not fully capture
that class [Dawar and Kreutzer, 2008].

References
[Abiteboul et al., 1994] S. Abiteboul, R. Hull, and V. Vianu.

Foundations of Databases. Addison Wesley, 1994.
[Arora and Barak, 2009] S. Arora and B. Barak. Computa-

tional Complexity - A Modern Approach. Cambridge Uni-
versity Press, 2009.

[Baget et al., 2011a] J.-F. Baget, M. Leclère, M.-L. Mugnier,
and E. Salvat. On Rules with Existential Variables: Walk-
ing the Decidability Line. Artif. Intell., 175(9-10):1620–
1654, 2011.

[Baget et al., 2011b] J.-F. Baget, M.-L. Mugnier,
S. Rudolph, and M. Thomazo. Walking the com-
plexity lines for generalized guarded existential rules. In
Proceedings of IJCAI’11, pages 712–717, 2011.

[Beeri and Vardi, 1984] C. Beeri and M.Y. Vardi. A Proof
Procedure for Data Dependencies. Journal of the ACM,
31(4):718–741, 1984.

[Calı̀ et al., 2013] A. Calı̀, G. Gottlob, and M. Kifer. Taming
the infinite chase: Query answering under expressive rela-
tional constraints. J. Artif. Intell. Res. (JAIR), 48:115–174,
2013.

[Chandra and Harel, 1980] A. K. Chandra and D. Harel.
Computable queries for relational data bases. J. Comput.
Syst. Sci., 21(2):156–178, 1980.

[Chang and Keisler, 1973] C. C. Chang and H. J. Keisler.
Model Theory. Elsevier, 1973.

[Dawar and Kreutzer, 2008] A. Dawar and S. Kreutzer. On
datalog vs. LFP. In Proceedings of ICALP’08, pages 160–
171, 2008.

[Feder and Vardi, 2003] T. Feder and M. Y. Vardi. Homo-
morphism closed vs. existential positive. In Proceedings
of LICS’03, pages 311–320, 2003.

[Gottlob et al., 2014] G. Gottlob, S. Rudolph, and
M. Simkus. Expressiveness of guarded existential
rule languages. In Proceedings of PODS’14, pages 27–38,
2014.

[Immerman, 1999] N. Immerman. Descriptive complexity.
Graduate texts in computer science. Springer, 1999.

[Krötzsch and Rudolph, 2011] M. Krötzsch and S. Rudolph.
Extending decidable existential rules by joining acyclicity
and guardedness. In Proceedings of IJCAI’11, pages 963–
968, 2011.

[Maier et al., 1979] D. Maier, A. O. Mendelzon, and Y. Sa-
giv. Testing implications of data dependencies. ACM
Trans. Database Syst., 4(4):455–469, 1979.

[Mugnier, 2009] M.-L. Mugnier. Conceptual graph rules and
equivalent rules: A synthesis. In Proceedings of ICCS’09,
pages 23–31, 2009.

[Papadimitriou, 1994] C. H. Papadimitriou. Computational
complexity. Addison-Wesley, 1994.

[Rudolph and Krötzsch, 2013] S. Rudolph and M. Krötzsch.
Flag & check: Data access with monadically defined
queries. In Proceedings of PODS’13, pages 151–162,
2013.

