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Abstract. The KLM approach to defeasible reasoning introduces a weakened
form of implication into classical logic. This allows one to incorporate exceptions
to general rules into a logical system, and for old conclusions to be withdrawn
upon learning new contradictory information. Standpoint logics are a group of
logics, introduced to the field of Knowledge Representation in the last 5 years,
which allow for multiple viewpoints to be integrated into the same ontology, even
when certain viewpoints may hold contradicting beliefs. In this paper, we aim
to integrate standpoints into KLM propositional logic in a restricted setting. We
introduce the logical system of Defeasible Restricted Standpoint Logic (DRSL)
and define its syntax and semantics. Specifically, we integrate ranked interpre-
tations and standpoint structures, which provide the semantics for propositional
KLM and propositional standpoint logic respectively, in order to introduce ranked
standpoint structures for DRSL. Moreover, we extend the non-monotonic entail-
ment relation of rational closure from the propositional KLM case to the DRSL
case. The main contribution of this paper is to characterize rational closure for
DRSL both algorithmically and semantically, showing that rational closure can be
characterized through a single representative ranked standpoint structure. Finally,
we conclude that the semantic and algorithmic characterizations of rational closure
are equivalent, and that entailment-checking for DRSL under rational closure is in
the same complexity class as entailment-checking for propositional KLM.

Keywords: Knowledge representation · Non-monotonic reasoning · Defeasible
reasoning · Standpoint logic.

1 Introduction

Within the field of symbolic AI, much work has been dedicated to reasoning with
information which is incomplete, or is seemingly contradictory. One avenue in which
contrasting beliefs is explored is through non-monotonic reasoning, which considers
cases where conclusions can be made based on a given set of beliefs, and then withdrawn
if new information arises that contradicts previous conclusions. A specific form of
such non-monotonic reasoning was established by Kraus et al. [19], who introduced
a defeasible implication |∼ into classical propositional logic, where the term α |∼ β
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reads as “α typically implies β”. More specifically, this reads as saying that all the most
typical occurrences of α should also satisfy β. Thus, we are able to incorporate rules
with exceptions into our logic, since we can have instances where α is true but β is not,
and merely interpret this as some exceptional instance of α. This approach to defeasible
reasoning is referred to as the KLM framework.

Another instance where contradictory information occurs in knowledge represen-
tation, is where we wish to integrate the views of two agents into a single ontology or
knowledge base, where the views of these agents may contradict each other. One way
to do this is to weaken or exclude the contradicting beliefs between agents. However,
this method may sacrifice the accuracy of the beliefs represented. In order to remedy
this, Gómez Álvarez and Rudolph [15] introduce standpoint modal operators, □s and
♢s, to the propositional case where □sϕ reads that “it is unequivocal to s that ϕ” and
♢sϕ reads that “it is possible to s that ϕ”. Standpoint modal operators have also been
introduced by Gómez Álvarez et al. [16] in the case of first-order and description logics .
However, the above cases of standpoint logics continue to be monotonic in nature.

In this paper, we consider the case where we combine both approaches in order to
represent, in a single logical framework, multiple agents who hold (possibly contradict-
ing) beliefs, where these beliefs may be defeasible in their nature. We will also build a
non-monotonic notion of entailment, which extends the well-known system of rational
closure in propositional KLM [21]. A motivating example for this case is given below.

Example 1. In the 19th century, crops imported into the USA were divided into fruits and
vegetables, where fruits were exempt from import tax. This led to a court case on whether
a tomato should be legally classified as a fruit or a vegetable. From a botanical standpoint,
tomatoes are fruits and furthermore all fruits are also vegetables, since vegetables are
considered all commonly eaten plants. This can be expressed using standpoint logics
with the set:

{□B(tomato→ fruit),□B(fruit→ vegetable)},

where B represents the botanical standpoint. However, the court considered a different
standpoint based on the culinary use of tomatoes. This states that vegetables are those
crops which are savoury and fruits are those which are sweet. That is,

{□C(savoury ↔ vegetable),□C(sweet↔ fruit),□C(tomato |∼ savoury),

□C(fruit |∼ ¬vegetable) ∧□C(vegetable |∼ ¬fruit)},

where C represents the “culinary-use” standpoint on crops. The first two statements
above tell us the specified definitions for fruits and vegetables. The third statement
tells us that tomatoes are usually used in savoury dishes, and the last proposition states
that in a culinary perspective, fruits and vegetables are usually distinct from each
other. The court concluded that from the “culinary-use” standpoint, tomatoes were
usually considered vegetables, and therefore should be taxed. We can represent this by
{L ⪯ C,□L(vegetable→ ¬fruit)}, where L ⪯ C tells us that the legal standpoint L
holds true each conclusion of C’s standpoint, and the second proposition states that fruits
and vegetables are strictly distinct, legally speaking. Importantly, this system allows for
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both internal exceptions, and strict disagreements between standpoints. For example,
B holds that every fruit is a vegetable, while L holds that no fruit is a vegetable. We
also see that it is possible that a certain kind of exceptional tomato is not savoury from a
culinary standpoint. In fact, from a culinary perspective it seems possible to consider a
tomato a fruit and a vegetable (i.e. ♢C(tomato→ (fruit ∧ vegetable))), although this
is not possible from a legal perspective.

In order to formally analyse examples as the one above, we formally introduce Defeasible
Restricted Standpoint Logic (DRSL) and describe how this can be used to reason non-
monotonically with multi-perspective knowledge bases. In Section 2, we provide a
background on propositional KLM defeasibility, the non-monotonic entailment relation
of rational closure and propositional standpoint logic in the classical case. In Section 3,
we describe the syntax and semantics for DRSL. In Section 4, we describe how rational
closure can be lifted from the propositional case to the case of standpoint logic, and show
a correspondence between an algorithmic and a semantic definition of rational closure.
Furthermore, we show that the algorithm for entailment-checking in rational closure is
in the same complexity class as entailment-checking in the propositional case.

2 Background

2.1 Propositional KLM and Rational Closure

In this section we define the syntax and semantics for KLM in the propositional case, as
well as recall certain results which we rely upon later on. In particular, we are considering
the case where |∼ forms a rational consequence relation as is defined by Lehmann and
Magidor [21]. We use a slightly more expressive syntax than the traditional KLM which
allows for conjunctions between propositions.

That is, we define the language of KLM propositional logic L|∼, over a set of
propositional atoms P , as defined by

ϕ ::= α | α |∼ β | ϕ ∧ ϕ,

where α and β are Boolean formulas with atoms in P .
The semantics for L|∼ is referred to as ranked interpretations. These were defined

originally as a Kripke-style semantics [19]. However, in this paper we use an equivalent
notion of ranking functions to define such an interpretation [8]. For the definition below
U refers to the set of classical interpretations for the atoms in P . That is, each u ∈ U is a
map that assigns each p ∈ P a truth value.

A ranked interpretation is therefore defined as a function R : U → N ∪ {∞},
such that the following convexity property is satisfied: if R(u) < ∞, then for every
0 ≤ j < R(u) there exists v ∈ U such that R(v) = j.

A ranked interpretation intuitively tells us how typical a state of the world ought to
be, with those valuations with higher ranks being less typical than those with lower ranks.
Those valuations with rank ∞ then refer to states of the world that are “impossible”. We
define JαK = {u ∈ U | u ⊩ α} for any Boolean formula α, and let UR = {u ∈ U |
R(u) ̸= ∞}. Then we say R ⊩ α iff JαK ⊇ UR. We also say that R ⊩ α |∼ β if and
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only if {u ∈ JαK | R(v) ≮ R(u) for all v ∈ JαK} ⊆ JβK. That is, if all the valuations
satisfying α with a minimal rank also satisfy β, or “the most typical α-instances are
instances of β”. We further note that a Boolean formula α can be expressed equivalently
by a defeasible implication ¬α |∼ ⊥ [19].

For a set K ∈ L|∼ we also say that R ⊩ K when R ⊩ ϕ for all ϕ ∈ K. We therefore
define thatR ⊩ ϕ1∧ϕ2 if and only ifR ⊩ {ϕ1, ϕ2}. The reason we include conjunctions
in the language L|∼ in this paper is to allow for increased expressivity when we bound
formulas by standpoint modal operators in Section 3.

Example 2. We consider a knowledge base K = {p → b, b |∼ f, p |∼ ¬f}. Then a
ranked interpretation which is a model of K is represented in the table below, where
each valuation is placed in the row corresponding to its rank. Moreover, each valuation
is represented by a sequence of atomic propositions in K, where a bar is placed over the
top of each atom which is false in the valuation. For example, the valuation pbf is the
valuation where p and b are true and f is false, and has rank 1 in the table below:

∞ pbf, pbf

2 pbf

1 pbf, pbf

0 pbf, pbf, pbf

It is also well-known in the KLM literature that there are multiple non-equivalent
notions of defeasible entailment defined to characterize what a KLM knowledge base
K ⊆ L|∼ entails. The first of these, defined by Lehmann and Magidor [21], is rational
closure. This is defined using a single ranked interpretation RK

RC , or equivalently, via an
algorithmic approach. The algorithmic definitions are given by the RCProp algorithm
for entailment-checking in Algorithm 2 which in turn calls on the BaseRank algorithm
described in Algorithm 1. These are originally proposed by Freund [12] but resemble
closer those occurring in Casini et al. [8]. In these algorithms, we assume that each
knowledge base K only contains elements of the form α |∼ β, and that entailment
checking is only done for elements of this form. This can be done by changing each
Boolean formula α into ¬α |∼ ⊥ and by splitting any conjunction of formulas into a set
of its conjuncts.

In order to define the semantic notion of rational closure, one uses an order on
models of K ⊆ L|∼ denoted ⪯K, where R1 ⪯K R2 iff R1(u) ≤ R2(u) for all u ∈ U .4

It is observed by Giordano et al. [14] that the set of ranked models of K, denoted
RK, has a minimum with respect to the order ⪯K. This minimal element is denoted
RK
RC . This assumption states that we ought to reason as though things are as typical as

they can be unless we have reason to believe otherwise. This corresponds to moving
valuations in U to their lowest rank possible without contradicting anything occurring
in the knowledge base K. From this, we obtain the following representation result for
propositional rational closure. For a knowledge base K and a defeasible implication

4 It is worth noting this holds with respect to valuations U on P , although not all atomic
propositions in P may occur in K. In the literature these two sets of atoms are often considered
to be the same, but this is not the case when we introduce standpoints, since there may be atoms
that do not occur in the beliefs of one standpoint that occur in the beliefs of another.
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Algorithm 1 BaseRank
Input: A propositional KLM knowledge base K
Output: An ordered tuple
(R0, ..., Rn−1, R∞, n)

1: i := 0;
2: E0 := {α→ β | α |∼ β ∈ K};
3: repeat
4: Ei+1 := {α→ β ∈ Ei | Ei ⊨ ¬α};
5: Ri := Ei − Ei+1;
6: i := i+ 1;
7: until Ei−1 = Ei;
8: R∞ := Ei−1;
9: if Ei−1 = ∅ then

10: n := i− 1;
11: else
12: n := i;
13: end if
14: return (R0, ..., Rn−1, R∞, n)

Algorithm 2 RCProp
Input: A propositional KLM knowledge base
K and a defeasible implication α |∼ β
Output: True if K |≈RC α |∼ β and False
otherwise
1: (R0,..., Rn−1, R∞, n) := BaseRank(K);
2: i := 0;
3: R :=

⋃j<n
j=0 Rj ;

4: while R∞ ∪R ⊨ ¬α and R ̸= ∅ do
5: R := R−Ri;
6: i := i+ 1;
7: end while
8: return R∞ ∪R ⊨ α→ β

α |∼ β, RCProp(K, α |∼ β)=True if and only if RK
RC ⊩ α |∼ β [21, 24]. This result can

be extended to conjunctions of defeasible implications by once again treating them as
sets of their conjuncts.

Definition 1. Consider ϕ ∈ L|∼. If ϕ = α |∼ β, we say ϕ is in the rational closure of
a knowledge base K, or write K |≈RC ϕ, when RK

RC ⊩ α |∼ β. Equivalently, where
RCProp(K, α |∼ β)=True. If ϕ = ϕ1 ∧ ϕ2, we say K |≈RC ϕ when K |≈RC ϕ1 and
K |≈RC ϕ2.

We also note the original complexity result for rational closure in the propositional
case, which states that RCProp is computable in PNP [21].

2.2 Standpoint Logics

Standpoint logic is introduced by Gómez Álvarez and Rudolph [15] in the propositional
case using the following syntax and semantics.

Definition 2. Consider a vocabulary V = (P,S), where P is a finite set of propositional
atoms and S is a finite set of standpoint symbols containing the universal standpoint ∗.
The language LS over V is defined by ϕ ::= s1 ⪯ s2 | p | ¬ϕ | ϕ ∧ ϕ | □sϕ, where
s1, s2, s ∈ S and p ∈ P .

In this syntax, s1 ⪯ s2 are called standpoint sharpening statements. The Boolean
connectives ∨, →, ↔ are defined via ¬ and ∧ in their usual manner, and for each
standpoint s ∈ S we define ♢s := ¬□s¬. The semantics for LS are defined as follows.
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Definition 3. A standpoint structure is a triple M = (Π,σ, γ) where Π is a non-empty
set of precisifications, σ : S → P (Π) is a function which assigns each standpoint a
non-empty set of precisifications and σ(∗) = Π , and γ : Π → P (P) is a function which
assigns each precisification a set of atoms.

Intuitively, the map σ allows one to allocate to a standpoint s the set of all “reasonable
ways to make s’s beliefs correct”, and γ assigns a set of basic propositions which are
“true” in that precisification. Equivalently, it associates to each π a classical valuation
on P , describing the contents of what the precisification π holds true. This notion is
emphasised by the definition of the satisfaction relation ⊩.

Definition 4. For a standpoint structure M and a precisification π ∈ Π , we define the
satisfaction relation ⊩ inductively as follows:

– M,π ⊩ p iff p ∈ γ(π).
– M,π ⊩ ¬ϕ iff M,π ⊮ ϕ.
– M,π ⊩ ϕ1 ∧ ϕ2 iff M,π ⊩ ϕ1 and M,π ⊩ ϕ2.
– M,π ⊩ □sϕ iff M,π′ ⊩ ϕ for all π′ ∈ σ(s).
– M,π ⊩ s1 ⪯ s2 iff σ(s1) ⊆ σ(s2)
– M ⊩ ϕ iff M,π ⊩ ϕ for all π ∈ Π .

In the above ϕ, ϕ1ϕ2 ∈ LS, s, s1, s2 ∈ S and p ∈ P .

Based on these semantics, and those for KLM, we propose an integration of these
two logics in the following section.

3 Defeasible Restricted Standpoint Logic

3.1 Syntax

In the language of DRSL, we consider the case where standpoint modal operators are
applied to propositional KLM formulas, with some restrictions of how standpoint bound
KLM formulas can be combined. Formally, this is defined below.

Definition 5. A vocabulary is a pair V = (P,S) where P is a finite set of propositional
atoms and S is a finite set of standpoints containing the universal standpoint ∗. The
language L|∼

S is defined as follows,

ψ ::= ϕ | #sψ | ψ ∧ ψ or e ::= s1 ⪯ s2,

where # = □ or # = ♢, s1 and s2 are standpoints and ϕ is a formula in L|∼ with
atoms in P .

Note here that we define the syntax in such a way that we can only apply standpoint
modal operators to the outside of existing formulas in the language of KLM logic. For
example, □s(p |∼ (q ∨ r)) would be a valid formula in L|∼

S while □sp |∼ □s′(q ∨ r)
is not valid. We also define the dual operator ♢s explicitly since we do not allow for
negation of modal operator bound formulas. We also do not allow for disjunctions of
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formulas in our syntax. Due to this, we lose the ability to express the related operator
Ds defined by Dsϕ = □s¬ϕ ∨□sϕ, which is read to mean that ϕ’s truth is determined
in s’s standpoint [15]. However, we are able to express in the case where ϕ is Boolean
the additional standpoint operator Isϕ := ♢s¬ϕ ∧ ♢sϕ, which states that ϕ’s truth is
not determined in s’s standpoints. If ϕ is not Boolean, and contains some defeasible
implication, we are not able to express this using our given syntax.

3.2 Semantics

The semantics we introduce to this standpoint logic follows the intuition given by Gómez
Álvarez et al. [16] such that we define a set of “precisifications” of formulas, which
correspond to “worlds” in a possible-worlds style semantics. Moreover, they intuitively
refer to making precise those views held within a standpoint, and different ways in
which such a standpoint can be made precise. Every precisificaton is then mapped to an
underlying semantic structure for the “base logic”. In first order, or description logics,
this corresponds to a first-order interpretation structure [16]. Using the standard seman-
tics for KLM defeasible logic, we will construct a ranked interpretation for each given
precisification.

Definition 6. Given a vocabulary V = (P,S), a ranked standpoint structure is a triple
M = (Π,σ, γ) where:

– Π is a non-empty set of precisifications.
– σ : S → P (Π) is a function that maps each standpoint symbol to a non-empty set

of precisifications and in particular, σ(∗) = Π .
– γ : Π → R is a function, where R is the set of ranked interpretations over P . That

is, for each precisification π, γ(π) is a ranked interpretation.

We say that M is valid if and only if for each s ∈ S , for every π ∈ σ(s), there exists
some valuation u such that γ(π)(u) ̸= ∞. We then say that a ranked standpoint structure
is a model for a formula ξ ∈ L|∼

S if and only if M ⊩ ξ.5 The relation ⊩ is defined as
follows.

Definition 7. Given a ranked interpretation structure M and a precisification π ∈ Π ,
the satisfaction relation ⊩ is defined inductively as follows:

– M,π ⊩ ϕ iff γ(π) ⊩ ϕ for the ranked interpretation γ(π).
– M,π ⊩ □sψ iff M,π′ ⊩ ψ for all π′ ∈ σ(s).
– M,π ⊩ ♢sψ iff M,π′ ⊩ ψ for some π′ ∈ σ(s).
– M,π ⊩ ψ1 ∧ ψ2 iff M,π ⊩ ψ1 and M,π ⊩ ψ2.
– M,π ⊩ s1 ⪯ s2 iff σ(s1) ⊆ σ(s2).
– M ⊩ ψ iff M,π ⊩ ψ for all π ∈ Π .

where ϕ ∈ L|∼, ψ ∈ L|∼
S and s, s1, s2 ∈ S.

5 This definition of a model extends to sets of formulas in the usual way.
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Something to note on this semantics is that the application of multiple modal op-
erators over a single formula reduces to just one formula, as is in the case for other
standpoint logics [15]. That is, M ⊩ #1

s1#
2
s2 ...#

n
snϕ if and only if M ⊩ #n

snϕ, for any
ranked standpoint structure M , any s1, ..., sn ∈ S and any ϕ ∈ L|∼. Therefore, in the
rest of this paper we only consider those formulas bound by one or no standpoint modal
operators.

Another result which is evident from these semantics is that for any formula ϕ ∈ L|∼

and any ranked standpoint structure M , we have M ⊩ ϕ if and only if M ⊩ □∗ϕ. This
is also the case in other versions of standpoint logics [15]. These two facts, along with
the following Lemmas allow us to define a normal form for a formula in DRSL.

Lemma 1. For any ranked standpoint structure M and any ψ1, ψ2 ∈ L|∼
S , we have that

M ⊩ □s(ψ1 ∧ ψ2) if and only if M ⊩ □sψ2 ∧□sψ2.

Lemma 2. Let M be a ranked standpoint structure, ϕ1, ..., ϕk ∈ L|∼. Then M ⊩
♢s(ϕ1 ∧#2

s2ϕ2 ∧ ... ∧#k
sk
ϕk) if and only if M ⊩ ♢sϕ1 ∧#2

s2ϕ2 ∧ ... ∧#k
sk
ϕk.

From these two results we obtain the following.

Corollary 1. Any DRSL formula ψ can be represented equivalently by a formula in the
form #1

s1ϕ1 ∧ ... ∧#k
sk
ϕk, where ϕ1, ..., ϕn ∈ L|∼.

For example, the formula

ψ = ♢s((p1 |∼ p2) ∧ (p3 |∼ p4) ∧□t(p5 |∼ p6) ∧ (p7 |∼ p8))) ∧ p9

can be equivalently represented by

ψ̃ = ♢s((p1 |∼ p2) ∧ (p3 |∼ p4)) ∧□t(p5 |∼ p6) ∧□t(p7 |∼ p8) ∧□∗p9

Definition 8. Any formula of the form specified in Corollary 1 is said to be in normal
form. The process of rewriting a formula ψ in normal form is called normalization of ψ.

This definition for the semantics for DRSL gives rise to a natural Tarskian notion of
entailment, which is analogous to ranked entailment defined in the propositional case of
KLM [21].

Definition 9. The ranked entailment relation ⊨R is defined as follows. Consider a
knowledge base K of propositions in L|∼

S and a proposition ξ ∈ L|∼
S . Then K ⊨R ξ if and

only if every ranked standpoint structure M which is a model of K is also a model of ξ.

Although ranked entailment is a notion worth investigating further, it is monotonic,
and therefore does not give us the desired system of non-monotonic reason we wish to
construct in the DRSL case. This is shown in the lemma below.

Lemma 3. Let K be a DRSL knowledge base. Then for any ψ ∈ L|∼
S , we have that

K ⊨R ξ implies K ∪ {ψ} ⊨R ξ.

Therefore, in order to construct some kind of non-monotonic entailment for DSRL,
we propose an extension of rational closure, as defined by Lehmann and Magidor [21] in
the propositional case, for standpoint logics.
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4 Rational Closure for DRSL

In this section we define an algorithm for rational closure in DRSL. Furthermore, we
show that this algorithm can also be described semantically via a single ranked standpoint
structure. This is analogous to the semantic and algorithmic representations of rational
closure in the propositional case as is described by Lehman and Magidor [21].

4.1 Rational Closure Algorithm

In this section we introduce the rational closure algorithm for DRSL, and describe its
complexity. This begins by constructing a “representative set” of KLM knowledge bases
for each standpoint s ∈ S. We split a knowledge base with formulas in L|∼

S into several
knowledge bases in L|∼ which represent the KLM-knowledge bases that each standpoint
s takes into account. In the base case, we determines a knowledge based only on those
formulas that are unequivocal for s, called Ks, which include formulas that are bound
by □t where t = s or t is some standpoint for which “subsumes” s in the sense that s
is a sharpening of t. Then we construct a separate knowledge base for the standpoint s
for each formula of the form ♢sϕ for ϕ ∈ L|∼. That is, we create a new knowledge base
representing the precisification of s where ϕ is true. We then associate each standpoint
with a set of representative KLM knowledge base, denoted Knows, which includes Kt

and Kϕ
t where t = s or t is a sharpening of s. This is described in Algorithm 3.

Example 3. Using the same knowledge base in Example 1 we can split our DRSL
knowledge base into three KLM knowledge bases:

KB ={tomato→ fruit, fruit→ vegetable}
KC ={savoury ↔ vegetable, sweet↔ fruit, tomato |∼ savoury,

fruit |∼ ¬vegetable, vegetable |∼ ¬fruit}
KL ={savoury ↔ vegetable, sweet↔ fruit, tomato |∼ savoury,

fruit→ ¬vegetable}

InKB andKC we simply include those propositions bound by □B and □C , respectively.
However, in the case of KL, since L ⪯ C is in our knowledge base, any statement
unequivocal to C must also be unequivocal to L. Hence, we include statements bound by
□L and □C in KL. Then, we associate with each standpoint the sets of knowledge bases
“relevant” to those standpoints, giving us: KnowB = {KB}, KnowC = {KC ,KL} and
KnowL = {KL}.Here note that since L ⪯ C, we have to include KL in KnowC , since
L is a sharpening of C’s standpoint and therefore is seen as a more specific version of
C’s view. If we were to add a formula of the form ♢Lϕ to our knowledge base, this would
create another set in the splitting defined by Kϕ

L = KL ∪ {ϕ}. Intuitively, this means if
our knowledge base asserts that it is possible for L to believe that ϕ is true, then we must
consider the possibility of L’s view where this is true, but that it is a divergent possible
precisification to the set of statements KL which are those unequivocal to L. In this case
we would also obtain that KnowC = {KC ,KL,K

ϕ
L} and KnowL = {KL,K

ϕ
L}.
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However, before we implement our splitting algorithm on a knowledge base K ⊆ L|∼
S ,

we reduce K into a canonical form. We first normalize each formula in K so that it
only contains formulas in normal form. We then say that a DRSL knowledge base
K is conjunction-free if there are no formulas of the form ψ1 ∧ ψ2 in K. If K is not
conjunction free, it is easy to observe that we can construct an equivalent knowledge
base K′ by splitting any conjunction in K into a set of its conjuncts. If K contains only
normalized formulas and is conjunction free, we say that K is in normal form. That is, it
only contains formulas of the form #sϕ, where ϕ is in L|∼.

We are then able to define Algorithm 3, which splits a DRSL knowledge base into a
set of propositional KLM knowledge bases. We then apply propositional rational closure
point-wise on these sets for entailment-checking over a DRSL knowledge base. A last
definition used in the algorithm is as follows.

Definition 10. Let K be a DRSL knowledge base. For standpoint symbols s and t, we
say that s ⪯+ t if t = s, t = ∗ or there exists a finite sequence of standpoint symbols
t1, ..., tn such that s ⪯ t1, t1 ⪯ t2, ..., tn−1 ⪯ tn, tn ⪯ t ∈ K.

After splitting a DRSL knowledge base into several propositional KLM knowledge
bases, we apply another algorithm for checking whether a (non-standpoint sharpening)
formula ξ ∈ L|∼

S is in the rational closure of a DRSL knowledge base K, and therefore
whether K defeasibly entails ξ. In order to do this we presume the ability to call on
Algorithm 2, for rational closure in the propositional case. We define this in Algorithm 4.

Intuitively, Algorithm 4 examines the modal operator occurring at the front of a
DRSL formula ξ and based on this decides which KLM knowledge bases to consider
when entailment-checking. If ξ = □sψ, then we check if ψ is in the rational closure of
every KLM-propositional knowledge base which coincides with the standpoint s. That
is, we check it is entailed by rational closure in every knowledge base in Knows. If
ξ = ♢sψ then we check if ψ is entailed in some rational closure of a KLM knowledge
base in Knows. In the case where ξ has no modal operator we equivalently can check
for □∗ξ. Using this, we are able to propose a reasonable definition of rational closure for
DRSL, which can be seen as a natural extension of rational closure in the propositional
case.

Definition 11. We say that ϕ is in the rational closure of K, or write K |≈RC ϕ, if and
only if RCStandpoint(K, ϕ)=True.

Note 1. Algorithm 4 is easily adaptable to other instances of algorithmically defined
consequence operations used for propositional KLM. For example, lexicographic clo-
sure is another non-monotonic entailment operator introduced in the literature for the
propositional case [20]. A more general algorithmic approach for defeasible entailments
in the propositional KLM setting is introduced by Casini et al. [8], including the case
for lexicographic closure. In such a case, the above algorithm for rational closure in
standpoints could be extended to use other similar algorithms for defeasible entailment,
by calling on the lexicographic closure algorithm instead of RCProp, for example.
Hence, the use case for the above algorithm is not necessarily restricted to the case of
rational closure.
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Algorithm 3 StandpointSplit
Input: A defeasible standpoint knowledge
base K in normal form.
Output: A set of propositional KLM knowl-
edge bases associated to each standpoint in K,
denoted

⋃
s∈S∪{∗}{Knows}.

1: Define S as the set of standpoints occurring
in the formulas of K.

2: for s ∈ S do
3: Ks := ∅;
4: while t ∈ S and s ⪯+ t do
5: for □tϕ ∈ K do
6: Ks := Ks ∪ {ϕ};
7: end for
8: end while
9: end for

10: for s ∈ S do
11: for ♢sϕ ∈ K do
12: Kϕ

s := Ks ∪ {ϕ};
13: end for
14: end for
15: for s ∈ S do
16: S⪯s := {t ∈ S | t ⪯+ s};
17: Knows := ∪t∈S⪯s

({Kt}∪
{Kϕ

t | ♢tϕ ∈ K});
18: end for
19: Know∗ =

⋃
s∈S Knows −K∗;

20: return
⋃

s∈S∪{∗}{Knows};

Algorithm 4 RCStandpoint
Input: A defeasible standpoint knowledge
base K in normal form and a (non-standpoint
sharpening) defeasible standpoint formula ψ in
normal form.
Output: True if ψ is in the rational closure of
K, otherwise False.
1: if ψ = ϕ1 ∧ ϕ2 then
2: if RCStandpoint(ϕ1)=True and

RCStandpoint(ϕ2)=True then
3: return True;
4: else
5: return False;
6: end if
7: else if ψ = □sϕ then
8: for K ∈ Knows do
9: if RCProp(K,ϕ)=False then

10: return False;
11: end if
12: end for
13: return True;
14: else if ψ = ♢sϕ then
15: for K ∈ Knows do
16: if RCProp(K,ϕ)=True then
17: return True;
18: end if
19: end for
20: return False;
21: end if

We can also show |≈RC as defined above is indeed non-monotonic, as opposed to
ranked entailment. Consider the example below.

Example 4. Consider the knowledge base, K = {p→ b, b |∼ f, s ⪯ ∗}. If we compute
StandpointSplit(K), since all the non-subsumption items in our knowledge base are
universal, we obtain just one set in our splitting Ks = K − {s ⪯ ∗}. Then, since
there are no exceptional antecedents we are able to use classical reasoning to conclude
K |≈RC {p |∼ f,□s(p |∼ f)}. However, if we consider the amended knowledge base,
K′ = K ∪ {□s(p |∼ ¬f), t ⪯ ∗} we are able to show that K′ ̸|≈RC □s(p |∼ f)
and K′ ̸|≈RC p |∼ f . Hence, |≈RC is non-monotonic. It is also interesting to note
that since p |∼ ¬f is only asserted for s and not for other standpoints, we still have
K′ |≈RC □t(p |∼ f).

Note 2. In Algorithm 3, it can be seen that we intentionally exclude K∗ as a knowledge
base when we consider our rational closure. This is due to the fact that we do not want
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to construct a “basic universal” standpoint as an individual precisification when we are
querying over our logic. If we allow for K∗ to be constructed we may have K ̸|≈RC □∗ϕ
simply because ϕ is not in the rational closure of K∗. On the other hand, we may
conclude K |≈RC ♢∗ϕ simply because ϕ is in the rational closure of K∗. In both cases,
this seems undesirable. In the first case, we may lose conclusions when we are reasoning
about what finite agents agree upon, when these agreements are not the consequence of
some universal specified rule. In the worst case, if K∗ = ∅, there is nothing non-trivial
in the rational closure of K∗ and we are unable to entail anything non-trivial of the form
□∗ϕ, even if every known standpoint s ∈ S−{∗} agrees upon ϕ. This would be the case
in Example 4. In the second case, it feels erroneous to conclude ♢∗ϕ based on the fact
that ϕ is in the rational closure of K∗, since intuitively ♢∗ϕ reads “there is a standpoint
which can be interpreted as entailing ϕ”. However, if the only such standpoint is ∗, then
this standpoint does not correspond to any considered agents viewpoint, and so ♢∗ϕ does
not seem a reasonable conclusion. One downside to the exclusion of K∗ is that it means
that RCStandpoint is not usable in the case where K only consists of formulas in the
form □∗ψ. However, in this case K is equivalent to a propositional KLM knowledge
base and so propositional rational closure can be used for entailment-checking. It is also
possible to enforce the inclusion of a knowledge base equal to K∗ by adding ♢∗⊤ to K.
Since ⊤ adds only a trivial element to K∗, K⊤

∗ is equivalent to K∗.

Having defined and motivated the previous algorithm as a natural extension to
rational closure, we now consider the complexity of using StandpointSplit and
RCStandpoint to check for entailment in DRSL.

Lemma 4. StandpointSplit is computable in polynomial time.

Theorem 1. RCStandpoint is computable in PNP, and if the materialization of each
defeasible entailment in the knowledge base and queried formula is a Horn clause then
RCStandpoint is computable in polynomial time.

This theorem follows a general pattern in the standpoint logic literature, which
shows in various cases that standpoint modal operators can be added, sometimes with
additional restrictions, to a certain system of logic without increasing the complexity
of the logic [16, 18]. The result here comes from the fact that RCProp is in PNP. Then,
if our reduced DRSL knowledge base has length k, the RCStandpoint algorithm
consists of computing RCProp at most k times over a knowledge base of at most k
propositional KLM formulas.

4.2 Semantic Characterisation for Rational Closure

Besides the previous algorithm, we can equivalently characterize the rational closure
for a knowledge base K using our previously defined semantics for DRSL. In particular,
we can define a single ranked interpretation which is a model for a (non-standpoint
sharpening) formula ξ if and only if K |≈RC ξ.

Definition 12. Let K be a knowledge base in normal form, then define the interpretation
MK
RC = (Π,σ, γ) as follows:
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– Π = {πs | s ∈ S − {∗}} ∪ (
⋃
s∈S∪{∗}{πϕs | ♢sϕ ∈ K for some s ∈ S}).

– σ(s) = {πt | t ⪯+ s} ∪ {πϕt | t ⪯+ s} for each s ∈ S.

– For each πs, we have γ(πs) = RKs

RC and for each πϕs , we have γ(πϕs ) = R
Kϕ

s

RC .

where Ks and Kψ
s are the sets as described in the standpoint splitting algorithm, and

RKRC is the ranking function representing the rational closure of the (propositional) KLM
knowledge base K.

This is constructed with a similar motivation to RCStandpoint. Any standpoint
s ∈ S must have some “base” precisification which is characterized by the KLM
propositions hold in every precisification for s. This corresponds to the rational closure
ranked interpretation for this set of propositions. Then, any proposition ♢sϕ characterizes
a new precisification of s where ϕ is taken into account. It is worth noting that, as
expected, MK

RC is a well-defined model of K.

Lemma 5. MK
RC = (Π,σ, γ) is a model of K.

Through construction, it is also clear that the algorithmic and semantic character-
ization of rational closure follow the same principles. That is, we split the standpoint
knowledge base into various KLM-propositional knowledge bases, and connect these to
a certain standpoint. Then, for each knowledge base, we perform a "pointwise" rational
closure. In the algorithmic case, we call on the RCProp algorithm, and use the ranked
interpretations for rational closure in the semantic case. From this, we are able to see
that entailment checking under the rational closure model MK

RC gives the same result as
the algorithm RCStandpoint. This is formalized with the following theorem.

Theorem 2. For all ψ ∈ L|∼
S and all K ⊆ L|∼

S , we have that K |≈RC ψ if and only if
MK
RC ⊩ ψ.

This gives us the main result of our paper. As in the propositional case for KLM,
we have a non-monotonic entailment operation which can be equivalently characterized
through an algorithm, and a single representative semantic model. We now consider
applying the above to our original motivating example.

Example 5. Using the same knowledge base as Example 1 we use the splitting defined
in Example 3 to construct our ranked interpretations at each precisification, where
γ(πB), γ(πC) and γ(πL) are the ranked interpretations defined by the rational closure
of KB , KC and KL, respectively. Since KB is a Boolean knowledge base, the rational
closure contains every valuation satisfying KB in row 0 and every other valuation in
row ∞. For the other two knowledge bases we have the following ranked interpretations
corresponding to rational closure. In the representation of these interpretations, we
change each atomic proposition to the first letter of its name (eg. t = tomato) and the
propositions sweet and savory are represented by sw and sa respectively:

∞ all other valuations all other valuations
1 tsavswf , tsavswf , tsavswf ,tsavswf tsavswf , tsavswf
0 tsavswf , tsavswf ,tsavswf , tsavswf tsavswf , tsavswf ,tsavswf , tsavswf
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Here, the middle column represents the ranking function of γ(πC) and the rightmost
represents γ(πL). We are then able to use these models to check if DRSL statements
are in the rational closure for K. First, note that γ(πC) ⊩ tomato |∼ vegetable and
γ(πL) ⊩ tomato |∼ vegetable. Moreover, γ(πB) ⊩ tomato→ vegetable, which is a
stronger condition than tomato |∼ vegetable. Thus, MK

RC , π ⊩ tomato |∼ vegetable
for each π ∈ Π and K |≈RC tomato |∼ vegetable. We are also able to check for non-
entailment. For example, K ̸|≈RC □L(tomato→ ¬fruit) since the valuation tsavswf
has rank 1 under γ(πL). This seems reasonable intuitively, since it allows for the legal
position to consider a tomato a fruit in an exceptional case, such as the possibility of a
sweet "dessert tomato".

Note 3. It is worth noting here that we have been operating under the assumption that
S ∪ {∗}, the set of named standpoints in the knowledge base, is equal to S, the set of
all standpoints expressible in our vocabulary. This is akin to a closed-world assumption
with regards to standpoints in the given knowledge base. This may seem restrictive since
we are unable to query for a standpoint which is not named in the knowledge base.
However, the addition of standpoints which have no formulas in the knowledge face a
similar problem to the addition of K∗ as in Note 2. For example, if we added another
standpoint X to Example 5 then we are required in our model to consider πX . However,
since there are no statements pertaining to X , γ(πX)(u) = 0 for any u ∈ U . Then we
are no longer able to conclude tomato |∼ vegetable6 in our model simply due to the
fact that it does not hold in γ(πX). Therefore, we keep this assumption, and note that
in the case where we wish to consider an additional viewpoint X that does not already
occur in the knowledge base, we can equivalently add the statement X ⪯ ∗ into the
knowledge base as in Example 4.

5 Related Work

An early notion of a logical semantics incorporating standpoints was introduced by
Bennet [1], using a fairly different approach to those used in this paper. The syntax and
semantics for standpoint modalities used in this paper was developed in the propositional
case by Gómez Álvarez and Rudolph [15]. Similar notions of standpoints have since
been introduced to first order logic [16], various description logics [16–18] and linear
temporal logic [13]. The defeasible logic of KLM was originally introduced by Kraus et
al. [19] with rational closure defined by Lehmann and Magidor [21]. Although defeasible
implication has not been studied previously in the case for standpoints, similar notions
have been previously considered. Britz et al. [3, 4] consider introducing |∼ as a non-
monotonic consequence relation between propositions in modal logics. Another aspect of
defeasibility in modal logic are defeasible modal operators, which have been considered
by Britz and Varzinczak [5] in the general case and Chafik et al. [10] in the case of linear
temporal logic. Other non-modal extensions of KLM-style defeasibility and derived
non-monotonic entailments have been considered in the description logics case [2, 6, 9],
as well as for first order logic and some of its decidable fragments [7, 11, 22].

6 In fact, we lose entailment for any non-trivial statements of the form □∗ϕ.
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6 Conclusion

The main focus of this paper was to integrate standpoint modal operators into KLM-style
defeasible propositional logic. In order to do this we defined Defeasible Restricted
Standpoint Logic (DRSL), by introducing a syntax which allows KLM propositional
symbols to be bound by standpoint modal operators. We introduced the semantics of
DRSL through ranked standpoint structures, combining the notion of ranked interpre-
tations for propositional KLM [21], and the semantic approaches used to define other
standpoint logics [15, 16]. We then introduced a non-monotonic entailment relation for
DRSL, which we proposed as a natural extension to rational closure in the propositional
case [21], denoted |≈RC . This was first defined via a rational closure algorithm, which
we showed provided a method for entailment-checking in DRSL that was of the same
complexity class as the rational closure algorithm in the propositional case. Lastly, we
showed that |≈RC could be equivalently defined semantically, specifically constructing a
single ranked standpoint structure MK

RC such that K |≈RC ψ if and only if MK
RC ⊩ ψ.

For future work, the most obvious question would be to enquire whether a more
expressive version of DRSL can be defined (for example including negation and disjunc-
tion of standpoint bound formulas), and what effects allowing for a more expressive logic
would have on the complexity and semantic constructions linked to a non-monotonic
entailment, such as rational closure. It seems initially that this case would be significantly
more difficult to consider, since we lose the Single Model property when we introduce
negation and disjunction into KLM in the propositional case [23]. Another notion to
explore, although mentioned briefly in the paper, is the possibility of extending other
non-monotonic consequence relations defined in the propositional case to the standpoint
case, such as lexicographic closure [20]. It would also be desirable to investigate the
proof-theoretic properties of |≈RC in the standpoint logic case and compare those to
the original KLM postulates given by Kraus et al. [19]. Another interesting problem
to investigate would be the integration of standpoints into more expressive KLM-style
defeasible logics, such as defeasible description logics (DDLs) [2]. Since standpoint
have seen to be integratable in other description logics [16, 18], it seems plausible that
this would work in the case of DDLs.
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A Appendix

A.1 Proofs of Results in Sections 3 and 4

Lemma 1. For any ranked standpoint structure M and any ψ1, ψ2 ∈ L|∼
S , we have that

M ⊩ □s(ψ1 ∧ ψ2) if and only if M ⊩ □sψ2 ∧□sψ2.

Proof. Consider two formulas ψ1, ψ2 ∈ L|∼
S . Then,

M ⊩ □s(ψ1 ∧ ψ2)
⇐⇒ M,π ⊩ ψ1 ∧ ψ2 for all π ∈ σ(s),
⇐⇒ M,π ⊩ ψ1 and M,π ⊩ ψ2 for all π ∈ σ(s),
⇐⇒ M ⊩ □sψ1 and M ⊩ □sψ2,
⇐⇒ M ⊩ □sψ2 ∧□sψ2.

Lemma 2. Let M be a ranked standpoint structure, ϕ1, ..., ϕk ∈ L|∼. Then M ⊩
♢s(ϕ1 ∧#2

s2ϕ2 ∧ ... ∧#k
sk
ϕk) if and only if M ⊩ ♢sϕ1 ∧#s2ϕ2 ∧ ... ∧#skϕk.

Proof. (⇒) : Assume M ⊩ ♢s(ϕ1 ∧ #2
s2ϕ2 ∧ ... ∧ #k

sk
ϕk). Then, M,π ⊩ ϕ1 ∧

#2
s2ϕ2 ∧ ... ∧#k

sk
ϕk for some π ∈ σ(s). This implies M,π ⊩ ϕ1 and M,π ⊩ #i

siϕi
for each i ∈ {2, .., k}, which is equivalent to M ⊩ ♢sϕ1 and M,⊩ ♢s#i

siϕi for each
i ∈ {2, .., k}. Then, since multiple modal operators reduce to the rightmost one by a
previous result, this is equivalent to M ⊩ ♢sϕ1 and M ⊩ #i

siϕi for each i ∈ {2, .., k}.
Hence, M ⊩ ♢sϕ1 ∧#2

s2ϕ2 ∧ ... ∧#k
sk
ϕk.

(⇐) : AssumeM ⊩ ♢sϕ1∧#2
s2ϕ2∧...∧#

k
sk
ϕk. ThenM ⊩ ♢sϕ1 andM,⊩ #i

siϕi
for each i ∈ {2, .., k}. M ⊩ ♢sϕ1 is equivalent to M,π ⊩ ϕ1 for some π ∈ σ(s).
Moreover, for the same π ∈ σ(s), we have that M,π ⊩ #i

siϕi for each i ∈ {2, .., k}
since each #i

siϕi is entailed globally. Therefore M,π ⊩ ϕ1 ∧#2
s2ϕ2 ∧ ... ∧#k

sk
ϕk and

so M ⊩ ♢s(ϕ1 ∧#2
s2ϕ2 ∧ ... ∧#k

sk
ϕk).

Corollary 1. Any DRSL formula ψ can be represented equivalently by a formula in the
form #1

s1ϕ1 ∧ ... ∧#kskϕk, where ϕ1, ..., ϕn ∈ L|∼.

Proof. We begin in the “basic cases” where our formula ψ is equal to ϕ or equal to
#sϕ for a single standpoint modal operator #s and some ϕ ∈ L|∼. In the second case
ψ is already in the desired form and if ψ ∈ L|∼ we have by a previous result that ψ is
equivalent to □∗ψ and it is then in the desired form.

If we take a formula in the above form and add an arbitrary (finite) number and
combination of modal operators in front of it #1

s1 ...#
k
sk

we have that if ψ = ϕ then
#1
s1 ...#

k
sk
ϕ is equivalent to #k

sk
ϕ. If ψ = #sϕ then #1

s1 ...#
k
sk
ψ is equivalent to ψ. It

is also clear to see that if we take any finite number of conjunctions of “basic” formulas,
we obtain a formula still in normal form.

Finally, we consider a case where we apply a standpoint operator to a finite conjunc-
tion of basic formulas. From the previous reasoning, and the commutativity of ∧ we can
without loss of generality express this conjunction in the form ϕ1 ∧#2

s2ϕ2 ∧ ...∧#k
sk
ϕk

for ϕi ∈ L|∼. Then, by Lemma 1, □s(ϕ1 ∧ #2
s2ϕ2 ∧ ... ∧ #k

sk
ϕk) is equivalent to

□sϕ1 ∧ #2
s2ϕ2 ∧ ... ∧ #k

sk
ϕk and by Lemma 2, ♢s(ϕ1 ∧ #2

s2ϕ2 ∧ ... ∧ #k
sk
ϕk) is

equivalent to ♢sϕ1 ∧#2
s2ϕ2 ∧ ... ∧#k

sk
ϕk and we are done.
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Lemma 3. Let K be a DRSL knowledge base. Then, for any ψ ∈ L|∼
S , K ⊨R ξ implies

that K ∪ {ψ} ⊨R ξ.

Proof. Assume K ⊨R ξ. By definitionM ⊩ ξ for any modelM of K. Then, in particular
any model M ′ of K ∪ {ψ} is a model of K. Hence, M ′ ⊩ ξ.

Lemma 4. StandpointSplit is computable in polynomial time.

Proof. Let k be the size of the knowledge base K. Then note that since the only stand-
points we consider are those named in the knowledge base, there are at most k elements
in S. Hence we only complete the for loop in line 2 at most k times. The same applies
to the while and for loops in lines 4 and 5. Thus without considering the complexity of
checking whether s ⪯+ t, this loop takes O(k3) steps. Then checking for each t ∈ S, if
s ⪯+ t for some fixed s ∈ S (that is, computing the transitive closure of ⪯) is known to
be in polynomial time.

The number of times repeating the loops in lines 10 and 11 are again bounded by
the size of K and so the second loop of the algorithm takes O(k2) steps. The repetitions
last for loop in line 15 is again bound by the size of K, and checking which elements
are in S⪯s is another instance of transitive closure checking, and since the knowledge
bases are already identified and indexed, computing Knows is trivial. Hence, each loop
is computable in polynomial time.

Theorem 1. RCStandpoint is computable in PNP time, and if the materialization of
each defeasible entailment in the knowledge base and queried formula is a Horn clause
then RCStandpoint is computable in P time.

Proof. We start by considering the case where ψ, the formula being queried, is of the
form □sϕ or ♢sϕ for standpoint symbol s ∈ S and ϕ ∈ L|∼. Let k be the size of the
knowledge base and n be the size of the query ψ. That is, n is the number of “basic”
defeasible implications in ψ.

In the worst case, each element in K generates a new KLM knowledge base in
Knows and so we repeat the loop at line 8 or 15 at most k times. Furthermore, at worst
the KLM knowledge base K is the size of of the original knowledge base K. It is shown
by Lehman and Magidor [21] that checking whether a single defeasible implication
α |∼ β is in the rational closure of K requires at most O(k2) Boolean satisfiability
checks. Since we are checking at most n defeasible implications we require at most
O(nk2) checks. Then the whole loop is computable with O(nk3) Boolean satisfiability
checks (where we use our NP oracle). Hence, in this case RCStandpoint is in PNP .

If ψ is a conjunction of formulas then at worst we repeat the RCStandpoint
once for each conjunct. That is, at worst n times. Therefore, in this case we are still
in PNP. Furthermore, since StandpointSplit is in polynomial time the problem of
identifying the members in Knows does not increase our complexity class.

Now we consider the case where we take the materialization of each formula in each
KLM knowledge baseK ∈ Know∗ as well as the materialization of the subformulas of ψ
in L|∼. That is, we consider these formulas and replace every instance of “|∼” with “→”.
If each formula considered is Horn, then, as in the propositional case [21] every Boolean
satisfiability check is computable in polynomial time and therefore RCStandpoint is
computable in polynomial time.
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Lemma 5. MK
RC = (Π,σ, γ) is a model of K.

Proof. For any standpoint s ∈ S ∪ {∗}, it is clear to see there is a bijection between
Knows and σ(s) defined by Kt 7→ πt and Kϕ

t 7→ πϕt . Then, for any K ∈ Knows, we
have that there is a unique π ∈ σ(s) such that γ(π) = RKRC .

Since K is in normal form we only have to consider two cases:

– If ψ ∈ K is of the form □sϕ where s ∈ S and ϕ ∈ L|∼, then note that ϕ ∈ K for all
K ∈ Knows. Then for each π ∈ σ(s), we have by our bijection that γ(π) = RKRC
for some K ∈ Knows. Hence γ(π) = RKRC ⊩ ϕ by definition and so M,π ⊩ ϕ for
all π ∈ σ(s). Hence, M ⊩ □sϕ.

– If ψ ∈ K is of the form ♢sϕ where s ∈ S and ϕ ∈ L|∼, then in particular ϕ ∈ Kϕ
s .

Then RK
ϕ
s

RC ⊩ ϕ by definition and RK
ϕ
s

RC = γ(πϕs ). Lastly note that πϕs ∈ σ(s) and so
M ⊩ ♢sϕ.

Theorem 2. For all ψ ∈ L|∼
S and all K ⊆ L|∼

S , we have that K |≈RC ψ if and only if
MK
RC ⊩ ψ.

Proof. Let s be a standpoint symbol and ϕ ∈ L|∼. If ψ = ♢sχ, then (using M as
shorthand for MK

RC) the following are equivalent:

– RCStandpoint(K, ψ)=True.
– RCProp(K,χ)=True for some K ∈ Knows.
– RKRC ⊩ χ for some K ∈ Knows.
– γ(π) ⊩ χ for some π ∈ σ(s) .
– M,π ⊩ χ for some π ∈ σ(s).
– M ⊩ ♢sχ.

If ψ = □sχ, then the following are equivalent:

– RCStandpoint(K, ψ)=True.
– RCProp(K,χ)=True for all K ∈ Knows.
– RKRC ⊩ χ for all K ∈ Knows.
– γ(π) ⊩ χ for all π ∈ σ(s).
– M,π ⊩ χ for all π ∈ σ(s).
– M ⊩ □sχ.

Note that in each case, we use the existence of a bijection between Knows and σ(s)
in the step from the third to fourth point. We also use the representation theorem for the
KLM-propositional case for the second to third point.

Then if ψ is a formula in L|∼, it is equivalent to □∗ψ and thus is solved by the
previous case. Lastly, if ψ is a conjunction of formulas χ1, ..., χk from our previous
cases, then K |≈RC ψ iff K |≈RC χi for each χi. This is true iff M ⊩ χi for all χi
which again is equivalent to M ⊩ ψ.


