Finite and Algorithmic Model Theory Lecture 3 (Dresden 26.10.22, Long version)

Lecturer: Bartosz "Bart" Bednarczyk

TECHNISCHE UNIVERSITÄT DRESDEN & UNIWERSYTET WROCŁAWSKI

European Research Council Established by the European Commission

Today's agenda

Goal: Investigate important properties of FO and see whether they stay true in the finite.

- 1. Diagrams and embeddings.
- 2. Preservation Theorem of Łoś-Tarski.
- **3.** Failure of Łoś-Tarski in the finite.
- 4. Discussion of related preservation theorems.
- 5. Robinson's Joint-Consistency (without a proof).
- 6. Craig Interpolation Property (CIP).
- 7. Projective Beth's Definability Property (PBDP).

$$\left(\begin{array}{c} \vDash & \varphi \end{array} \right) \Longrightarrow \left(\begin{array}{c} \vDash & \varphi \end{array} \right) \left\langle \begin{array}{c} \smile & \varphi \end{array} \right\rangle \left\langle \begin{array}{c} \smile & \varphi \end{array} \right\rangle \left\langle \begin{array}{c} \leftarrow & \varphi \end{array} \right\rangle \left\langle \end{array} \right\rangle \left\langle \end{array} \right\rangle \left\langle \left\langle \end{array} \right\rangle \left\langle \left\langle \end{array} \right\rangle \left\langle \end{array} \left\langle \end{array} \right\rangle \left\langle \\ \left\langle \end{array} \right\rangle \left\langle \\ \left\langle \end{array} \right\rangle \left\langle \end{array} \right\rangle \left\langle \end{array} \right\rangle \left\langle \end{array} \right\rangle \left\langle \\ \left\langle \end{array} \right\rangle \left\langle \end{array} \right\rangle \left\langle \end{array} \left\langle \end{array} \right\rangle \left\langle \end{array} \right\rangle \left\langle \\ \left\langle \end{array}$$

Based on Chapters 0.1, 0.2.1–0.2.3, 1.2 by [Otto] Chapters 1.9–1.11 by [Väänänen] + recent research papers. $\varphi(\chi)\psi$ $sig(\chi) \subseteq sig(\varphi) \cap sig(\psi)$ $\varphi \models \psi \implies \exists \chi \ \varphi \models \chi \models \psi$

Feel free to ask questions and interrupt me!

Don't be shy! If needed send me an email (bartosz.bednarczyk@cs.uni.wroc.pl) or approach me after the lecture! Reminder: this is an advanced lecture. Target: people that had fun learning logic during BSc studies!

Algebraic Diagrams and Embeddings

Goal: Describe a au-structure $\mathfrak A$ up to isomorphism with a (possibly infinite) FO theory $\mathcal T_{\mathfrak A}$

- **1.** Start with $\mathcal{T}_{\mathfrak{A}} := \emptyset$.
- **2.** With each domain element $a \in A$ we associate a constant symbol "a".

Let τ_A be the extended signature, and let $\mathfrak{A}_A := \mathfrak{A} +$ the interpretation of each a as the corresponding $a \in A$.

- **3.** Append $\bigwedge_{a \neq b \in \tau_A \setminus \tau} a \neq b$ to $\mathcal{T}_{\mathfrak{A}}$.
- **4.** For all $n \in \mathbb{N}$, all *n*-tuples of constant symb. \overline{a} from $\tau_A \setminus \tau$, and relational symb. $\mathbb{R} \in \tau$ of arity *n*:
- append $R(\overline{a})$ to $\mathcal{T}_{\mathfrak{A}}$ iff the corresponding *n*-tuple belongs to $R^{\mathfrak{A}}$.
- proceed similarly with $\neg R(\overline{a})$ and *n*-tuples outside $R^{\mathfrak{A}}$.
- **5.** Close $\mathcal{T}_{\mathfrak{A}}$ under \wedge . We denote it $\mathsf{D}(\mathfrak{A})$ and call it the algebraic diagram of \mathfrak{A} .

Formally, $D(\mathfrak{A}) := \{ \varphi \in FO[\tau_A] \mid \mathfrak{A}_A \models \varphi, \varphi \text{ is quantifier free } \}$

Preservation Theorems

Common theme: Formulae having certain properties are precisely these of a certain fragment of FO

Theorem (Łoś-Tarski 1954)

An FO formula is preserved under substructures^a iff it is equivalent to a universal^b formula.

^{*a*}i.e. $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \subseteq \mathfrak{A}$ then $\mathfrak{B} \models \varphi$ ^{*b*}(possibly negated) atomic symbols $+ \land, \lor$ and \forall

$$\models \varphi \implies (\models \varphi) \qquad \stackrel{(\sqsubseteq)}{\longleftarrow} \quad \varphi \equiv \forall^* \varphi'$$

- Finitary analogous of Łoś-Tarski fails in the finite, c.f. [Tait 1933].
- Finitary generalisations of Łoś-Tarski by Abhisekh Sankaran [MFCS 2014].
- There are $\mathcal{L} \subseteq$ FO with Łoś-Tarski (also in the finite), e.g. the Guarded Neg. Frag. [B.B.tC. 2018]
- Open problem: Is there a non-trivial $\mathcal{L} \subseteq$ FO (without equality) without Łoś-Tarski? [B. 2022]

Proof of Łoś-Tarski Preservation Theorem: Part I

Theorem (Łoś-Tarski 1954)

An FO formula is preserved under substructures^a iff it is equivalent to a universal^b formula.

^ai.e. $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \subseteq \mathfrak{A}$ then $\mathfrak{B} \models \varphi$ ^{*b*}(possibly negated) atomic symbols $+ \land, \lor$ and \forall

Proof

Every universal formula is preserved under substructures, so let us focus on the other direction. Assume that φ is preserved under substructures, and consider the set

$$\Psi := ig \psi \mid arphi \models \psi, \psi$$
 is universal $ig \}.$

Note that $\varphi \models \Psi$. It suffices to show that $\Psi \models \varphi$. Why?

By compactness there would be a finite subset $\Psi_0 \subseteq_{\text{fin}} \Psi$ such that $\Psi_0 \models \varphi$.

But then $\wedge \psi$ is the desired universal formula equivalent to φ . $\psi \in \Psi_0$

Proof of Łoś-Tarski Preservation Theorem: Part II

Recall that: φ is preserved under substructures, $\Psi := \{ \psi \mid \varphi \models \psi, \psi \text{ is universal} \}$ and our goal is: $\Psi \models \varphi$.

Let $\mathfrak{A} \models \Psi$. We want to show $\mathfrak{A} \models \varphi$. It suffices to find a model \mathfrak{B} of φ containing \mathfrak{A} as a substructure. Indeed, as φ is preserved under substructures, from $\mathfrak{B} \models \varphi$ we conclude $\mathfrak{A} \models \varphi$. How to find such \mathfrak{B} ? Show that $D(\mathfrak{A}) \cup \{\varphi\}$ is satisfiable! Ad absurdum, assume that $D(\mathfrak{A}) \cup \{\varphi\}$ has no model. So $\varphi \not\models D(\mathfrak{A})$ holds, i.e. $\varphi \models \neg \bigwedge_{\psi(\overline{a}) \in D(\mathfrak{A})} \psi(\overline{a})$. By compactness there is a finite $D_0 \subseteq_{\text{fin}} \mathsf{D}(\mathfrak{A})$ such that $\varphi \models \neg \bigwedge_{\psi(\overline{\mathfrak{a}}) \in D_0} \psi(\overline{\mathfrak{a}})$. But as diagrams are closed under conjunction, we get a single formula $\xi(\overline{a}) \in D(\mathfrak{A})$ s.t. $\varphi \models \neg \xi(\overline{a})$. Note that φ does not use extra constants from τ_A . Thus actually $\varphi \models \forall \overline{x} \neg \xi(\overline{x})$ holds. As $\forall \overline{x} \neg \xi(\overline{x})$ is universal and follows from φ , we know that $\forall \overline{x} \neg \xi(\overline{x}) \in \Psi$. Strengthen $\varphi \models \neg \xi(\overline{a})$ From $\xi(\overline{a}) \in D(\mathfrak{A})$ we infer $\mathfrak{A} \models \exists \overline{x} \xi(\overline{x})$. A contradiction with $\mathfrak{A} \models \Psi$. \Box and use Ψ .

Theorem (Tait 1933)

There is an FO formula that is preserved under substructures of finite structures then $\mathfrak{B} \models \varphi$ but it is not equivalent (in the finite) to any universal formula.

Proof

Consider $\tau = \{\min^{(0)}, \max^{(0)}, <^{(2)}, \operatorname{Next}^{(2)}, \operatorname{P}^{(1)}\}$. Let φ_0 be a universal stating that $\mathfrak{A} \models \varphi_0$ iff $<^{\mathfrak{A}}$ is a strict linear order with the minimal/maximal elements $\min^{\mathfrak{A}}, \max^{\mathfrak{A}}, \operatorname{and} \operatorname{Next}^{\mathfrak{A}} \subseteq <^{\mathfrak{A}}$. Moreover, take $\varphi_1 := \forall x \forall y \operatorname{Next}(x, y) \leftrightarrow (x < y \land \neg(\exists z \ x < z \land z < y))$. Note: if $\mathfrak{A} \models \varphi_0 \land \varphi_1$, then $\operatorname{Next}^{\mathfrak{A}}$ is the induced successor of $<^{\mathfrak{A}}$. Finally, let $\varphi := \varphi_0 \land (\varphi_1 \to \exists x \operatorname{P}(x))$. **Observation** (The set of finite models of φ is closed under substructures.) Take a finite $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \subseteq \mathfrak{A}$. Observe that $\mathfrak{B} \models \varphi_0$ (because φ_0 is universal). If $\mathfrak{B} \not\models \varphi_1$ we are done. If $\mathfrak{B} \models \varphi_1$ then $\mathfrak{A} = \mathfrak{B}$, concluding $\mathfrak{B} \models \varphi$. \Box

6 / 8

Failure of Łoś-Tarski in the finite. (Part II)

 $\mathfrak{A} \models \varphi_0$ iff $<^{\mathfrak{A}}$ is a strict linear order with the minimal/maximal elements $\min^{\mathfrak{A}}$, $\max^{\mathfrak{A}}$, and $\operatorname{Next}^{\mathfrak{A}} \subseteq <^{\mathfrak{A}}$. $\varphi_1 := \forall x \forall y \text{ Next}(x, y) \leftrightarrow (x < y \land \neg (\exists z \ x < z \land z < y)) \quad \text{and} \quad \varphi := \varphi_0 \land (\varphi_1 \to \exists x \text{ P}(x)).$ **Lemma** (φ is not equivalent (in the finite) to any universal formula.) Ad absurdum, there exists quantifier-free $\chi(\overline{x})$ with *n* variables so that $\varphi \equiv_{\text{fin}} \forall \overline{x} \ \chi(\overline{x})$. Take \mathfrak{A} as below. $\overbrace{1,\min}^{<,\operatorname{Next}} \cdots \xrightarrow{<,\operatorname{Next}} (n+1) \xrightarrow{<,\operatorname{Next}} (n+2,\max) := \mathfrak{A}$ By construction $\mathfrak{A} \models \varphi_0 \land \varphi_1$. Moreover, observe that $(\mathfrak{A}, \mathbb{P}^{\mathfrak{A}}) \models \varphi$ iff $\mathbb{P}^{\mathfrak{A}} \neq \emptyset$. Then $(\mathfrak{A}, \emptyset) \not\models \varphi$ implies $(\mathfrak{A}, \emptyset) \not\models \forall \overline{x} \ \chi(\overline{x})$. Thus $(\mathfrak{A}, \emptyset) \models \neg \chi(\overline{a})$ for suitable \overline{a} . Take b to be different from \overline{a} , $\max^{\mathfrak{A}}$ and $\min^{\mathfrak{A}}$ (we have enough elements!). Then $(\mathfrak{A}, \{b\}) \models \varphi$. But $(\mathfrak{A}, \{b\}) \models \neg \chi(\overline{a})$ ($\mathfrak{A} \models \overline{a}$ was not touched!). But it means $(\mathfrak{A}, \{b\}) \not\models \forall \overline{x} \chi(\overline{x}) \equiv \varphi$. A contradiction!

Bartosz "Bart" Bednarczyk

contradiction

-

def of P when $P^{\mathfrak{A}} = \emptyset$ witness select suitable b and make it satisfy P

def of φ

Can we make Łoś-Tarski theorem computable?

Input: First-Order φ closed under substructures (in the general setting).

Output: the equivalent universal formula.

Is this problem solvable?: YES! Ask Gödel for help!

Unfortunately, the finitary analog is unsolvable. [Chen and Flum 2022]

Other preservation theorems?

Theorem (Lyndon–Tarski 1956, Rossmann 2005)

An FO formula is preserved under homomorphic images^a iff

it is equivalent to a positive existential^b formula.

^{*a*}i.e. $\mathfrak{A} \models \varphi$ and there is a homomorphism from \mathfrak{A} to \mathfrak{B} then $\mathfrak{B} \models \varphi$ ^{*b*}atomic symbols $+ \land, \lor$ and \exists

• A notable example of classical MT theorems working in the FMT. [Rossmann's paper]

Copyright of used icons and pictures

- **1.** Universities/DeciGUT/ERC logos downloaded from the corresponding institutional webpages.
- 2. Idea icon created by Vectors Market Flaticon flaticon.com/free-icons/idea.
- 3. Head icons created by Eucalyp Flaticon flaticon.com/free-icons/head
- 4. Question mark icons created by Freepik Flaticon flaticon.com/free-icons/question-mark
- 5. Warning icon created by Freepik Flaticon flaticon.com/free-icons/warning.
- 6. Robot icon created by Eucalyp Flaticon flaticon.com/free-icons/robot.
- 7. Picture of Jerzy Łoś from Wikipedia [LINK]
- 8. Picture of Tarski from Oberwolfach Photo Collection [HERE]