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Chapter 1

Introduction

1.1 Motivation

In Artificial Intelligence and Cognitive Science, it is often argued that classical
logic is inadequate to model human reasoning [HR09]. By several examples,
Byrne has confirmed this observation [Byr89]: She asked individuals to draw
conclusions from several situations. One example is:

If Marian has an essay to write, she will study late in the library.

If the library stays open, she will study late in the library.

She has an essay to write.

Here, 38% of subjects conclude, that Marian will study late in the library. It is
clear that this behavior not consistent with respect to classical logic when using
a direct translation from the natural sentences into logical formulae. Byrne
argues that mental model theories explain her data.

Contrary to this view, Stenning and van Lambalgen proposed to use a Com-
putational Logic approach [SvL08]: First, they do not use a direct translation
from conditionals into logical implications. Instead, they propose to formulate
conditionals as “If A and nothing abnormal occurs, then B”. Then they reason
with respect to the minimal models of a form of completion under the Kleene
strong three valued logic with complete equivalence. They claim that humans
reason consistently in this logic. Additionally, they also provide an immedi-
ate consequence operator and give a translation from logic programs to neural
networks.

However, not all their claims in [SvL08] are correct, since the least fixed point
of their operator is not always a model of the program, as shown in [HR09].
In the area of human reasoning, Hölldobler and Kencana Ramli suggested to
reason with respect to the least model of the weakly completed program under
the  Lukasiewicz logic. Here, the weak completion is a form of Clark’s completion
[Cla78], where roughly speaking, the if-halves are replaced by “if and only if”.
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6 CHAPTER 1. INTRODUCTION

The difference to the completion is that no knowledge about facts is added. A
three valued model I is called smaller than J , if every atom mapped to true
(false) under I, is also mapped to true (false) under J . Then, a model I is called
minimal, if there is no smaller one and least, if every other model J is greater
than I.

Kencana Ramli has shown that the  Lukasiewicz logic under the weak com-
pletion is adequate to model human reasoning [Ram09]. More precisely, she
has proven that six of twelve examples by Byrne can be modeled in this logic.
Consider one of the remaining examples by Byrne:

If Marian has an essay to write, she will study late in the library.

She will study late in the library.

Here, 71% of subjects conclude that she has an essay to write. Using Stenning
and van Lambalgen’s translation, we have the following logic program:

P = {l← e ∧ ¬ab, ab← ⊥, l← >}

The weakly completed program is as follows:

wc(P ) = {l↔ (e ∧ ¬ab) ∨ >, ab↔ ⊥}

Then, the least  Lukasiewicz model is: IL = 〈{l}, {ab}〉. This interpretation
maps the atom l to true (>), ab to false (⊥) and each other atom to the truth
value unknown (u). However, this is incorrect with respect to Byrne’s data,
since IL 6|= e.

This result is not surprising since we are not interested in deriving a logi-
cal consequence using deduction, but rather in inferring a reason why Marian
is studying late in the library. That is abductive and not deductive reason-
ing [KKT98]. Stenning and van Lambalgen presented a systems on an imple-
mentation view that is adequate to model the abductive examples.

In this thesis, different abductive frameworks [KKT98] are investigated and
it will be shown that the  Lukasiewicz logic and the weak completion is indeed
adequate to model the remaining six examples in an abductive framework. The
three different logics of Kleene, Fitting and  Lukasiewicz with different forms of
completion are compared. In [KKT98], abductive frameworks were extended
by so called integrity constraints. Since the representation of the examples do
not use integrity constraints, four examples are modified in order to illustrate
the use of integrity constraints. Two different semantics of integrity constraints
are presented and contrasted. Moreover, the use of abductive frameworks are a
natural extension that also captures the six deductive examples.

At the end, the following questions are investigated from a complexity point
of view:

• Consistency: The question, whether an abductive problem has a minimal
explanation,

• Relevance: The question whether a fact is part of a minimal explanation,
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• Necessity: The question whether a fact is part of all minimal explanations
and

• Skeptical Reasoning: The question whether a formula is a logical conse-
quence with respect to all minimal explanations.
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1.2 Thesis Structure

This thesis is structured as follows:

Chapter 2 In this chapter, logic programs and different semantics of logic
programs are formally introduced. Then, some complexity classes and relation-
ships between them are shown.

Chapter 3 Here, the general idea of abduction is shown and the formal defini-
tion is given. Then, it is shown, how one can model the remaining six examples
by Byrne in an abductive framework. Finally, four examples are given that
illustrate two semantics of integrity constraints.

Chapter 4 In this chapter, the relationship between three different logics and
different forms of completion are shown.

Chapter 5 Chapter 5 deals with the complexity of consistency, relevance,
necessity and skeptical reasoning.

Chapter 6 We summarize the work. Additionally, ideas for future work are
given.



Chapter 2

Preliminaries

In this chapter, propositional logic and logic programs with negative facts are
formally introduced. We present three different logics, the  Lukasiewicz three
valued logic [Luk70], the Kleene strong three valued logic and the Fitting
logic [Fit85]. The following sections describe Clark’s completion and a slightly
different form of Clark’s completion which is called weak completion. Then, the
Stenning and van Lambalgen’s immediate consequence operator is presented and
the relationship between the least model of a weakly completed program and
their consequence operator is given. At the end some results from complexity
theory are summarized.

2.1 Propositional Language

We consider an alphabet consisting of an infinite set of variables, the connec-
tives ¬,∧,∨,←,↔ and the punctuation symbols “(“, “,” and “)”. In addition,
the alphabet also contains the special symbols >, ⊥, denoting a valid and an
unsatisfiable formula, respectively.

Definition 2.1.1 (Formula). Let R be a set of propositional variables. The
set of propositional formulas is the smallest set L(R) of strings over R, the
binary connectives {∧,∨,←,↔} and the special symbols “(“, “,”, “)” with the
following properties:

• If p ∈ R, then p ∈ L(R).

• If F ∈ L(R), then ¬F ∈ L(R).

• If ◦ is a binary connective and F,G ∈ L(R), then (F ◦G) ∈ L(R).

A literal is either p or ¬p, if p ∈ R. In the first case, it is called positive and
in the second case negaitve.

9
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2.2 Syntax of Logic Programs

Stenning and van Lambalgen proposed to use a specific form of formulas to
represent knowledge in order to compute logical consequences efficiently.

Definition 2.2.1 (Logic Program). A logic program P over the set of variables
R is a finite set of clauses, positive and negative facts. Clauses are logical
formulae of the form

H ← (¬)B1 ∧ (¬)B2 ∧ . . . ∧ (¬)Bn n ≥ 1, H,B1, . . . Bn ∈ R

Positive facts are of the form
H ← >

and negative facts of the form
H ← ⊥

.
We say, H is the head of a clause, B1 ∧ . . . ∧Bn is the body of the clause. If

H is the head of a clause in P, we say H is defined w.r.t. P. If H is not defined
w.r.t. P, it is undefined w.r.t. P.

2.3 Semantics of Logic Programs

In classical logic, semantics of formulae are given by a two valued interpretation.
Here, we consider three-valued logics, i.e. there exists a third, intermediate truth
value u.

The semantics of logic programs or arbitrary formulae are given by a three
valued interpretation.

Definition 2.3.1 (Three-Valued Interpretation). A three-valued interpretation
I is a mapping from the set of variables into the truth values >,⊥, u. We
represent interpretations by pairs 〈I>, I⊥〉, where

• the set I> contains all variables which are mapped to >,

• the set I⊥ contains all variables that are mapped to ⊥,

• all variables, that are neither in I> nor I⊥ are mapped to u and

• we require I> ∩ I⊥ = ∅.

The extension of I to arbitrary formulas can be obtained by Figure 2.1 in the
usual way. With IL we denote the extension obtained by using the connectives
of the  Lukasiewicz logic {¬,∧,∨,←L,↔L}, IK denotes the Kleene strong three
valued logic with the connectives {¬,∧,∨,←K ,↔K} and IF denotes the Fitting
semantics with the connectives {¬,∧,∨,←K ,↔C}.

We say, a formula F is  Lukasiewicz (Kleene, Fitting) consistent iff there
exists an I such that IL(F ) = > (IK(F ) = >, IF (F ) = >).

Note that a total three-valued interpretation can be seen as a two-valued
interpretation.
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¬
> ⊥
⊥ >
u u

*

F G ∧ ∨ ←L ↔L ←K ↔K ↔C

> > > > > > > > >
> ⊥ ⊥ > > ⊥ > ⊥ ⊥
⊥ > ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ > > > > >
> u u > > u > u ⊥
⊥ u ⊥ u u u u u ⊥
u > u > u u u u ⊥
u ⊥ ⊥ u > u > u ⊥
u u u u > > u u >

Figure 2.1: Truth values for  Lukasiewicz logic, Kleene strong three valued logic
and Fitting semantics

Definition 2.3.2 (Model). Let I be an interpretation and F a formula. Then
an extension I∗ is called model for F iff I∗(F ) = >.

For a set of formulas F , I∗ is a model of F , denoted by I∗ |= F , iff I∗ |= F
for all F ∈ F

Furthermore, we give a partial order on three valued interpretations.

Definition 2.3.3 (Ordering Among Interpretations). Let I, J be two interpre-
tations. If I> ⊆ J> and I⊥ ⊆ J⊥, we say I is smaller than J , denoted with
I � J .

In particular, we are interested in the least model.

Definition 2.3.4 (Least Interpretation). Let I be a set of interpretations, then
I ∈ I is called least in I iff for all interpretation J ∈ I it holds that I � J .

We denote the least model of a set of formulae with lm(F), if it exists. In
particular, we use lmL(F) to denote the least  Lukasiewicz model, if it exists.
Then, a least model is also unique.

2.4 Program Completion

Stenning and van Lambalgen proposed to use a form of completion. Originally,
completion was proposed by Clark as a semantics for negation by finite failure,
stating that ¬a is true, if a could not be inferred in finite time.

Definition 2.4.1 (Completion). Let P be a logic program. Consider the fol-
lowing transformation:

1. Select all clauses H ← B1, . . . ,H ← Bn with the same head and replace
them by the formula H ← B1 ∨ . . . ∨Bn.

2. For every undefined predicate A, add A← ⊥.
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3. Replace ← by ↔.

The result, obtained by this transformation, is called completion of P and is
denoted with c(P).

Note that in logic programs negative facts are allowed. For this reason,
completion is unsuitable for such logic programs, because during completion
these negative facts are added. If we drop the second step, we obtain the weak
completion.

Definition 2.4.2 (Weak Completion). Let P be a logic program. Consider the
following transformation:

1. Select all clauses H ← B1, . . . ,H ← Bn with the same head and replace
them by the formula H ← B1 ∨ . . . ∨Bn.

2. Replace ← by ↔.

The result, obtained by this transformation, is called weak completion of P and
is denoted with wc(P).

Example 2.4.3 (Differences between Completion and Weak Completion). Con-
sider the following program:

P = {A← ¬B1 ∧B2,

A← >}
c(P) = {A↔ (¬B1 ∧B2) ∨ >,

B1 ↔ ⊥,
B2 ↔ ⊥}

wc(P) = {A↔ (¬B1 ∧B2) ∨ >}

2.5 Consequence Operator

A consequence operator is a mapping from an interpretation I and a logic pro-
gram P to an interpretation J . This operator expresses the consequences when
the bodies are interpreted under I. Stenning and van Lambalgen proposed to
use a slightly modified operator of Fitting.

Definition 2.5.1 (Stenning and van Lambalgen Immediate Consequence Op-
erator). Let I be an interpretation and P a logic program. ΦSvL,P = 〈J>, J⊥〉,
where

J> = {A | there exists A← Body ∈ P with I(Body) = >}
J⊥ = {A | there exists A← Body ∈ P

and for all A← Body ∈ P we find that I(Body) = ⊥}
.
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From particular interests are least fixed points of this operator.

Definition 2.5.2 (Fixed Point). Let f : S 7→ S be a function. Then, x ∈ S is
called fixed point iff f(x) = x.

Proposition 2.5.3 (Computation of the Least Fixed Point). The least fixed
point can be obtained by iterating the Stenning and van Lambalgen consequence
operator, starting with 〈∅, ∅〉.

Proof. See [Ram09], page 52

This least fixed point is of particular interest since it is the least model of
the weakly completed program under the  Lukasiewicz logic.

Proposition 2.5.4 (Relationship Least Fixed Points and Least Model). Let P
be a logic program. Then the following are equivalent:

(i) I is the least model of wc(P),

(ii) I is the least fixed point of ΦSvL,P .

Proof. See [Ram09] Corollary 6.16

Thus, in order to compute the least model of a weakly completed program, we
can instead compute the least fixed point. Furthermore, we know that there al-
ways exists a least model of a weakly completed program under the  Lukasiewicz
logic.

2.6 Complexity Theory

In general, complexity theory deals with the word-problem, i.e. “Belongs a word
w to the language L?”. Here, a word is a finite string over the alphabet Σ and
a language is a possibly infinite set of words over Σ. With Σ∗ we denote every
word over Σ. The complement of a language L over the alphabet Σ is Σ∗ \ L,
denoted with L̄.

A decision problem is a problem, whose answer is “Yes” or “No”. There
is a natural correspondence between the word-problem and decision problems.
Roughly speaking, the corresponding language to a decision problem contains all
problems with a “Yes”-answer. Given a language L, the corresponding decision
problem is, if a word belongs to L.

Decision problems that can be decided by a deterministic Turing Machine in
polynomial time belong to the class P. The class of decision problems that are
decidable by a non deterministic Turing Machine in polynomial time is denoted
with NP. Intuitively, this class contains all decision problems, where a proof
stating that the problem is a “Yes”-instance can be verified in polynomial time
on a deterministic Turing Machine. More formally:

Definition 2.6.1 (Balanced Relation). Let R be a binary relation on strings.
R is called balanced if (x, y) ∈ R implies | y |≤| x |k for some k ≥ 1.
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Proposition 2.6.2 (Characterization of NP). Let L ⊆ Σ∗ be a language.
L ∈ NP iff there is a polynomially decidable and a polynomial balanced relation
R such that L = {x | (x, y) ∈ R for some y}.

Proof. See [Pap93] Proposition 9.1

The opposite of the class NP are decision problems, where a proof stating
that a problem is a “No”-instance can be verified in polynomial time. More
formally:

Definition 2.6.3 (coNP). The class coNP is defined as follows:

coNP = {L̄ | L ∈ NP}

Note, that coNP is not the complement of NP. In fact, they have a non
empty intersection (See [Pap93] page 238).

Of particular interest are the hardest problems in a complexity class. For this
purpose, a transformation from one decision problem to another one is given.

Definition 2.6.4 (Reductions). A language L is polynomial-time reducible to
a language L′, denoted by L ≤p L

′ if there is a polynomial-time computable
function f : Σ∗ 7→ Σ∗ such that for every x ∈ Σ∗, x ∈ L iff f(x) ∈ L′.

Here, L ≤p L
′ intuitively means that L is not more difficult to decide than

L′. Moreover, reductions are transitive:

Proposition 2.6.5 (Transitivity of Reductions). Let L1, L2, L3 be languages.
If L1 ≤p L2 and L2 ≤p L3, then L1 ≤p L3.

Proof. See [Pap93] Proposition 8.2

We say, a problem L is NP-hard , if every problem in NP can be polynomial
reduced to L. In this sense, L is one of the hardest problems with respect to
NP-problems.

Definition 2.6.6 (Hardness and Completeness). Let C be a complexity class.
A language L is C-hard if L ≤p L

′ for all L′ ∈ C. L is C-complete if L is in C
and L is C-hard.

That is, an NP-complete language is one of the hardest problem in NP. Such
languages do exist.

Theorem 2.6.7 (Cook-Levin Theorem). Let 3SAT be the language of all satis-
fiable formulae in conjunctive normal form where each clause has three disjuncts.
Then 3SAT is NP-complete.

In order to show that a decision problem is NP-complete, one have to show
that it is inside NP and is NP-hard . Cook and Levin have shown that every
decision problem in NP can be reduced to 3SAT. By Proposition 2.6.5, it is
sufficient to show that 3SAT is polynomial reducible to the problem L, to show
that L is NP-hard . Furthermore, to show that a language L is in NP, one can
use such reductions.
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Proposition 2.6.8 (Closure of NP and coNP). Let L1, L2 languages. If L2 ∈
NP and L1 ≤p L2, then L1 is in NP.

Proof. See [Pap93] Proposition 8.3

That is, the classes NP and coNP are closed under polynomial-time reduc-
tions.

If we already know that a language is NP-complete and it is polynomial
reducible to another language and vice versa, we can conclude that the other
language is also NP-complete.

Definition 2.6.9 (Equivalence). Let L1, L2 be languages. If L1 ≤p L2 and
L2 ≤ L1, then L1 and L2 are equivalent with respect to polynomial time reduc-
tions.

Then, we obtain the following:

Proposition 2.6.10 (Relationship Completeness and Equivalence). Let L, L′

be languages. If L is NP-complete (coNP-complete) and L,L′ are equivalent
with respect to polynomial time reductions, then L′ is NP-complete (coNP-
complete).

Proof. Since L′ ≤p L and L ∈ NP (coNP), we know by Proposition 2.6.8 that
L′ ∈ NP (coNP). Because L is NP-hard (coNP-hard) and L ≤p L

′, it must
follow that L′ is NP-hard (coNP-hard). Thus, L′ is NP-complete (coNP-
complete).

There is a symmetry between NP and coNP:

Proposition 2.6.11 (Relationship NP-completeness and coNP-completeness).
Let L ⊆ Σ∗ be a language. Then, L is NP-complete iff L̄ is coNP-complete.

Proof. See [Pap93] Proposition 10.1

Consider the following problem: Let F and G be two formulas in conjunctive
normal form. Is it true, that F is satisfiable and G not? It is clear that the first
problem is in NP and the second in coNP. Such combined problems are then
in the class DP. More formally:

Definition 2.6.12 (DP). A language L is in the class DP iff there are two
languages L1 ∈ NP and L2 ∈ coNP such that L = L1 ∩ L2.

In this thesis, the complexity of several decision problems are investigated.
However, we will not give a precise definition of Turing Machines. Instead,
algorithms are described in a more intuitive way.
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Chapter 3

Abduction

In this chapter, the general idea of abductive reasoning is described first. We
continue with the approach by Stenning and van Lambalgen and the formal
definition of an abductive framework, following [KKT98]. The next section
presents Byrne’s experiment. It is argued that the weakly completed programs
under the  Lukasiewicz logic is indeed adequate to model the remaining six ex-
amples by Byrne. In [KKT98] abductive frameworks extended with formulae
called integrity constraints were shown . However, one can model the examples
by Byrne without integrity constraints. At the end, four examples are modified
to show how integrity constraints change the obtained explanations.

3.1 Idea of Abduction

The philosopher Pierce first introduced the notion of abduction. He identified
three distinguished forms of reasoning [Pie]:

Deduction This is an analytic process based on the application of general rules
to particular situations. Consider the following example: “All Greeks are
men, all men are mortal”. Then, we can infer “All Greeks are mortal”.

Induction That is synthetic reasoning which infers the rule from the case and
the result. Consider you observed “Socrates is a human being and is
mortal”. Then, one can infer “All human being are mortal”.

Abduction This is another form of synthetic inference, but of the case from a
rule and a result.

Let us illustrate the idea of abduction by the following example.

Example 3.1.1 (Idea of Abduction). The background theory consists of the
following rules:

The grass is wet, if it rained last night.

17
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The grass is wet, if the sprinkler was on.

The shoes are wet, if the grass is wet.

If we observe that the shoes are wet, we have several explanations. One
explanation is that the grass is wet. However, we can further explain, why the
grass is wet. Then, we obtain the explanation “It rained last night.” and the
explanation “The sprinkler was on.”. The last two explanations are called basic,
since we cannot further explain them. Another explanation is “The sprinkler
was on and it rained last night”, which combines the last two explanations.
Then, this explanation is not minimal. One meaningless explanation is “The
shoes are wet.”, i.e. the observation is explained by itself.

3.2 Approach by Stenning and van Lambalgen

Stenning and van Lambalgen describe a system that allows abductive reasoning
in [SvL08]. We illustrate their system using an example:

Example 3.2.1. Consider the program

P = {H1 ← A1 ∧A2, H2 ← B1, H2 ← B2}

If we observe H1, we could add H1 ← > to the program. However, if we reason
with respect to the weak completion of P ∪ {H1 ← >}, we obtain a formula
H1 ↔ (A1 ∧A2)∨>. From this point, we cannot conclude that A1 and A2 hold
under the Fitting logic. This is the reason, why they proposed to use “integrity
constraints”. An integrity constraint is of the form “If φ holds, then ϕ must
hold.” . In the above program we have two such constraints:

If H1, then A1 ∧A2

If H2, then B1 ∨B2

If we add the fact H1 ← > to the program, then the least fixed point of their
proposed operator is I = lfp(ΦSvL,P∪{H1←>}) = 〈{H1}, ∅〉. Thus the first
constraint is not satisfied in the sense that H1 is mapped to true, but A1 ∧ A2

is not mapped to true under the above interpretation. In order to satisfy this
constraint, we have to add further facts to the program. Their proposal is to
use finitely failed sub queries to obtain such facts:

• First, they ask: “Does A1 hold?”. This is not the case in the interpretation
I. Hence, they add A1 ← > to the program.

• Then, they query “Does A2 hold?”, which is also not true in the interpre-
tation I. Thus, they add A2 ← > to the program.

Here, the facts A1 ← >, A2 ← > must be added. The resulting program is:

P ′ = {H1 ← A1, A2, H2 ← B1, H2 ← B2, H1 ← >, A1 ← >, A2 ← >}

This program satisfies the integrity constraints. Moreover, we can conclude
A1, A2 which is the intended explanation of H1.
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This approach seems to be curious since they use a completion based ap-
proach for deductive reasoning and they additionally use the only-if halves as
integrity constraints.

In this thesis, a different formalism based on abductive frameworks is used.
In contrast to the discussed scenario, we are asking for an extension E of the
program P such that E ∪ P |= O, where O is the observation . One obvious
difference is that the program and the observation is not joined in one program.
Furthermore, the integrity constraints are not necessary anymore. Another
noticeable difference is that Stenning and van Lambalgen describe a non de-
terministic procedure to update the program in order to satisfy the integrity
constraints. Here, such precise criteria that allows a more efficient procedure,
are not given.

3.3 Abductive Framework

Given a set of formulas F and an observation O, abductive reasoning can be
characterized in general as the problem to find an explanation E such that O
can be inferred by F ∪ E by deductive reasoning.

In this thesis, F is a logic program and O is a set of literals. We always
assume a fixed set of variables R.

Definition 3.3.1 (Abductive Framework). An abductive framework is a tuple
〈P,A, |=〉, where

• P is a logic program over R,

• A is a set subset of
abd(P) = {A ← >, A ← ⊥ | A ∈ R is undefined w.r.t. P}, called ab-
ducibles and

• |=⊆ 2L(R) × L(R) is a consequence relation.

The intended meaning of A is that explanations are restricted to be a sub-
set of A. Then, every explanation is basic, i.e. every explanation cannot be
explained by other facts. The reason is that abd(P) only contains facts where
the head is undefined.

An abductive framework serves as an environment for computing explana-
tions. Then, an abductive problem consists of an observation and a framework.

Definition 3.3.2 (Abductive Problem). Let 〈P,A, |=〉 be an abductive frame-
work and O a set of literals called observation. Then, the abductive problem is
a tuple 〈P,A,O |=〉.

If O is a singleton set, we omit the the brackets. Next, the solution of an
abductive problem is formally defined.

Definition 3.3.3 (Explanation, Solution). Let 〈P,A,O, |=〉 be an abductive
problem. Then, E is an explanation (or solution) of the abductive problem iff
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• E is a consistent subset of A,

• P ∪ E is consistent and

• P ∪ E |= L for all L ∈ O.

The first consistency requirement means that an explanation does not con-
tain contradictory facts. For example the explanation {A← ⊥, B ← >, B ← ⊥}
is not consistent since it contains B ← > and B ← ⊥.

Usually, the entailment relation is defined over all models of P ∪ E . If there
does not exist such a model, every formula is a consequence, which is unintended.

Consider the following consequence relations.

Definition 3.3.4 (Consequence Relations). Let P be a logic program and G
be a formula.
P |=K G iff for all I : IK |= P implies IK(G) = >
P |=K,c G iff for all I : IK |= c(P) implies IK(G) = >
P |=K,wc G iff for all I : IK |= wc(P) implies IK(G) = >
P |=F G iff for all I : IF |= P implies IF (G) = >
P |=F,c G iff for all I : IF |= c(P) implies IF (G) = >
P |=F,wc G iff for all I : IF |= wc(P) implies IF (G) = >
P |=L G iff for all I : IL |= P implies IL(G) = >
P |=L,lm,c G iff I = lmL(c(P)) and IL(G) = >
P |=L,lm,wc G iff I = lmL(wc(P)) and IL(G) = >

The second consistency requirement means that there exists an interpretation
I that is a model of P ∪ E w.r.t. the consequence relation. For example, if
we use |=L,lm,wc, then this states that there exists an interpretation I such
that IL |= wc(P ∪ E). If one uses |=K , then this states that there exists an
interpretation I such that IK |= P∪E . In this thesis, the minimality requirement
which insists that no strict subset of the explanation is also an explanation, is
used.

Definition 3.3.5 (Minimal Explanation). Let 〈P,A,O, |=, 〉 be an abductive
problem. An explanation E is called minimal iff there is no E ′ ⊂ E such that E ′
is an explanation.

Then, the explanation “The sprinkler was on and it rained last night.”in Ex-
ample 3.2.1 is not minimal, whereas “It rained last night.” and the explanation
“The sprinkler was on.” are minimal.

The question is, what one can conclude with respect to explanations. Since
human reasoning can be modeled by reasoning with respect to the least
 Lukasiewicz model of the weak completion, this logic is used to derive logical
consequences of P and the minimal explanations. Stenning and van Lambalgen
further noticed, that humans reason skeptically by explanations. Formally, that
is the following:

Definition 3.3.6 (Skeptical Reasoning). Let AP = 〈P,A,O, |=〉 be an abduc-
tive problem and F a formula.

Then F follows skeptically by AP , denoted by AP |=s F , iff
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• there exists a solution of AP and

• F is a universal consequence of AP , i.e. for all minimal explanations E of
AP we find that I = lmL(wc(P ∪ E)) and IL(F ) = >.

This definition is more powerful than the system by Stenning and van Lam-
balgen, since here F is an arbitary formula and we reason with respect to all
explanations. The system by Stenning and van Lambalgen only reason with re-
spect to one explanation, if it exists. If there are multiple explanations, nothing
can be concluded. Here, we can conclude that one of the several explanations
must hold. Moreover, we can simulate deductive reasoning in this framework:

Proposition 3.3.7. Let P be a logic program and F a formula. Then,
P |=L,lm,wc F iff AP = 〈P, ∅, ∅, |=〉 |=s F

Proof.

“→” Then, I = lmL(wc(P)) and I(F ) = >. Since in the above abductive
problem, the observation is empty, it follows that the empty set is the
only minimal explanation. Then, it immediately follows AP |=s F .

“←” Since the observation is the empty set, if follows that the empty explana-
tion E is the only minimal explanation. Because AP |=s F , it follows that
P ∪ E = P |=L,lm,wc F .

This shows that the definition of skeptical reasoning is a natural extension
of deductive reasoning. That is, one can use this definition in order to compute
the first six deductive examples by Byrne.

3.4 Byrne’s Experiment

In this section, we will investigate the question, which abductive framework is
adequate to model human reasoning. For this purpose, we will contrast the
logics by  Lukasiewicz, Fitting and Kleene with completed programs, weakly
completed programs and with respect to the original program.

In [Byr89], Byrne confronted individuals with sentences like “If she has an
essay to write, she will study late in the library. She will not study late in the
library.”. Then, the individuals were asked to draw conclusions. Here, 92% of
subjects conclude that she does not have an essay to write. In Figure 3.1, the
situations, observations and experimental results by Byrne are given. Moreover,
the translation by Stenning and van Lambalgen from natural sentences into logic
programs is given.

In Figure 3.2 minimal explanations for Byrne’s experiment are summarized
for different logics. One can observe the following:

Observation 3.4.1. Reasoning with respect to the original program is not
adequate to model human reasoning.
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Statement If she has an essay to write she will study late in the library.
Program P1 = {l← e ∧ ¬ab, ab← ⊥}
Observation Example 1: She will study late in the library.
Explanation She has an essay to write (71%).
Observation Example 2: She will not study late in the library.
Explanation She does not have an essay to write (92%).

Statement
If she has an essay to write she will study late in the library.
If she has a textbook to read, she will study late in the library.

Program P2 = {l← e ∧ ¬ab1, l← t ∧ ¬ab2, ab1 ← ⊥, ab2 ← ⊥}
Observation Example 3: She will study late in the library.
Explanation She has an essay to write (13%).
Observation Example 4: She will not study late in the library.
Explanation She does not have an essay to write (96%).

Statement
If she has an essay to write she will study late in the library.
If the library stays open, she will study late in the library.

Program P3 = {l← e ∧ ¬ab1, l← o ∧ ¬ab2, ab1 ← ¬o, ab2 ← ¬e}
Observation Example 5: She will study late in the library.
Explanation She has an essay to write (54%).
Observation Example 6: She will not study late in the library.
Explanation She does not have an essay to write (33%).

Figure 3.1: Byrne’s experiment and the translation into logic programs by Sten-
ning and van Lambalgen

Consider Example 1 in Figure 3.2

If Marian has an essay to write, she will study late in the library.

She will study late in the library.

Here, 71% of subjects conclude that she has an essay to write. Consider the
abductive problems APL = 〈P1, abd(P1), l, |=L〉, APF = 〈P1, abd(P1), l, |=F 〉,
APK = 〈P1, abd(P1), l, |=K〉.

Then, l cannot be explained, if we reason with respect to the original pro-
gram. Consider the interpretation I = 〈{e, ab}, {l}〉.

• E1 = ∅ is not an explanation. We obtain IL |= P1, IF |= P1 and IK |= P1.
Hence, P1 6|=L l, P1 6|=F l and P1 6|=K l.

• E2 = {e← ⊥} is not an explanation. We obtain IL |= P1∪E2, IF |= P1∪E2
and IK |= P1 ∪ E2. Hence, P1 ∪ E2 6|=L l, P1 ∪ E2 6|=F l and P1 ∪ E2 6|=K l.

• E3 = {e← >} is not an explanation. We obtain IL |= P1∪E3, IF |= P1∪E3
and IK |= P1 ∪ E3. Hence, P1 ∪ E3 6|=L l, P1 ∪ E3 6|=F l and P1 ∪ E3 6|=K l.

Hence, there is no explanation. Then, APL 6|=s e, APF 6|= e, APK 6|= e,
which is incorrect with respect to Byrne’s data.
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Consequence relation Logic Program Observation Minimal explanations

|=L, |=F , |=K

P1
l ×
¬l ×

P2
l ×
¬l ×

P3
l ×
¬l ×

|=L,lm,c, |=F,c, |=K,c

P1
l {e← >}
¬l ∅

P2
l {e← >}, {t← >}
¬l ∅

P3
l {e← >, o← >}
¬l ∅

|=L,lm,wc, |=F,wc, |=K,wc

P1
l {e← >}
¬l {e← ⊥}

P2
l {e← >}, {t← >}
¬l {e← ⊥, t← ⊥}

P3
l {e← >, o← >}
¬l {e← ⊥}, {o← ⊥}

Figure 3.2: Minimal explanations of Byrne’s experiment under different abduc-
tive frameworks. The set of abducibles is not restricted, i.e. A = abd(P). The
×-symbol denotes that there does not exist a minimal explanation.

Observation 3.4.2. Reasoning with respect to the completion of a program is
not adequate to model abductive human reasoning.

Consider the following experiment:

If Marian has an essay to write, she will study late in the library.

She will not study late in the library.

Here, 92% of individuals conclude that she does not have an essay to write.
Consider the abductive problems

APL = 〈P1, abd(P1), l, |=L,lm,c〉
APF = 〈P1, abd(P1), l, |=F,c〉
APK = 〈P1, abd(P1), l, |=K,c〉

Next, it is shown, that the empty set is a solution of these abductive prob-
lems.

Consider the completion of P1:

c(P1) = {l↔ e ∧ ¬ab, e↔ ⊥, ab↔ ⊥}

The least  Lukasiewicz model is IL = 〈∅, {e, ab, l}〉. Hence, the empty set is
a minimal explanation. Every Kleene and Fitting model of c(P1) must map e
and ab to ⊥ and thus l as well.
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Finally, we obtain that the empty set is the only minimal explanation. It is
clear that APL 6|=s ¬e, APF 6|=s ¬e, APK 6|=s ¬e, which is incorrect to Byrne’s
data.

Observation 3.4.3. The weak completion under the  Lukasiewicz logic as a
justification is adequate to model human reasoning.

In the following, this important observation is explained in more detail. Each
example in Figure 3.2 and the associated abductive problem will be presented.
For each subset of the abducibles, the least model of the resulting program will
be given in order to decide if this subset is an explanation. Then, one can
immediately read off the minimal explanations. Finally, we reason skeptically
with these explanations according to Definition 3.3.6.

Example 1

If Marian has an essay to write, she will study late in the library.

She will study late in the library.

Here, 71% of subjects conclude that she has an essay to write. Consider the
abductive problem APB,1 = 〈P1, abd(P1), l, |=L,lm,wc〉.

lm(wc(P1)) = 〈∅, {ab}〉 6|= l

lm(wc(P1 ∪ {e← >})) = 〈{e, l}, {ab}〉 |= l

lm(wc(P1 ∪ {e← ⊥})) = 〈{}, {ab, e, l}〉 6|= l

Hence, {e ← >} is the only minimal explanation and thus APB,1 |=s e,
which is correct w.r.t. Byrne’s data.

Example 2

If Marian has an essay to write, she will study late in the library.

She will not study late in the library.

Here, 92% of individuals conclude that she does not have an essay to write.
We obtain the abductive problem APB,2 = 〈P1, abd(P1),¬l, |=L,lm,wc〉.

lm(wc(P1)) = 〈∅, {ab}〉 6|= ¬l
lm(wc(P1 ∪ {e← >})) = 〈{e, l}, {ab}〉 6|= ¬l
lm(wc(P1 ∪ {e← ⊥})) = 〈∅, {ab, e, l}〉 |= ¬l

Hence, {e ← ⊥} is the only minimal explanation and APB,2 |=s ¬e, which
is correct w.r.t. Byrne’s data.
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Example 3

If Marian has an essay to write, she will study late in the library.

If she has a textbook to read, she will study late in the library.

She will study late in the library.

Here, 13% of individuals conclude that she has an essay to write. We obtain
the abductive problem APB,3 = 〈P2, abd(P2), l, |=L,lm,wc〉.

lm(wc(P2)) = 〈∅, {ab1, ab2}〉 6|= l

lm(wc(P2 ∪ {e← >})) = 〈{e, l}, {ab1, ab2}〉 |= l

lm(wc(P2 ∪ {e← ⊥})) = 〈∅, {ab1, ab2, e}〉 6|= l

lm(wc(P2 ∪ {t← >})) = 〈{t, l}, {ab1, ab2}〉 |= l

lm(wc(P2 ∪ {t← ⊥})) = 〈∅, {ab1, ab2, t}〉 6|= l

lm(wc(P2 ∪ {e← ⊥, t← ⊥})) = 〈∅, {ab1, ab2, t, e, l}〉 6|= l

Hence {e ← >} and {t ← >} are minimal explanations and APB,3 6|=s e,
which is correct w.r.t. Byrne’s data.

Example 4

If Marian has an essay to write, she will study late in the library.

If she has a textbook to read, she will study late in the library.

She will not study late in the library.

Here, 96% of individuals conclude that she does not have an essay to write.
We obtain the abductive problem APB,4 = 〈P2, abd(P2),¬l, |=L,lm,wc〉.

lm(wc(P2)) = 〈∅, {ab1, ab2}〉 6|= ¬l
lm(wc(P2 ∪ {e← >})) = 〈{e, l}, {ab1, ab2}〉 6|= ¬l
lm(wc(P2 ∪ {e← ⊥})) = 〈∅, {ab1, ab2, e}〉 6|= ¬l
lm(wc(P2 ∪ {t← >})) = 〈{t, l}, {ab1, ab2}〉 6|= ¬l
lm(wc(P2 ∪ {t← ⊥})) = 〈∅, {ab1, ab2, t}〉 6|= ¬l

lm(wc(P2 ∪ {e← >, t← >})) = 〈{e, t, l}, {ab1, ab2}〉 6|= ¬l
lm(wc(P2 ∪ {e← >, t← ⊥})) = 〈{e, l}, {ab1, ab2, t}〉 6|= ¬l
lm(wc(P2 ∪ {e← ⊥, t← >})) = 〈{t, l}, {ab1, ab2, e}〉 6|= ¬l
lm(wc(P2 ∪ {e← ⊥, t← ⊥})) = 〈∅, {ab1, ab2, e, t, l}〉 |= ¬l

Hence {e ← ⊥, t ← ⊥} is the only minimal explanation and APB,4 |=s ¬e,
which is correct w.r.t. Byrne’s data.
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Example 5

If Marian has an essay to write, she will study late in the library.

If the library stays open, she will study late in the library.

She will study late in the library.

Here, 54% of individuals conclude that she has an essay to write. We obtain
the abductive problem APB,5 = 〈P3, abd(P3), l, |=L,lm,wc〉.

lm(wc(P3)) = 〈∅, ∅〉 6|= l

lm(wc(P3 ∪ {e← >})) = 〈{e}, {ab2}〉 6|= l

lm(wc(P3 ∪ {e← ⊥})) = 〈{ab2}, {e, l}〉 6|= l

lm(wc(P3 ∪ {o← >})) = 〈{o}, {ab1}〉 6|= l

lm(wc(P3 ∪ {o← ⊥})) = 〈{ab1}, {o, l}〉 6|= l

lm(wc(P3 ∪ {e← >, o← >})) = 〈{e, o, l}, {ab1, ab2}〉 |= l

lm(wc(P3 ∪ {e← >, o← ⊥})) = 〈{e, ab1}, {o, ab2, l}〉 6|= l

lm(wc(P3 ∪ {e← ⊥, o← >})) = 〈{o, ab2}, {ab1, e, l}〉 6|= l

lm(wc(P3 ∪ {e← ⊥, o← ⊥})) = 〈{ab1, ab2}, {e, t, l}〉 6|= l

Hence, {e ← >, o ← >} is the only minimal explanation and APB,5 |=s e,
which is correct w.r.t. Byrne’s data.

Example 6

If Marian has an essay to write, she will study late in the library.

If the library stays open, she will study late in the library.

She will not study late in the library.

Here, 33% of individuals conclude that she does not have an essay to write.
We obtain the abductive problem APB,6 = 〈P3, abd(P3),¬l, |=L,lm,wc〉.

lm(wc(P3)) = 〈∅, ∅〉 6|= ¬l
lm(wc(P3 ∪ {e← >})) = 〈{e}, {ab2}〉 6|= ¬l
lm(wc(P3 ∪ {e← ⊥})) = 〈{ab2}, {e, l}〉 |= ¬l
lm(wc(P3 ∪ {o← >})) = 〈{o}, {ab1}〉 6|= ¬l
lm(wc(P3 ∪ {o← ⊥})) = 〈{ab1}, {o, l}〉 |= ¬l

lm(wc(P3 ∪ {e← >, o← >})) = 〈{e, o, l}, {ab1, ab2}〉 6|= ¬l

Hence, {e ← ⊥} and {o ← ⊥} are minimal explanations and APB,6 6|=s ¬e,
which is correct w.r.t. Byrne’s data.



3.5. INTEGRITY CONSTRAINTS 27

All in all, it is shown that skeptical reasoning under weakly completed pro-
grams and the  Lukasiewicz logic is indeed adequate to model the six abductive
examples by Byrne.

3.5 Integrity Constraints

Explanations can also be restricted by so called integrity constraints. Here,
an integrity constraint is a formula. In [KKT98] two different semantics for
integrity constraints are presented, the theorem-hood view and the satisfiability
view.

Definition 3.5.1 (Semantics of Integrity Constraints). Let 〈P,A,O, |=L,lm,wc〉
be an abductive problem and IC a formula, called integrity constraint. Then,
E is a solution iff E is a solution of the abductive problem and E satisfies F iff

• E ∪ P |=L,lm,wc IC in theorem-hood view or

• there exists an interpretation I such that IL |= wc(E ∪ P) ∪ {IC} in the
satisfiability view

In this section, we investigate four Byrne’s examples added with integrity
constraints. For each situation, the different semantics of integrity constraints
are contrasted.

Example 3* Consider the following situation:

If she has an essay to write she will study late in the library.

If she has a textbook to read, she will study late in the library.

She will not read a textbook in holidays.

There are holidays.

She will study late in the library.

Here, we translate “She will not read a textbook in holidays.” as a constraint,
i.e. we have the following:

P4 = {l← e ∧ ¬ab1, l← t ∧ ¬ab2, ab1 ← ⊥, ab2 ← ⊥, h← >}
IC = ⊥ ← t ∧ h

Note that “She will not read a textbook in holidays.” cannot be seen as a
case for ab2, since here we mean that she will not read a textbook in holidays.
If instead ab2 ← h would be added, it could be possible that she has a textbook
to read in holidays.

The abductive problem is APB,7 = 〈P4, abd(P4), l, |=L,lm,wc〉.
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lm(wc(P4)) = 〈{h}, {ab1, ab2}〉 6|= l

lm(wc(P4 ∪ {e← >})) = 〈{e, l, h}, {ab1, ab2}〉 |= l

lm(wc(P4 ∪ {e← ⊥})) = 〈{h}, {ab1, ab2, e}〉 6|= l

lm(wc(P4 ∪ {t← >})) = 〈{t, l, h}, {ab1, ab2}〉 |= l

lm(wc(P4 ∪ {t← ⊥})) = 〈{h}, {ab1, ab2, t}〉 6|= l

lm(wc(P4 ∪ {e← >, t← >})) = 〈{e, l, t, h}, {ab1, ab2}〉 |= l

lm(wc(P4 ∪ {e← >, t← ⊥})) = 〈{e, l, h}, {ab1, ab2, t}〉 |= l

lm(wc(P4 ∪ {e← ⊥, t← >})) = 〈{t, l, h}, {ab1, ab2, e}〉 |= l

lm(wc(P4 ∪ {e← ⊥, t← ⊥})) = 〈{h}, {ab1, ab2, e, t, l}〉 6|= l

We obtain the explanations: {e ← >}, {t ← >}, {e ← >, t ← >},
{e← >, t← ⊥} and {e← ⊥, t← >}.

Theorem-hood View The only explanation that satisfies IC is
{e← >, t← ⊥}. Hence, APB,7 |=s e and APB,7 |=s ¬t

Satisfiability View Here, the minimal explanation {e← >} satisfies IC with
the model 〈{e, l, h}, {ab1, ab2, t}〉. Hence, APB,7 |=s e and APB,7 6|=s ¬t

Example 4* Consider the following situation:

If she has an essay to write she will study late in the library.

If she has a textbook to read, she will study late in the library.

She will not read a textbook in holidays.

There are holidays.

She will not study late in the library.

P4 = {l← e ∧ ¬ab1, l← t ∧ ¬ab2, ab1 ← ⊥, ab2 ← ⊥, h← >}
IC = ⊥ ← t ∧ h

The abductive problem is APB,8 = 〈P4, abd(P4),¬l, |=L,lm,wc〉.
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lm(wc(P4)) = 〈{h}, {ab1, ab2}〉 6|= ¬l
lm(wc(P4 ∪ {e← >})) = 〈{e, l, h}, {ab1, ab2}〉 6|= ¬l
lm(wc(P4 ∪ {e← ⊥})) = 〈{h}, {ab1, ab2, e}〉 6|= ¬l
lm(wc(P4 ∪ {t← >})) = 〈{t, l, h}, {ab1, ab2}〉 6|= ¬l
lm(wc(P4 ∪ {t← ⊥})) = 〈{h}, {ab1, ab2, t}〉 6|= ¬l

lm(wc(P4 ∪ {e← >, t← >})) = 〈{e, t, l, h}, {ab1, ab2}〉 6|= ¬l
lm(wc(P4 ∪ {e← >, t← ⊥})) = 〈{e, l, h}, {ab1, ab2, t}〉 6|= ¬l
lm(wc(P4 ∪ {e← ⊥, t← >})) = 〈{t, l, h}, {ab1, ab2, e}〉 6|= ¬l
lm(wc(P4 ∪ {e← ⊥, t← ⊥})) = 〈{h}, {ab1, ab2, e, t, l}〉 |= ¬l

We obtain the only explanation {e← ⊥, t← ⊥}.

Theorem-hood View This explanation satisfies IC.
Hence, APB,8 |=s e.

Satisfiability View This explanation also satisfies IC in the satisfiability view,
since 〈{h}, {ab1, ab2, e, t, l}〉 is a model of P4 ∪ {IC} ∪ {e ← ⊥, t ← ⊥} .
Hence, APB,8 |=s e.

Example 5* Consider the following situation:

If Marian has an essay to write, she will study late in the library.

If the library stays open, she will study late in the library.

The library is not open in holidays.

There are holidays.

She will study late in the library.

P5 = {l← e ∧ ¬ab1, l← o ∧ ¬ab2, ab1 ← ¬o, , ab2 ← ¬e, h← >}
IC = ⊥ ← o ∧ h

The abductive problem is APB,9 = 〈P5, abd(P5), l, |=L,lm,wc〉.
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lm(wc(P5)) = 〈{h}, ∅〉 6|= l

lm(wc(P5 ∪ {e← >})) = 〈{e, h}, {ab2}〉 6|= l

lm(wc(P5 ∪ {e← ⊥})) = 〈{ab2, h}, {e, l}〉 6|= l

lm(wc(P5 ∪ {o← >})) = 〈{o, h}, {ab1}〉 6|= l

lm(wc(P5 ∪ {o← ⊥})) = 〈{ab1, h}, {o, l}〉 6|= l

lm(wc(P5 ∪ {e← >, o← >})) = 〈{e, o, l, h}, {ab1, ab2}〉 |= l

lm(wc(P5 ∪ {e← >, o← ⊥})) = 〈{e, ab1, h}, {o, ab2, l}〉 6|= l

lm(wc(P5 ∪ {e← ⊥, o← >})) = 〈{o, ab2, h}, {ab1, e, l}〉 6|= l

lm(wc(P5 ∪ {e← ⊥, o← ⊥})) = 〈{ab1, ab2, h}, {e, o, l}〉 6|= l

Hence, {e← >, o← >} is the only explanation.

Theorem-hood View This explanation does not satisfy IC. Hence, APB,9 6|=s

e.

Satisfiability View This explanation does also not satisfy IC in the satisfia-
bility view, since 〈{e, o, l, h}, {ab1, ab2}〉 is the least model of P5 ∪ {e ←
>, o ← >}. Moreover, it is total. Since this model is not a model of
P5 ∪ {e← >, o← >} ∪ {IC}, there is no model. Hence, this explanation
does not satisfy IC. Hence APB,9 6|=s e.

Example 6*

If Marian has an essay to write, she will study late in the library.

If the library stays open, she will study late in the library.

The library is not open in holidays.

There are holidays.

She will not study late in the library.

P5 = {l← e ∧ ¬ab1, l← o ∧ ¬ab2, ab1 ← ¬o, , ab2 ← ¬e, h← >}
IC = ⊥ ← o ∧ h

The abductive problem is APB,10 = 〈P5, abd(P5),¬l, |=L,lm,wc〉.
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lm(wc(P5)) = 〈{h}, ∅〉 6|= ¬l
lm(wc(P5 ∪ {e← >})) = 〈{e, h}, {ab2}〉 6|= ¬l
lm(wc(P5 ∪ {e← ⊥})) = 〈{ab2, h}, {e, l}〉 |= ¬l
lm(wc(P5 ∪ {o← >})) = 〈{o, h}, {ab1}〉 6|= ¬l
lm(wc(P5 ∪ {o← ⊥})) = 〈{ab1, h}, {o, l}〉 |= ¬l

lm(wc(P5 ∪ {e← >, o← >})) = 〈{e, o, l, h}, {ab1, ab2}〉 6|= ¬l
lm(wc(P5 ∪ {e← >, o← ⊥})) = 〈{e, h, ab1}, {o, ab2, l}〉 |= ¬l
lm(wc(P5 ∪ {e← ⊥, o← >})) = 〈{ab2, o, h}, {ab1, e, l}〉 |= ¬l
lm(wc(P5 ∪ {e← ⊥, o← ⊥})) = 〈{ab1, ab2, h}, {e, o, l}〉 |= ¬l

Here, we obtain the following explanations: E1 = {e ← ⊥},
, E2 = {o ← ⊥}, E3 = {e ← >, o ← ⊥}, E4 = {e ← ⊥, o ← >}, E5 = {e ←
⊥, o← ⊥}

Theorem-hood View The explanation E1 does not satisfy IC, but E2. Hence,
E2 is the only minimal explanation. Thus, APB,10 6|=s e.

Satisfiability View Here, the explanation E1 does satisfy IC with the model
〈{ab1, ab2, h}, {e, l, o}〉. The solution E2 does also satisfy IC with the
model 〈{ab1, h}, {o, l}〉. Thus APB,10 6|=s e

3.5.1 Discussion

Consider the modified Example 6* under the theorem-hood-view: Here,
{e ← ⊥} is not an explanation. This is interesting, since one reason that
she is not in the library could be that she does not have an essay to write. In
this sense, the theorem-hood view eliminates meaningful explanations. This is
not the case in the satisfiability view.

On the other hand, the satisfiability view seems to be inconsistent with
knowledge. Consider Example 3*. Here we have

• APB,7 |=s e ∧ ¬t in the theorem-hood view and

• APB,1 6|=s e ∧ ¬t in the satisfiability view

That is, in the theorem-hood view one can conclude that she will not study
late in the library, which is not the case in the satisfiability view. This is
inconsistent in the sense, that Marian will not read textbooks in holidays and
there are holidays. From this point, one have to conclude that she has no
textbook to read.
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Chapter 4

Relationships

In this chapter, the relationships between the three logics by  Lukasiewicz, Kleene
and Fitting with the different forms of completions are investigated. If no form of
completion is used, one can see that there does not exist a minimal explanation.
This will be explained in the first section. Then, completion and weak com-
pletion are contrasted. Afterwards, the Fitting logic will be related to Kleene
and the  Lukasiewicz logic. Finally, the differences between the  Lukasiewicz and
Kleene logic under weakly completed programs are shown.

4.1 No Form of Completion

If no form of completion is used, we see in the examples that there does not
exist a minimal explanations.

However, this is not always true. Consider the following example:

Example 4.1.1 (Existence of Explanations under no form of completion). Let
P = {A← B} be a logic program, A = {B ← >, B ← ⊥} the set of abducibles
and A be an observation.

Consider the abductive programs AP1 = 〈P,A, A, |=L〉,
AP2 = 〈P,A, A, |=K〉, AP3 = 〈P,A, A, |=F 〉.

In all abductive problems, E = {B ← >} is a solution.
Hence, sometimes there exist explanations if no form of completion is used.

The question is, why there do not exist minimal explanations in the six
examples by Byrne. Consider the program P1 and P2:

P1 = {l← e ∧ ¬ab, ab← ⊥}
P2 = {l← e ∧ ¬ab1, l← t ∧ ¬ab2, ab1 ← ⊥, ab2 ← ⊥}

It is easy to see that for every interpretation I, we have IL(ab ← ⊥) =
IK(ab← ⊥) = IF (ab← ⊥) = >. Hence, we can map ab, ab1, ab2 to u. But then
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l can be mapped to u, if e is mapped to true. If I(e) = ⊥, we can map l to true
or false. But then, one cannot explain l or ¬l.

4.2 Completion and Weak Completion

At the examples in Figure 3.2, we first observe that a minimal explanation under
the completion only contains positive facts. The reason for this is that negative
facts are added under the completion.

Proposition 4.2.1 (Negative Facts and Completion). Let 〈P,A,O, |=〉, where
|=∈ {|=L,lm,c, |=K,c, |=F,c} be an abductive problem and E a minimal explana-
tion. Then, E does not contain negative facts.

Proof. Let E+ denote the positive facts occuring in E and E− denote the negative
facts occuring in E . Since E− only contains negative facts that are undefined
w.r.t. P and E+, they will be added in the second step of completion. Hence,
we can omit them. Then c(P ∪ E) = c(P ∪ E+). Since E+ ⊆ E , a minimal
explanation can only contain positive facts.

Moreover, we observe in Figure 3.2 that a minimal explanation under the
completion can be obtained by deleting negative facts of the minimal explana-
tions under the weak completion. This is now proven under the  Lukasiewicz
logic.

Proposition 4.2.2. If E is a solution of 〈P,A,O, |=L,lm,wc〉, then E+ is a
solution of 〈P,A,O, |=L,lm,c〉.

Proof. Since E is a solution, we know that

E ∪ {A← ⊥ | A is undefined w.r.t. E and P}

is also a solution by Proposition 5.1.10. Then, we know that

wc(P ∪ E ∪ {A← ⊥ | A is undefined w.r.t. E and P}) = c(P ∪ E) = c(P ∪ E+)

Hence, we have that E+ must be a solution of 〈P,A,O, |=L,lm,c〉.

The other direction does not hold in general, since we only require that A is
a subset of the undefined predicates in P:

Example 4.2.3. Consider the logic program P = {p ← q} and the obser-
vation O = ¬p. The empty set is then a solution of the abductive problem
〈P, ∅,O, |=L,lm,c〉, since lm(c({p ← q})) = lm({p ↔ q, q ↔ ⊥}) =
〈∅, {p, q}〉 |= ¬p. However, the abductive problem 〈P, ∅,O, |=L,lm,wc〉 has no
solution, since lm(wc({p← q})) = lm({p↔ q}) = 〈∅, ∅〉 6|= ¬p.
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4.3 Fitting Logic

In this section, we discuss the Fitting logic. At the examples in Figure 3.2, the
minimal explanations of the Fitting logic correspond to the  Lukasiewicz logic, if
weak completion or completion is used. Otherwise it corresponds to the Kleene
logic. Next, it is shown that this is generally the case.

Lemma 4.3.1 (Corresponding Logics). Let P be a logic program and I be an
interpretation. Then, the following holds:

(i) IF |= P iff IK |= P,

(ii) IF |= wc(P) iff IL |= wc(P) and

(iii) IF |= c(P) iff IL |= c(P).

Proof.

(i) This is true, since in P, the connective ↔ does not occur in P. The
remaining connectives are defined in the same way.

(ii) If we consider the completion or weak completion of P, then we obtain a
set of formulae, where each formula is of the form A↔ Body1∨. . .∨Bodyn
and each body is either a conjunction of literals or one of the symbols >,
⊥. Since the  Lukasiewicz logic and the Fitting logic share the semantics
of the symbols ¬,∨,∧,>,⊥, we have the following for all interpretations:
IL(Bodyi) = IF (Bodyi) for all 1 ≤ i ≤ n and thus IL(Body1 ∨ . . . ∨
Bodyn) = IF (Body1 ∨ . . .∨Bodyn). The semantic of ↔ is different in the
 Lukasiewicz and Fitting logic. However, we have that A is an atom and
thus IL(A) = IF (A). We know that IL(A ↔ Body1 ∨ . . . ∨ Bodyn) = >
iff IL(A) = IL(Body1 ∨ . . . ∨ Bodyn). This corresponds to the definition
of complete equivalence. Thus IL(A ↔ Body1 ∨ . . . ∨ Bodyn) = > iff
IF (A↔ Body1 ∨ . . . ∨Bodyn) = >.

(iii) This claim is analog to (ii).

As an immediate consequence, we have the following:

Proposition 4.3.2 (Corresponding Solutions). Let P be a logic program, O
an observation and A a set of abducibles. Then, the following holds:

(i) E is a solution of 〈P,A,O, |=F 〉 iff E is a solution of 〈P,A,O, |=K〉,

(ii) E is a solution of 〈P,A,O, |=F,wc〉 iff E is a solution of 〈P,A,O, |=L,wc〉,

(iii) E is a solution of 〈P,A,O, |=F,c〉 iff E is a solution of 〈P,A,O, |=L,c〉,

Proof.
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(i) E is a solution of 〈P,A,O, |=F 〉 iff 1) E ⊆ A and is consistent, 2) P ∪ E
is Fitting consistent and 3) P ∪ E |=F L for each L ∈ O. The first
condition is clearly satisfied. P ∪ E is Fitting consistent iff there exists
a Fitting model. This Fitting model is also a Kleene model by Lemma
4.3.1. The third condition is equivalent to P ∪E |=K L for each L ∈ O by
Lemma 4.3.1. Thus, E is a solution of 〈P,A,O, |=F 〉 iff E is a solution of
〈P,A,O, |=K〉.

(ii) This claim is analog to (i).

(iii) This claim is analog to (i).

4.4  Lukasiewicz and Kleene Logic

Figure 3.2 shows that considering the least model under the  Lukasiewicz seman-
tics or all models under the Kleene semantics leads to the same explanation. In
this section we will investigate the relationship between the abductive problems
〈P,A,O, |=L,lm,wc〉 and 〈P,A,O, |=K,wc〉.

First, we will show that, if the  Lukasiewicz least model is a model of an
observation, then all Kleene models of the logic program are also models of this
observation. For this purpose, we use the following lemma:

Lemma 4.4.1. Let P be a logic program and I be an interpretation.
If IL 6|= wc(P), then IK 6|= wc(P).

Proof. Note that the following equation holds for a formula F over the connec-
tives {∧,∨,¬}: IL(F ) = IK(F ).

Since IL 6|= wc(P), we find (A ↔ F ) ∈ wc(P) such that IL(A ↔ F ) 6= >.
We show that IK(A↔ F ) 6= >. Consider the following three cases:

• IL(A) = u. Since A is an atom, we know IK(A) = u. Then we know that
IK(u↔ F ) 6= >, and thus we have IK 6|= wc(P)

• IL(A) = >. Since A is an atom, we know IK(A) = >. Because
IL(F ) = IK(F ), we have IK(F ) 6= > and thus IK(A↔ F ) 6= >.

• IL(A) = ⊥. This case is analog to the second case.

Then, we obtain the following result.

Proposition 4.4.2 (Relationship |=L,lm,wc and |=K,wc). Let P be a logic pro-
gram and O a set of literals. If I = lmL(wc(P)) and IL(L) = > for all L ∈ O,
then wc(P) |=K L for all L ∈ O.
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Proof. We have to show: For all interpretations J : If JK |= wc(P), then
JK(L) = > for all L ∈ O. Let J be an interpretation. Consider the follow-
ing cases:

• J 6� I. Then, JL 6|= wc(P), since I is the least  Lukasiewicz model of
wc(P). By Lemma 4.4.1, it follows that JK 6|= wc(P).

• J � I. Since IL(L) = > for all L ∈ O, we know the following: If L is a
positive literal, then L ∈ I>. If L is a negative literal, then then L ∈ I⊥.
Because J � I, we can conclude that L ∈ J> in the first case or L ∈ J⊥
in the second case. Hence, JK(L) = > for all L ∈ O.

Hence, we have wc(P) |=K L.

However, the other direction does not hold.

Example 4.4.3. Consider the following program P = {A ← ¬A ∧ B}. Then
wc(P) = {A↔ ¬A∧B} and we have wc(P) |=K ¬B, but the least  Lukasiewicz
model lm(wc(P)) = 〈∅, ∅〉 6|= ¬B.

Moreover we have to show a relation between  Lukasiewicz consistency and
Kleene consistency. Under the  Lukasiewicz logic, wc(P∪E) is always consistent.
However, this is not true under the Kleene logic.

Example 4.4.4 (Weakly Completed Programs, Kleene Inconsistency). Con-
sider the program P = {A ← ¬A}. The weakly completed program is
wc(P) = {A↔ ¬A}. There is no Kleene model of wc(P):

〈∅, ∅〉 6|= P
〈{A}, ∅〉 6|= P
〈∅, {A}〉 6|= P

Thus, wc(P) is Kleene inconsistent.

Then, we obtain the following result:

Theorem 4.4.5 (Solutions of Abductive Problems under  Lukasiewicz and Kleene
logic). Let APL = 〈P,A,O, |=L,lm,wc〉 and APK = 〈P,A,O, |=K,wc〉 be two ab-
ductive problems. If E is a solution of APL and wc(P ∪ E) is Kleene consistent,
then E is a solution of APK .

Proof. If E is an explanation, then we have P∪E |=L,lm,wc L for all L ∈ O. This
is the case iff IL = lm(P∪E) and IL(L) = > for all L ∈ O. Then, it follows that
wc(P ∪ E) |=K L for all L ∈ O by Proposition 4.4.2. Since wc(P ∪ E) is Kleene
consistent we can conclude that, E is an explanation for 〈P,A,O, |=K,wc〉.

In principle, this means that an explanation under the  Lukasiewicz logic is
also an explanation under the Kleene logic with the restriction that we do not
violate the consistency requirement. This is surprisingly since the two logics
behave very differently with respect to the ↔ junctor.

The question if the Kleene logic or the  Lukasiewicz logic is more appropriate
to model human reasoning arises. Therefore, consider the following situation:
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If the cat is not black, then the cat is black.

If it is dark outside, then the cat is black.

Is it dark or not?

If we translate this natural sentence into the logic program

P = {black ← ¬black ∧ dark}

Then we have:

• P 6|=L,lm,wc ¬dark, P 6|=L,lm,wc dark. That means, we do not know, if it
is dark or not.

• P |=K,wc ¬dark, i.e. we know that it is not dark.

The conclusion that it is not dark under the Kleene logic, is very surprising.
There is actually no hint, that it is dark or not. In this sense, the Kleene logic
behave unnatural, in contrast to the  Lukasiewicz logic where we actually do not
know, if it is dark.



Chapter 5

Complexity of Abduction

In this chapter, we will discuss the complexity of abduction under the least
model of a weakly completed logic program with negative facts according to
Definition 2.2.1 under the  Lukasiewicz semantics. Here, we do not consider
integrity constraints.

Let AP = 〈P,A,O, |=L,lm,wc〉 be an abductive problem. Then, one might
ask, if there exists a solution at all, i.e. if one can explain the observation.
Another natural question is, if a statement is relevant: Consider Example 3.1.1,
where we explained, why the shoes are wet. One can explain this observation
by “It rained last night” and by “The sprinkler was on”. Both explanations are
relevant, whereas “Tim played socker” is not relevant. In the case of multiple
explanations, one might be interested not only in relevant facts, but on state-
ments that are universally valid. In the above scenario, if one explain why the
shoes are wet and answer “It rained last night”, another person can argue that
this is not the case, since possibly the sprinkler was on. Hence, one can attack
such explanations. The universally valid facts cannot be attacked and we call
them necesssary.

These three questions can be formalized as follows:

Consistency Does there exist a minimal solution of AP?

Relevance Given a fact f ∈ A, does there exists a minimal solution E such
that f ∈ E?

Necessity Given a fact f ∈ A, is f ∈ E for all minimal solutions E of AP?

In the first section, the consistency problem is investigated. Afterwards the
complexity of relevance and necessity problem are examined. At the end of this
chapter, the complexity of skeptical reasoning is analyzed.
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5.1 Consistency

A naive algorithm that computes a minimal explanation is shown in Algorithm 1.
This algorithm is obviously sound and complete, i.e. a decision procedure for
the consistency problem. Verifying that a subset of A is an explanation and
testing whether it is minimal, needs an exponential blowup.

Algorithm 1 NaiveExplanation 〈P,A,O, |=L,lm,wc〉
guess a minimal explanation E
compute the set of all interpretations I for wc(P ∪ E)
test whether I(L) = > for all L ∈ O, where I is the least interpretation w.r.t.
I
for all E ′ ⊂ E do

test whether E ′ is an explanation
end for

In this section, it is shown that consistency is NP-complete. Intuitively,
this means that we can guess a minimal solution and then this solution can be
verified in polynomial time. For this reason, it is shown that computing the
least  Lukasiewicz model can be computed in polynomial time. Afterwards, it is
proven that minimality can be tested in polynomial time. Then, it immediately
follows that consistency is in NP. Finally, a reduction from 3SAT to consistency
is presented. This shows that consistency is NP-complete.

5.1.1 Solution Verification

Let AP = 〈P,A, L, |=L,lm,wc〉 be an abductive problem. The question is, if a
set E is a solution of AP . To verify that E is a solution, we have to check the
following:

1. E is a consistent subset of A,

2. wc(P ∪ E) is  Lukasiewicz consistent and

3. P ∪ E |=L,lm,wc L.

In the following, it is shown that each step can be done in polynomial time.

Lemma 5.1.1 (Subset and Consistency Requirement). Checking, whether a
set E is consistent and a subset of A can be done in polynomial time.

Proof.

(i) Subset problem: We iterate over all facts f ∈ E and then check, if f ∈ A.
This can be easily done in |E| · |A| syntactic comparisons.

(ii) Consistent subset problem: Here, we iterate over all positive and negative
facts and compare the heads of positive facts with the negative facts.
Then, one need |E+| · |E−| syntactic comparisons.
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Hence, both algorithms terminate after polynomial time in the size of A and
E .

The second condition (wc(P ∪ E) is  Lukasiewicz consistent) can be omitted,
since there always exists the least  Lukasiewicz model of a weakly completed
program. In the following, it is shown how the third condition (P∪E |=L,lm,wc L)
can be verified in polynomial time. For this purpose, the Stenning and van
Lambalgen operator is used. Recall Definition 2.5.1:

Let I be an interpretation and P a logic program. ΦSvL,P = 〈J>, J⊥〉, where

J> = {A | there exists A← Body ∈ P with I(Body) = >}
J⊥ = {A | there exists A← Body ∈ P

and for all A← Body ∈ P we find that I(Body) = ⊥}

The relationship between this operator and the least models of a weakly
completed program is stated in the following proposition.

Proposition 5.1.2 (Relationship between the Least  Lukasiewicz Model and
the Stenning and van Lambalgen Operator). Let P be a logic program. Then
IL is the least fixed point of φSvL,P iff IL is the least model of wc(P).

Proof. See [Ram09] Corollary 6.16

Thus, instead of computing all models and afterwards taking the least model
w.r.t. �, we can use this operator to obtain the least model. The question is,
how many applications of the Stenning and van Lambalgen operator are required
to obtain the least fixed point.

Proposition 5.1.3 (Monotonicity of the Stenning and van Lambalgen Opera-
tor). Let P be a logic program. Then ΦSvL,P is a monotonic mapping w.r.t. �.

Proof. See [Ram09] Proposition 3.2.1

This property of the operator roughly states, that the interpretation obtained
by ΦSvL,P is increasing. Since we consider propositional logic programs, the
least fixed point of this operator must be reached in finite time. Then, we
obtain the following result:

Proposition 5.1.4 (Computation of the Least  Lukasiewicz Model). Computing
the least model of a weakly completed program P under the  Lukasiewicz logic
can be done in polynomial time.

Proof. Computing the least model of the weak completion can be done by com-
puting the least fixed point of the Stenning and van Lambalgen Operator by
Proposition 5.1.2.

We have to show that (i) the least fixed point is reached in polynomially
many applications, (ii) the set J> can be computed in polynomial time and (iii)
the set J⊥ can be computed in polynomial time.
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(i) Since this operator is monotone w.r.t. � by Proposition 5.1.3 , we have to
iterate the operator n times in the worst case, where n is the number of
atoms that occur in P. After this n steps, we reached a fixed point. The
number of atoms is clearly polynomial in the size of P.

(ii) To compute the set J>, we iterate over all rules in P and check if the
body of the rule is mapped to true under I. The second step can be
done obviously in polynomial time in the length of the body. Thus, this
procedure is in polynomial time.

(iii) To compute the set J⊥, we iterate over all rules A← Body ∈ P and check
if the body of the rule is mapped to false under I. If this is the case, we
are iterating over all rules with head A and check if all their bodies are
mapped to false. Hence, this procedure is quadratic in the size of P.

Thus, we can conclude that computing the least fixed point of a logic program
P can be done in polynomial time. And so we know that computing the least
model of a weakly completed program can be done in polynomial time.

Proposition 5.1.5 (Solution Verification). Let 〈P,A,O, |=L,lm,wc〉 be an ab-
ductive problem. Deciding, if E is an explanation can be done in polynomial
time.

Proof. Deciding the first requirement of an explanation (E is a consistent subset
of A) can be done in polynomial time by Lemma 5.1.1. The second requirement
(wc(P ∪E) is  Lukasiewicz consistent) can be dropped since there always exist a
least model. Finally computing this least model IL can be done in polynomial
time by Proposition 5.1.4. Then, one have to iterate over all literals L ∈ O: If
L is a positive literal, it is checked whether L ∈ I>. If L is a negative literal, it
is checked whether L ∈ I⊥. Hence, checking if E is an explanation can be done
in polynomial time.

5.1.2 Minimality Verification

The remaining problem is the decision, if an explanation E is minimal. In
Algorithm 1, we iterated over all subsets of an explanation and checked, whether
this subset is also a solution. However, there are 2|E| − 1 strict subsets.

In classical logic, deciding minimality can be done in polynomial time: We
are iterating over all F ∈ E and test whether E \ {F} is an explanation or
not. If there is no such explanation, then E is minimal. Otherwise, E is not
minimal. One reason, why this is correct follows by the fact, that classical logic
is monotone (See [HP07] Theorem 5).

Definition 5.1.6 (Monotone Logic). A logic (L, |=) is called monotone iff
F |= G implies F ∪ F ′ |= G for all sets of formulas F ,F ′ and a formula G.

If we consider the least model of a weakly completed program under the
 Lukasiewicz semantics, then we do not have a monotone logic:
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Example 5.1.7 (Non-monotonicity of  Lukasiewicz Logic). Consider the empty
program P and G = A↔ C. Then lm(wc(P)) = 〈∅, ∅〉 |= G. By adding A← >
to P, we have lm(wc(P ∪ {A← >})) = 〈{A}, ∅〉 6|= G.

However, in the abductive problem, we restrict F ′ to be a subset of abd(P),
that is, each fact in F ′ has an undefined head w.r.t. P. Additionally, G is a
literal. With these restrictions, we can adopt the above algorithm to decide
minimality although our logic is not monotone. In order to show this, we first
prove that adding undefined facts to a program only increase the least model.

Lemma 5.1.8. Let I1, I2 be two interpretations, P a logic program and F a
set of facts where each fact F ∈ F has an undefined head w.r.t. P. If I1 � I2,
then φSvL,P(I1) � φSvL,P∪F (I2)

Proof. Consider the following sets:

J>1 = {A | there exists A← Body ∈ P with I1(Body) = >}
J>2 = {A | there exists A← Body ∈ P ∪ F with I2(Body) = >}
J⊥1 = {A | there exists A← Body ∈ P

and for all A← Body ∈ P we find that I1(Body) = ⊥}
J⊥2 = {A | there exists A← Body ∈ P ∪ F

and for all A← Body ∈ P ∪ F we find that I2(Body) = ⊥}

We have to show (i) J>1 ⊆ J>2 and (ii) J⊥1 ⊆ J⊥2 .

(i) J>1 ⊆ J>2 : Let A ∈ J>1 . Then there is A← Body ∈ P with I1(Body) = >.
Since Body = B1 ∧ B2 ∧ . . . ∧ Bn ∧ ¬C1 . . . Cm we know Bi ∈ I>1 for all
1 ≤ i ≤ n and Cj ∈ I⊥1 for all 1 ≤ j ≤ m. Because I1 � I2, we know that
I>1 ⊆ I>2 and I⊥1 ⊆ J⊥1 . Thus, we can conclude J2(Body) = >. Then,
A ∈ J>2 .

(ii) J⊥1 ⊆ J⊥2 : Let A ∈ J⊥1 . Then there is A ← Body ∈ P and for all
A ← Body ∈ P we find that I1(Body) = ⊥. Since each fact F ∈ F has
an undefined head H w.r.t. P, we have H 6= A, i.e. we did not add
relevant rules. Since we have for all A ← Body ∈ P that I1(Body) = ⊥
and Body = B1 ∧B2 ∧ . . .∧Bn ∧¬C1 . . .¬Cm there is either an 1 ≤ i ≤ n
with Bi ∈ I⊥1 or there is a 1 ≤ j ≤ m with Cj ∈ I>1 . Since I1 � I2, we
have that Bi ∈ I⊥2 or Cj ∈ I>2 . Thus, I2(Body) = ⊥ for all A← Body as
well. Hence, A ∈ J⊥2 .

The above lemma can be generalized to several applications of the Stenning
and van Lambalgen operator.

Proposition 5.1.9. Let P be a logic program and F be a set of facts where each
fact has an undefined head w.r.t. P. Then, the following holds:
lfp(φSvL,P) � lfp(φSvL,P∪F )
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Proof. By Proposition 2.5.3, the least fixed point is computed by repeated ap-
plications of the Stenning and van Lambalgen Immediate Consequence Oper-
ator, starting with the empty interpretation. Thus, there are n,m such that
I = lfp(φSvL,P) = φnSvL,P(〈∅, ∅〉) and J = lfp(φSvL,P∪F ) = φmSvL,P∪F (〈∅, ∅〉).
Let k = max(n,m). Since I and J are fixed points, we have: I = φkSvL,P(〈∅, ∅〉)
and J = φkSvL,P∪F (〈∅, ∅〉). Since the Stenning and van Lambalgen Operator
is monotone by Proposition 5.1.3, we have that I0 � I1 � . . . � Ik and also
J0 � J1 � . . . � Jk Because they both starts with the empty interpretation, we
have the following:

I0 = 〈∅, ∅〉 � 〈∅, ∅〉 = J0

I1 = ΦSvL,P(I0) � ΦSvL,P∪F (J0) = J1 by Lemma 5.1.13

I2 = ΦSvL,P(I1) � ΦSvL,P∪F (J1) = J2 by Lemma 5.1.13

...

Ik = ΦSvL,P(Ik−1) � ΦSvL,P∪F (Jk−1) = Jk by Lemma 5.1.13

Hence, we have lfp(ΦSvL,P) � lfp(ΦSvL,P∪F ).

An easy consequence is that explanations are monotone.

Theorem 5.1.10 (Monotonicity of Explanations). Let 〈P,A,O, |=L,lm,wc〉 be
an abductive problem. If E is an explanation, then any consistent set E ′ such
that E ⊆ E ′ ⊆ A is a solution.

Proof. Since E ′ ⊆ A and E ′ is consistent, we have to show that I = lmL(wc(P ∪
E ′)) |= L for all L ∈ O. Note that E ∩ E ′ only contains facts with an un-
defined head with respect to P and E . By Proposition 5.1.9, it follows that
J = lfp(ΦSvL,P∪E) � lfp(ΦSvL,P∪E∪(E∩E′)) = lfp(ΦSvL,P∪E′) = I. Since
J � I and J(L) = > for all L ∈ O, it immediately follows that E ′ is an expla-
nation.

This result is surprising: Although the  Lukasiewicz logic is not monotone,
explanations are monotone. This means that one can safely extend an expla-
nation by further non contradictory facts. The reason, why we obtain this
property, is that we required that explanations cannot be further explained and
that explanations do not contain contradictory facts.

Moreover, with this relation between the least models of the original program
P and the extended program, we can decide minimality.

Proposition 5.1.11 (Characterization of Minimality). Let 〈P,A,O, |=L,lm,wc〉
be an abductive problem. An explanation E is minimal iff there is no f ∈ E
such that E \ {f} is an explanation.

Proof.

“→” This part is trivial since minimality is defined that no strict subset of E is
an explanation.
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“←” Suppose, E is not a minimal. Thus there is E ′ ⊂ E such that E ′ is an
explanation. Since, E ′ ⊂ E , there is f ∈ E , f 6∈ E ′. By Theorem 5.1.10 we
obtain the following: IL = lfp(ΦSvL,P∪E′) � lfp(ΦSvL,P∪(E\{f})) = JL
. Since IL(L) = > for all L ∈ O and I � J , we have JL(L) = > for all
L ∈ O. Hence, E \ {f} is an explanation, which is a contradiction. Thus,
E is minimal.

Moreover, one can implement the procedure described in Proposition 5.1.11.

Proposition 5.1.12 (Deciding Minimality). Let 〈P,A,O, |=L,lm,wc〉 be an ab-
ductive problem and E an explanation. Deciding, whether E is minimal can be
done in polynomial time.

Proof. We are iterating over all elements F ∈ E and then check whether E \{F}
is an explanation or not. If there is no such a F , it follows that E is minimal. The
iteration is finished after |E| steps and checking whether E\{F} is an explanation
can be done in polynomial time by Proposition 5.1.5. Hence, testing minimality
can be done in polynomial time

5.1.3 NP-Membership and NP-Hardness

In the previous section, a decision procedure was described that decides, if E is
a minimal solution of an abductive framework. In this section, the complexity
of the the consistency problem is analyzed.

Proposition 5.1.13 (Consistency is in NP). Deciding whether
〈P,A,O, |=L,lm,wc〉 is consistent is in NP.

Proof. Consider the binary relation 〈P,A,O, |=L,lm,wc〉 ∼ E if and only if E is
a minimal solution of 〈P,A,O, |=L,lm,wc〉.

In order to show that the problem is in NP, we will show that ∼ is bal-
anced and decidable in polynomial time on a deterministic Turing Machine.
Afterwards, it is shown: There exists E such that AP ∼ E iff AP is consistent.
This means, that we guess a solution of the abductive problem and then check,
whether this solution is correct in polynomial time.

(i) AP ∼ E is balanced: This is clear, since every explanation is restricted to
be a subset of A.

(ii) AP ∼ E is decidable in polynomial time: By Proposition 5.1.5, it can be
checked in polynomial time whether E is a solution of AP . Furthermore,
deciding, if E is minimal can be done in polynomial time by Proposition
5.1.12. Hence, one can decide ∼ in polynomial time.

(iii) AP is consistent iff there is E such that AP ∼ E : This is clear, since in
this way, ∼ is defined.

By Proposition 2.6.2, we obtain that consistency is in NP.
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Moreover, the consistency-problem is one of the hardest problems in NP.

Proposition 5.1.14 (Consistency is NP-hard). Deciding whether
〈P,A,O, |=L,lm,wc〉 is consistent is NP-hard .

Proof. First, we show that 3SAT can be polynomially reduced to consistency.
Consider the following transformation:
Let F = C1 ∧ . . . ∧ Cn be a 3SAT instance and X1 . . . Xm the variables

occuring in F . Then, the abductive problem is obtained as follows:

AP = 〈P, {Xi ← >, Xi ← ⊥ | 1 ≤ i ≤ m}, O, |=L,lm,wc〉
P = {Yi ← Li,1, Yi ← Li,2, Yi ← Li,3 | for each clause Ci = Li,1 ∨ Li,2 ∨ Li,3}
∪ {O ← Y1 ∧ . . . ∧ Yn}

We have to show that this transformation is polynomial-time computable
and, F is satisfiable iff AP is consistent.

(i) This transformation is polynomial-time computable: This is clear, since
we create for each disjunction in F three clauses in P and for each variable
in F two abducibles.

(ii) If AP is consistent, then F is satisfiable: Let E be a minimal solution of
AP , i.e. we have IL = lm(wc(P ∪ E)) and IL(O) = >. Thus, IL(Yi) = >
and IL(Li,1∨Li,2∨Li,3) = > for all 1 ≤ i ≤ n. The two valued interpreta-

tion I can be obtained as I> = I>∪{A | A 6∈ I⊥ and A occurs in F}. We
have to show that I is a model of F . Since IL(Li,1 ∨ Li,2 ∨ Li,3) = > for
all 1 ≤ i ≤ n, we know that there is a j ∈ {1, 2, 3} such that IL(Li,j) = >.
Because I � I, we know I(Li,j) = > and thus I |= Ci for all 1 ≤ i ≤ n.
Then, I is a model of F and F is satisfiable.

(iii) If F is satisfiable, then AP is consistent: There is two-valued interpreta-
tion I such that I |= F . This interpretation can be seen as three-valued
and is used to construct an explanation:

E = {A← > | A ∈ I>} ∪ {A← ⊥ | A ∈ I⊥}

Let J be an interpretation such that J = lmL(wc(P ∪ E)). We have to
show that J(O) = >. This is the case iff J(Yi) = > for all 1 ≤ i ≤ n.
Assume this is not the case, i.e. we find 1 ≤ j ≤ n such that J(Yj) 6= >.
Then the literals Lj,1, Lj,2, Lj,3 are not mapped to true under J . Hence,
there was no fact stating that Lj,i must be mapped to true for i ∈ {1, 2, 3}
since Lj,i is undefined w.r.t. P. We can conclude that then I 6|= Li,j for
i ∈ {1, 2, 3}. Thus, I is not a model of the clause Cj and it follows that
I 6|= F . This is a contradiction. Hence, J(Yj) = > for all 1 ≤ j ≤ n and it
immediately follows that J(O) = > since O ← Y1∧ . . .∧Ym ∈ P. Then, E
is an explanation. Because E is an explanation, it must follow that there
exists a minimal explanation. Hence, AP is consistent.
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Finally, we obtain the following result.

Theorem 5.1.15. Deciding whether an abductive problem 〈P,A,O, |=L,lm,wc〉
is consistent is NP-complete.

Proof. This is a direct consequence, since it is already shown that the consistency-
problem is in NP by Proposition 5.1.13 and is NP-hard by Proposition 5.1.14.
Thus, consistency is NP-complete.

Theorem 5.1.16. Deciding whether 〈P,A,O, |=L,lm,wc〉 has no solution is
coNP-complete.

Proof. Since consistency is NP-complete by Theorem 5.1.15, it immediately
follows that inconsistency is coNP-complete by Proposition 2.6.11.

5.2 Relevance

In this section, the complexity of deciding whether a fact f is relevant, is dis-
cussed. More formally: Let 〈P,A,O, |=L,lm,wc〉 be an abductive problem, does
there exist a minimal explanation E such that f ∈ E?

Intuitively, this problem is not harder than consistency. The idea is that one
have to simply guess a minimal explanation that contains f .

Theorem 5.2.1 (Relevance is in NP). Deciding whether f is relevant in
〈P,A,O, |=L,lm,wc〉 is in NP.

Proof. Let AP = 〈P,A,O, |=L,lm,wc〉. Consider the binary relation AP ∼ E if
and only if E is a minimal solution of AP and f ∈ E .

In order to show that the problem is in NP, we will show that ∼ is balanced
and decidable in polynomial time on a deterministic Turing Machine. After-
wards, it is shown: If there exists E such that AP ∼ E , then f is relevant in
AP . This means, that we guess a minimal solution containing f and then check,
whether this solution is correct in polynomial time.

(i) AP ∼ E is balanced: This is clear, since every explanation is restricted to
be a subset of A.

(ii) AP ∼ E is decidable in polynomial time: By Proposition 5.1.5, it can be
checked in polynomial time whether E is a solution of AP . Furthermore,
deciding, if E is minimal can be done in polynomial time by Proposition
5.1.12. Checking whether f ∈ E can obviously be done in polynomial time
by iterating every element in E and then checking if this element is equal
to f .

(iii) f is relevant in AP iff there is E such that AP ∼ E : This is clear, since
we defined ∼ in this way.

By Proposition 2.6.2, we obtain that relevance is in NP.
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The NP-hardness proof of consistency cannot be directly copied in order to
show NP-hardness of relevance. The reason is that in the proof of Proposi-
tion 5.1.14, one explanation was created by a model of a 3SAT-formula. This
explanation must not be minimal. However, it is clear that a minimal explana-
tion exists. Here, one have to construct a minimal explanation that contains a
specific fact.

5.3 Necessity

Let 〈P,A,O, |=L,lm,wc〉 be an abductive problem. Of particular interest is the
necessity-problem, i.e. is a fact f part of every minimal solution? In order to
decide this question, one can enumerate all minimal solutions and then verify
if f is in all minimal solutions. However, there may be exponentially many
minimal solutions in the size of A:

Proposition 5.3.1 (Sperner’s Theorem). The maximum cardinality of a col-
lection of subsets of a set S, none of which contains another, is

(
n
bn2 c

)
, where

n =| S |.

Proof. See [Spe28].

This gives an upper bound on the number of minimal explanations.

Proposition 5.3.2 (Upper Bound on the Number of Minimal Explanations).
Let AP = 〈P,A,O, |=L,lm,wc〉 be an abductive problem. Then, there exists at
most

(
n
bn2 c

)
minimal explanations.

Proof. Let S denote the set of all minimal solutions ofAP and n = |A|. Suppose,
there are more minimal explanations, i.e. |S| =

(
n
bn2 c

)
+ x, where x ≥ 1. By

Proposition 5.3.1, one find E , E ′ ∈ S such that E ⊂ E ′. However, then E ′
is not minimal. Then, S contains solutions that are not minimal, which is a
contradiction. Hence, there cannot be more minimal solutions than

(
n
bn2 c

)
.

In order to decide necessity, one can use a different way. It turns out, that the
inconsistency problem and necessity are equivalent with respect to polynomial
time reductions.

Lemma 5.3.3 (Relationship Inconsistency and Necessity). Let
AP = 〈P,A,O, |=L,lm,wc〉 be an abductive problem. The problem of decid-
ing inconsistency is polynomial reducible to necessity.

Proof. Let AP ′ = 〈P,A ∪ {q},O, |=L,lm,wc〉, where q is a fresh atom.

(i) This transformation can be computed in polynomial time: This is clear,
since we only add an atom to A.

(ii) If AP is inconsistent, then q is necessary in AP ′: If AP is inconsistent,
then there does not exist a minimal solution. Moreover, every solution of
AP is a solution of AP ′. Since AP is inconsistent, there does not exist a
solution of AP ′ and thus q ∈ E for all solutions of AP ′.



5.3. NECESSITY 49

(iii) If q is necessary in AP ′, then AP is inconsistent: Note that q is a fresh
atom. Thus, q does not distribute to any solution of AP ′. Then, q is
necessary iff AP ′ is inconsistent. Since every solution of AP ′ is also a
solution of AP , it follows that AP must be inconsistent.

The converse direction also holds:

Lemma 5.3.4 (Relationship Necessity and Inconsistency). Let
AP = 〈P,A,O, |=L,lm,wc〉 be an abductive problem. The problem of decid-
ing necessity is polynomial reducible to inconsistency.

Proof. Let AP ′ = 〈P,A \ {q}, O, |=L,lm,wc〉

(i) This reduction can be obviously computed in polynomial time, since we
only removed the fact q.

(ii) If q is necessary in AP , then AP ′ is inconsistent: Since q ∈ E for all
minimal solutions of AP , it follows that there does not exists a minimal
solution not containing q. Then, it immediately follows that AP ′ must be
inconsistent.

(iii) If AP ′ is inconsistent, then q is necessary in AP : Suppose, q is not neces-
sary in AP , i.e. there is a minimal explanation E of AP such that q 6∈ E .
However, then E must be a minimal explanation of AP ′, which is a con-
tradiction. Then, there does not exist such explanations. Thus, q ∈ E for
all minimal explanations of AP .

Proposition 5.3.5 (Equivalence of Inconsistency and Necessity). Let
〈P,A,O, |=L,lm,wc〉 be an abductive problem. The problems inconsistency and
necessity are equivalent w.r.t. polynomial-time reductions.

Proof. By Lemma 5.3.3 and Lemma 5.3.4, it immediately follows that both are
equivalent w.r.t polynomial-time reductions.

Hence, we obtain the following:

Theorem 5.3.6. Let 〈P,A,O, |=L,lm,wc〉 be an abductive problem. Then, de-
ciding, if f ∈ A is necessary, is coNP-complete.

Proof. The inconsistency-problem is coNP-complete by Theorem 5.1.16. Since
inconsistency and necessity are equivalent w.r.t. polynomial time reductions
by Proposition 5.3.5, it follows by Proposition 2.6.10 that necessity is coNP-
complete.
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5.4 Skeptical Reasoning

In this section, complexity of skeptical reasoning is investigated. Recall the
definition of skeptical reasoning:

Definition 5.4.1 (Skeptical Reasoning). Let AP = 〈P,A,O, |=〉 be an abduc-
tive problem and F a formula.

Then F follows skeptically by AP , denoted by AP |=s F , iff

1 AP is consistent and

2 F is a universal consequence of AP , i.e. for all minimal explanations E of
AP we find that I = lmL(wc(P ∪ E)) and IL(F ) = >.

Consistency is already shown to be NP-complete. It is clear, that the second
condition is coNP-hard by a reduction from necessity: A fact A← > (A← ⊥)
is necessary iff A (¬A) is a universal consequence. In order to show coNP-
completeness, we show that the complement is in NP. Then it is proven that
the complement is NP-hard by a reduction from consistency.

Lemma 5.4.2 (NP-Membership). Deciding whether a formula F is not a uni-
versal consequence of 〈P,A,O, |=L,lm,wc〉 is in NP.

Proof. Let AP = 〈P,A, L, |=L,lm,wc〉 be an abductive problem and F a formula.
Consider the binary relation AP ∼ E iff E is a minimal solution of AP such that
P ∪ E 6|=L,lm,wc F .

(i) AP ∼ E is balanced: This is clear, since every explanation is restricted to
be a subset of A.

(ii) AP ∼ E is decidable in polynomial time: By Proposition 5.1.5, it can
be checked in polynomial time whether E is a solution of AP . Then, the
model I = lmL(wc(P ∪ E)) is constructed. Deciding, if IL(F ) 6= > can
be done in polynomial time in the length of the formula. Furthermore,
deciding, if E is minimal can be done in polynomial time by Proposition
5.1.12.

(iii) F is not a universal consequence of AP iff there exists E such that AP ∼ E :
This is clear, since in this way, ∼ is defined.

By Proposition 2.6.2, we know: Deciding whether F is not a universal con-
sequence of AP is in NP.

Next, it is shown that this problem is NP-complete.

Lemma 5.4.3 (NP-completeness). Let AP = 〈P,A,O, |=L,lm,wc〉 an abductive
problem and F be a formula. Deciding, if F is not a universal consequence of
AP is NP-complete.
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Proof. Since Lemma 5.4.2, we already have that this problem is in NP. NP-
hardness is shown by a straightforward reduction from consistency. Let AP =
〈P,A,O, |=L,lm,wc〉 be an abductive framework and F = ⊥. Then, it is easy
to see that AP is consistent iff there exists a minimal solution E of AP , such
that P ∪ E 6|=L,lm,wc ⊥, i.e. ⊥ is not a universal consequence of AP . We can
conclude, that that this problem is NP-complete.

The complement of this problem, i.e. the original second condition in skep-
tical reasoning, is then coNP− complete.

Proposition 5.4.4. Let AP = 〈P,A,O, |=〉 be an abductive problem and F a
formula. Deciding, if F is a universal consequence of AP is coNP-complete.

Proof. The opposite problem is shown to be NP-complete by Lemma 5.4.3. By
Proposition 2.6.11, we can conclude that the above problem is coNP-complete.

Then, we know that the first problem of skeptical reasoning is NP-complete,
whereas the second problem is coNP-complete. The complexity class DP con-
tains such merged problems.

Proposition 5.4.5 (DP-Membership). Let AP = 〈P,A,O, |=L,lm,wc〉 be an
abductive framework and F be a formula. Deciding, whether AP |=s F holds,
is in DP.

Proof. Let AP = 〈P,A,O, |=L,lm,wc〉 be an abductive framework and F a for-
mula. Then AP |=s F iff 1) AP is consistent and 2) F is a universal consequence
of AP . It is already shown that consistency is in NP by Proposition 5.1.13 and
the universal consequence problem is in coNP by Proposition 5.4.4. Hence,
deciding |=s is in DP.

Proposition 5.4.6 (DP-hardness). Let AP = 〈P,A,O, |=L,lm,wc〉 be an ab-
ductive framework and F be a formula. Deciding, whether AP |=s F holds, is
DP-hard .

Proof. Let P be a decision problem in DP. P consists of two decision problems
P1 and P2, where P1 ∈ NP and P2 ∈ coNP by the definition of the class DP.
Since consistency is NP− complete, we know that P1 is polynomially reducible
to consistency. Since the universal consequence-problem is coNP-complete, we
know that P2 is polynomially reducible to the universal consequence problem.
Hence, P can be polynomially reduced to the combined problem: Is AP consis-
tent and is F a universal consequence of AP? Hence, |=s is DP-hard .

Theorem 5.4.7. Let AP = 〈P,A,O, |=L,lm,wc〉 be an abductive framework
and F be a formula. Deciding, whether AP |=s F holds, is DP-complete.

Proof. Deciding |=s is in DP by Proposition 5.4.5 and is DP-hard by Proposition
5.4.6. Thus, we obtain DP-completeness.
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In [EGL98] Eiter, Gottlob and Leone analyzed the complexity of consistency,
relevance and necessity. In contrast to this thesis, they used logic programs with
no negative facts, no form completion and did not restrict the abducibles to be
basic. Despite these differences, the proof idea of Theorem 5.3.6 is the same
as in [EGL98, Proposition 6]. However, here it is proven that relevance is in
NP, whereas in [EGL98] it is shown that relevance is in NPNP . This means
that a better upper bound is shown in this thesis. However, if one use classical
propositional logic and Horn clauses, we obtain very similar results: Namely
that consistency is NP-complete, relevance is NP-complete, necessity is coNP-
complete [EEGG93]. A horn clause is a clause of the form L1 ∨ . . . Ln, where at
most one literal is positive. If we instead allow arbitary formulas, it is shown
that consistency and relevance is DP-complete [EEGG93].

These results are interesting, since the complexity classes of Horn clauses
under classical logic coincides with the complexity classes obtained in this chap-
ter.



Chapter 6

Conclusion

Hölldobler and Kencana Ramli promoted the  Lukasiewicz logic and weak com-
pletion to model human (deductive) reasoning [HR09]. They argue that this
logic is indeed adequate to model six examples by Byrne. In this thesis, it is
shown that the remaining six examples by Byrne can be modeled by abductive
frameworks and skeptical reasoning. In fact, weak completion must be used in
order to get correct results with respect to Byrne’s data. The form of abductive
reasoning presented in this thesis is more powerful than the system promoted
by Stenning and van Lambalgen: They noticed that their system fails to com-
pute consequences by multiple explanations, where the formalism we use can
indeed handle multiple solutions. In [DSSd00] an experiment was investigated
where subjects are allowed to give compound answers like p∨q. In principle, the
proposed formalism is able to decide such compound answers. The remaining
question is, if these experiments can be modeled in our formalism.

Moreover, the formalism is also adequate to model deductive reasoning,
which shows that it is indeed a natural extension. Then, the twelve experi-
ments by Byrne can be modeled in such abductive frameworks.

Furthermore, the relationship between the  Lukasiewicz’s, Kleene’s and Fit-
ting’s logic under completed and weakly completed logic programs were in-
vestigated. It turned out, that explanations under the  Lukasiewicz and weak
completion are also valid explanations under the Kleene logic, if there exists
a Kleene model of wc(P ∪ E). This is interesting, since both logic are much
different w.r.t. the ↔ junctor. In this sense, the  Lukasiewicz logic “simulates”
models under the Kleene logic. It is proven that explanations under completed
logic programs can only contain positive facts. Moreover, one can easily con-
struct explanations under completed logic programs, if we already know the
explanation under weakly completed logic programs in the  Lukasiewicz logic.
The Fitting logic is shown to be equivalent to the  Lukasiewicz logic, if a form
of completion is used. Otherwise it behaves like the Kleene logic.

However, it is not clear, which logic - the  Lukasiewicz or the Kleene logic - is
more appropriate to model abductive reasoning. Since an abductive framework
relies on deductive reasoning, a natural sentence is given, where the  Lukasiewicz
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and Kleene logic behave differently:

If the cat is not black, then the cat is black.

If it is dark outside, then the cat is black.

Is it dark or not?

If the Kleene logic is used, then one can infer that it is not dark, whereas in
the  Lukasiewicz logic, it is unknown whether it is dark or not. It is argued that
the  Lukasiewicz logic seems to better suited than the Kleene logic in order to
model human reasoning. In analogy to deductive reasoning, it follows that the
 Lukasiewicz logic and weak completion is adequate to model human abductive
reasoning.

A noticeable property of this logic is that explanations are monotone, al-
though the logic itself is not monotone.

Moreover, four examples were modified in the way that integrity constraints
were used. Then, two different semantics of integrity constraints were presented
and contrasted, the theorem-hood view and the satisfiability view. Consider the
situation:

If Marian has an essay to write, she will study late in the library.

If the library stays open, she will study late in the library.

The library is not open in holidays.

There are holidays.

She will not study late in the library.

In the theorem-hood view the only minimal explanation is that the library is
not open, whereas “She has not an essay to write.” does not satisfy the integrity
constraints. This seems unnatural, since this is actually one possible reason.

At the end, the complexity of abduction with no integrity constraints un-
der the  Lukasiewicz logic and weak completion was determined. In particular,
the consistency problem is shown to be NP-complete, inconsistency coNP-
complete, relevance in NP and necessity is coNP-complete. Finally, skeptical
reasoning is proven to be DP-complete. These classes corresponds to abduc-
tion with horn clauses under classical logic, where the set of abducibles is not
restricted [EEGG93].

Future Work The exact complexity class of relevance was not given in this
work. However, there is evidence that relevance is NP-complete.

In general, the question arises, how integrity constraints change the com-
plexity of abduction. Usually, the form of integrity constraints are restricted to
⊥ ← B1∧. . . Bn∧¬C1∧. . .∧Cm. If such a restriction is used, it is easy to see that
integrity constraints under the two semantics should not change the complexity
of abductive tasks. The reason is that the theoremhood-view only increases
minimal explanations while the monotonicity property is preserved. In contrast
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to this, the satisfiability-view gives an upper bound on explanations. Although
this semantic destroys the monotonicity property, the minimality criterion in
Proposition 5.1.11 remains correct. A formal proof is left open.

Stenning and van Lambalgen argued in [SvL08], that classical logic is in-
adequate to model human reasoning. One argument is that computing logical
consequences is too expensive from a computational point of view, since one
have to reason about all models. However, in the definition of skeptical reason-
ing, we do something similar, namely we reason with respect to all explanations.
In this sense, this definition is inadequate. An approximation of skeptical rea-
soning using a unique least explanation, if it exists, seems to be a natural choice,
if one one follow the argumentation of Stenning and van Lambalgen.

In their work, it is shown how to compute efficiently least models with neural
networks. At the moment, it is not clear, how one can model abductive reasoning
in neural networks.

They also considered reasoning by autistic persons in their work and pre-
sented the semantics in neural networks. It is left open, if there exists an imme-
diate consequence operator that models the semantics of such neural networks.

Moreover, a generalization of the least model semantics to stable models is
interesting. The approach by Wernhard in [Wer10], where different semantics
of logic programs can be “reconstructed” using scope-wise circumscription and
projection, seems to be a good candidate to give stable model semantics.
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