
Faculty of Computer Science Institute of Artificial Intelligence Knowledge Representation and Reasoning

A Compact Encoding of Pseudo-Boolean Constraints into SAT

Steffen Hölldobler Norbert Manthey Peter Steinke

KRR Report 12-03

Mail to Bulk mail to Office Internet

Technische Universität Dresden Technische Universität Dresden Room 2006 http://www.wv.inf.tu-dresden.de

01062 Dresden Helmholtzstr. 10 Nöthnitzer Straße 46

01069 Dresden 01187 Dresden



A Compact Encoding of Pseudo-Boolean

Constraints into SAT

Steffen Hölldobler, Norbert Manthey and Peter Steinke

Knowledge Representation and Reasoning Group
Technische Universität Dresden, 01062 Dresden, Germany

peter@janeway.inf.tu-dresden.de

Abstract. Many different encodings for pseudo-Boolean constraints to
the Boolean satisfiability problem have been proposed in the past. In this
work we present a novel small sized and simple to implement encoding.
The encoding maintains generalized arc consistency by unit propagation
and results in a linear sized formula in conjunctive normal form with
respect to the number of input variables. Experimental data confirms the
advantages of the encoding over existing ones for most of the relevant
PB instances.

1 Introduction

Due to the various improvements in satisfiability testing (see e.g.[14,15,19,8])
SAT solvers are successfully applied to many domains like electronic design au-
tomation [12,6], periodic scheduling [11], or cryptography [10]. To encode a prob-
lem into SAT it is often necessary to translate cardinality constraints or general
pseudo-Boolean (PB) constraints. In this work we concentrate on the latter one.

PB constraints of the form
∑n

i=1
wixi ≤ k are a special case of 0-1 integer

linear programming [9], where k and wi are integers, xi are Boolean variables,
and n is the number of variables. Besides translating PB constraints into SAT,
there exists also solver that handle these constraints natively. We show that
native domain solvers can be outperformed by encoding PB and using SAT
solvers, when using appropriate encodings.

There are different ways of translating a PB constraint into a SAT instance
(see e.g. [2,5,9]), which differ in the size of the resulting formula and the proper-
ties, which are enjoyed by the formula and the used SAT solvers. Two properties
are particularly important, both of which are related to unit propagation, the
main inference rule within a modern SAT solver: (i) the ability to detect incon-
sistencies by unit propagation and (ii) maintaining general arc consistency by
unit propagation. The former is achieved by running into a conflict as soon as
an inconsistency is observed, whereas the latter is achieved if unit propagation
assigns all variables to false which are not part of any solution of the constraint.

In particular, to encode PB constraints into SAT instances the following
methods have been applied: binary decision diagrams [2,9], sorting and adder



2

networks [9] as well as the so-called local watchdog encoding [5]. Binary deci-
sion diagrams and the local watch dog encoding maintain general arc consis-
tency. The former requires O(n3 log(k)) clauses and variables, the latter uses
O(n3 log(n) log(k)) clauses and O(n2 log(n) log(k)) variables. The value of n is
the number of variables in the PB constraints. There also exist encodings that re-
quire much less clauses, namely sorting networks and adder networks, but these
encodings do not maintain general arc consistency in general. Sorting networks
encode a PB constraint with O(n log2(n)) clauses and maintain arc consistency
for cardinality constraints, which are a special case of PB constraints. Adder
networks require O(n log(k)) clauses.

The contributions of this paper are the following: We present a new transla-
tion from PB constraints to SAT instances, called the sequential weight counter
(SWC) encoding. For a PB constraint of the form

∑

i wixi ≤ k, where 1 ≤ i ≤ n,
this encoding requires O(nk) clauses and auxiliary variables while preserving the
ability to detect inconsistencies and to maintain general arc consistency by unit
propagation. Compared to the other encodings, the SWC encoding depends lin-
early on n and k. Furthermore, its structure is simple and easy to understand
compared to complex BDDs or sorting networks. Analyzing instances of recent
PB competitions shows that for more than 99% of the PB constraints the SWC
encoding produces a smaller SAT formula than with BDDs of [2] or the watchdog
encoding. Finally, we provide an experimental analysis that empirically verifies
the practicability of the new encoding.

The paper is structured as follows: the background of SAT and PB solving is
given in Section 2. In Section 3 the sequential weight counter encoding is intro-
duced, followed by an empirical evaluation in Section 4. Some final conclusions
are presented in Section 5.

2 Preliminaries

Let V be a finite set of Boolean variables. The set of literals V ∪ {x | x ∈ V }
consists of positive and negative Boolean variables. A clause is a finite disjunction
of literals whereas a formula (in conjunctive normal form (CNF)) is a finite
conjunction of clauses. We sometimes consider clauses and formulas as sets of
literals and sets of clauses, respectively. A unit clause is a clause that contains
a single literal.

An interpretation is a (partial or total) mapping from the set of variables
into the set {1, 0} of truth values; it is represented by a set J of literals with the
understanding that x is mapped to 1 if x ∈ J and is mapped to 0 if x ∈ J . If
J can be determined from the context, then we simply write x = 1 or x = 0 in
case of J(x) = 1 and J(x) = 0, respectively. If a variable x is neither mapped to
1 nor to 0 by J , we say the variable is undefined and write J(x) = undef or, for
short, x = undef. One should observe that {x, x} 6⊆ J for any x and J .

A clause C is satisfied by an interpretation J if J(l) = 1 for some l ∈ C. An
interpretation satisfies a formula F if it satisfies every clause in F . If there exists
an interpretation that satisfies F , then F is said to be satisfiable or consistent,



3

otherwise it is said to be unsatisfiable or inconsistent. The reduct F |J of a formula
F with respect to an interpretation J is the formula obtained from F by replacing
each variable x by J(x) if J(x) ∈ {1, 0} and simplifying the formula: all satisfied
clauses are removed and from all the remaining clauses all x with J(x) = 0 and
all x with J(x) = 1 are removed.

In the sequel we will use gate representations for special propositional for-
mulas. The conjunction x ↔ (xi ∧ xj) is called AND gate with the input bits
xi and xj and the output bit x. We will refer to AND gates with the symbol
&. Similarly we represent the disjunction x ↔ (xi ∨ xj) by the OR gate. Again,
xi and xj are are input bits and x is the output bit. The symbol used for OR
gates is ≥1. Depending on the circuit, sometimes only a single direction of the
equivalence needs to be encoded [20,16].

One of the most important inference rules in modern SAT solvers is unit
propagation (UP) [7]. Let F be a formula and J be an interpretation, then unit
propagation extends an interpretation if in the reduct there exists a unit clause:
F, J ⊢up F, J ∪{l} if {l} ∈ F |J . Let ⊢

∗
up be the transitive and reflexive closure of

⊢up. UP detects a conflict in a formula F and an interpretation J , if the resulting
reduct F |J ′ contains the empty clause: F, J ⊢∗

up F, J ′ and {} ∈ F |J ′ .

A pseudo-Boolean (PB) constraint is defined over a finite set of Boolean
variables xi and has the form

∑

i wixi ⊲ k, where wi (called weights) and k are
integers, ⊲ is one of the following classical relational operators =, >,<,≤ or ≥,
and 1 ≤ i ≤ n, where n is the number of variables in the PB constraint. W.l.o.g.
in this work we consider only PB constraints that use the ≤ operator and where
each weight is 1 ≤ wi ≤ k. As given in [9,17], each PB constraint can be trans-
formed into such an equivalent PB constraint over the same set of Boolean
variables. For more details we point the reader to [17].

We define the multiplication of Boolean variables, an interpretation J and
integers as follows: for each integer a ∈ Z we define a · x = a if J(x) = 1 and
a · x = 0 if J(x) = 0. A PB constraint is consistent or satisfiable if there exists
an interpretation for all variables of the constraint, such that

∑

i=1
wixi ≤ k

holds, and is inconsistent otherwise. The PB decision problem asks if for a set
of PB constraints there exists an interpretation such that all PB constraints are
satisfied.

3 Sequential Weight Counter Encoding

In this section we present the sequential weight counter (SWC) encoding, which
is a new encoding for PB constraints of the form

∑

i wixi ≤ k into SAT. The
SWC encoding is a modification of the sequential counter (SEQ) encoding [18],
which translates cardinality constraints into SAT. Due to small changes, the
SWC encoding needs the same amount of clauses as the SEQ encoding, viz. at
most n(2k+1) clauses and (n−1)k auxiliary variables, and – like SEQ – maintains
generalized arc (GAC) consistency by unit propagation. On the one hand, the
SWC encoding needs more clauses and variables than an adder network for
PB constraints, which requires O(n log(k)) variables and clauses [9], but adder



4

Table 1: Distribution k with respect to k in PB constraints

Number of Constraints k > n
2
n
2
≥ k > n k ≤ n

22 014 154 0.56% 0.23% 99.2%

networks do not maintain generalized arc consistency by unit propagation. On
the other hand, if k ≤ n2 the SWC encoding needs less variables and clauses
than the watchdog encoding [5] – which produces O(n3 log(n) log(k)) clauses
and O(n2 log(n) log(k)) variables. The watchdog encoding is the currently best
known encoding of PB constraints that maintaining generalized arc consistency
by unit propagation [5].

We have analyzed the set of PB instances from recent PB competitions, where
we only considered PB constraints where at least one weight is wi > 1. Table 1
shows the distribution of PB constraints in the instances of the PB benchmark
2011 and 20101. The analysis reveals that k ≤ n holds for 99% of the considered
PB constraints. Comparing the two GAC encodings for the extreme case k = n,
the SWC encodes at most 2n2 +n clauses and the watchdog encoding generates
O(n3 log(n) log(n)). In this case, our encoding has a quadratic complexity and
the watchdog encoding a ternary complexity. Only in the rare case where k ≥ n3

the watchdog encoding results in less clauses. Hence the novel encoding improves
the state of the art.

In the following, we briefly discuss the SEQ encoding and define the SWC
encoding in Section 3.1. In Section 3.2 we prove that the SWC encoding detects
inconsistency and maintains generalized arc consistency by unit propagation.

3.1 From Sequential Counters to Sequential Weight Counters

Sequential Counters Setting all weights wi in a PB constraint to 1 results in
a cardinality constraint

∑

i xi ≤ k, allowing at most k variables to be assigned
to 1, where 1 ≤ i ≤ n. These constraints and their encodings into SAT instances
are well studied (see e.g. [18,4]).

The idea of the SEQ encoding is to sequentially count from left to right the
number of variables which have been assigned to 1 by the current interpretation
J . This process can be encoded by circuits [18]. Each intermediate sum is encoded
by a unary representation with the help of auxiliary variables si,j , 1 ≤ i ≤ n

and 1 ≤ j ≤ k, such that si,k is the most significant digit. The value of j is
used to represent the value of the ith sum. Intuitively, if and only if among the
variables x1, x2, . . . , xi of the PB constraint at least j variables are set to 1 by
J, the variable si,j should also be set to 1 by UP and the encoding. Therefore,

1 http://www.cril.univ-artois.fr/PB11/benchs/PB11-SMALLINT.tar

http://www.cril.univ-artois.fr/PB11/benchs/PB11-BIGINT.tar

http://www.cril.univ-artois.fr/PB10/benchs/PB10-selected-benchs.tar

http://www.cril.univ-artois.fr/PB11/benchs/PB11-SMALLINT.tar
http://www.cril.univ-artois.fr/PB11/benchs/PB11-BIGINT.tar
http://www.cril.univ-artois.fr/PB10/benchs/PB10-selected-benchs.tar


5

x1 x2 xn

s1,1

s1,2

s1,k

s2,1

s2,2

s2,k

sn,1

sn,2

sn,k

(a)

xi

≥1 si,1

≥1 si,2

≥1 si,k

&

&

si−1,1

si−1,2

si−1,k−1

si−1,k

(b)

Fig. 1: SEQ encoding: (a) An overview over the whole circuit showing the con-
nection of the input bits and output bits between the single circuits for each
variable xi. (b) The detailed circuit for a single input variable xi.

we introduce a number si≥ for the ith sum that is defined as:

si≥ :=











j si,j = 1 ∧ si,j+1 6= 1 ∧ j < k

k si,k = 1

0 else

Hence, si≥ represents the number of variables x1, x2, . . . , xi which are assigned
to 1 by J (see Fig. 1). As an example, consider the cardinality constraint x1 +
x2+x3+x4 ≤ 3, assume that x1 = x3 = 1 and x2 = x4 = undef, and suppose we
are interested in the question how many of the first three variables are assigned
to 1 by J . In this case, s3,1 = s3,2 = 1, s3,3 = undef, and s3≥ = 2.

The counting mechanism is illustrated in Fig.1(a) and can be implemented
by gates: An OR gate in Fig.1(b) ensures that if the input bit si−1,j is set to 1,
then the output bit si,j is set to 1 as well. Thus, for the two sums si≥ and si+1

≥ in

unary representation it holds: si≥ ≤ si+1

≥ . An output bit si,j is also set to 1 if the
input variable xi and the previous input bit si−1,j−1 are set to 1. This behavior
is ensured by the AND gate.

For the encoding of the circuit the Tseitin transformation [20] is used. Addi-
tionally a formula is added, disallowing the sum to become greater than k:

si,1 ⇔ xi ∨ si−1,1 for 1 ≤ i ≤ n,

si,j ⇔ (xi ∧ si−1,j−1) ∨ si−1,j for 1 ≤ i ≤ n, 1 < j ≤ k,

⊥ ⇔ xi ∧ si−1,k,

where ⊥ denotes a formula, which is always false. Because the OR and AND
gates in the SEQ encoding occur only positively, only the⇐ directions are needed
for the transformation into conjunctive normal form [16]. For more information
about the SEQ encoding we refer to [18].



6

Sequential Weight Counters To extend the encoding of a cardinality con-
straint to an encoding of a PB constraint we replace the coefficients 1 by weights
1 ≤ wi ≤ k for each variable xi. If J(xi) = 1 we have to set the output bits
si,j+1, si,j+2,. . . ,si,j+wi

to 1, where j is the largest index with si−1,j = 1, thus
we sum up the values of the weights wi for each assigned variable xi = 1 in-
stead of counting the number of assigned variables xi = 1. The new mecha-
nism is achieved by modifying one input of the AND gates. The equivalence
si,j ⇔ (xi ∧ si−1,j−1) ∨ si−1,j of the SEQ encoding is replaced by

si,j ⇔ (xi ∧ si−1,j−wi
) ∨ si−1,j .

If j − wi ≤ 0 we can skip the AND gate and just use the OR gate with
si,j ⇔ (xi ∨ si−1,j). Fig.2(b) illustrates this substitution. The connections of the
counters remains unchanged as shown in Fig.2(a). The final modification is to
force the sum to be smaller or equal to k:

⊥ ⇔ xi ∧ si−1,k+1−wi
.

Since we have to ensure that the sum is smaller or equal than k, we can drop
the circuit for xn and the gates of the actual sum, because the formula

⊥ ⇔ xn ∧ sn−1,k+1−wn

Already achieves this property. For a PB constraint
∑

i wixi ≤ k with 1 ≤ i ≤ n

and the Tseitin transformation the following formula encodes the constraint into
SAT:

si−1,j ∨ si,j for 2 ≤ i < n, 1 ≤ j ≤ k, (1)

xi ∨ si,j for 1 ≤ i < n, 1 ≤ j ≤ wi, (2)

si−1,j ∨ xi ∨ si,j+wi
for 2 ≤ i < n, 1 ≤ j ≤ k − wi, (3)

si−1,k+1−wi
∨ xi for 2 ≤ i ≤ n. (4)

Hence, the SWC encoding requires 2nk − 4k +w1 + n− 1 clauses and k (n− 1)
auxiliary variables. As shown in Fig.2(b) the structure of the encoding is simple
to understand and the formula can be easily encoded. We will show that the
SWC encoding correctly implements a PB constraint

∑n

i=1
wixi ≤ k, where

1 ≤ wi ≤ k and k ≥ 1, in Theorem 4 in the next section.

3.2 Properties of the SWC Encoding

In this section, we prove properties of the SWC encoding, i.e. we show that it
allows to detect inconsistencies as well as it maintains generalized arc consistency
by unit propagation.

Following [3], in a constraint C ⊆ D1 × · · · ×Dk on the variables x1, . . . , xk

with domains D1, . . . , Dk, a variable xi is generalized arc consistent (GAC) –
also known as hyper-arc consistent – if for every a ∈ Di there exists a d ∈ C

such that a = d[i], where d[i] denotes the ith element of d. The constraint C is



7

x1 x2 xn

s1,1

s1,2

s1,k

s2,1

s2,2

s2,k

sn,1

sn,2

sn,k

(a)

xi

≥1 si,1

≥1 si,wi

≥1 si,1+wi

≥1 si,k

&

&

si−1,1

si−1,wi

si−1,1+wi

si−1,k

si−1,k−wi

(b)

Fig. 2: SWC encoding: (a) Overview. (b) The detailed circuit for xi

generalized arc consistent (GAC) if all variables xj with 1 ≤ j ≤ n are GAC.
One should observe that an inconsistent constraint C cannot be GAC because
there does not exists any solution d ∈ C. In other words, if a constraint C is not
GAC, then there exist an element a in the domain of some variable xi which
can be removed from the domain of xi without removing any solution of C. It
is beneficial to remove such unnecessary elements as soon as possible in order to
prune the search space.

Returning to PB constraints, we recall that the domain of each variable
occurring in a PB constraint of the form

∑

i wixi ≤ k is initially the set {1, 0}.
We define the minimum sum min sum(C, J) of a PB constraint C with respect
to an interpretation J as

min sum(C, J) =
∑

{wi | J(xi) = 1},

where the sum of a finite set {e1, e2, . . . , em} of integers is
∑m

i=1
ei.

We can now apply GAC to PB constraints: A variable xi of a consistent PB
constraint C of the form

∑

i wixi ≤ k, where 1 ≤ wi ≤ k, is GAC with respect
to an interpretation J if

J(xi) = 0 or J(xi) = 1 or min sum(C, J) ≤ k − wi.

If a variable xi is a already assigned, then this variable must be generalized arc
consistent because, otherwise, the PB constraint would not be consistent. The
third condition states that there exist a solution for the PB constraint where
xi = 1. Note that in a consistent PB constraint in the given form, assigning a
variable xi to 0 always leads to a consistent PB constraint. We can assign every
variable xi which does not meet one of the conditions to 0 until the constraint
is GAC without loosing a solution for the constraint.

Now we can define the properties that a PB encoding into SAT should meet.
Let E(C) be an encoding of a PB constraint C into a SAT instance, where C is
of the form

∑n

i=1
wixi ≤ k:



8

– E(C) is said to detect inconsistency by unit propagation if the following
holds: Whenever C is inconsistent with respect to an interpretation J , then
UP detects a conflict in E(C) with respect to J .

– E(C) is said to maintain generalized arc consistency by unit propagation if
the following holds: If C is not GAC with respect to an interpretation J ,
then E(C), J ⊢∗

up E(C), J ′ such that for all variables xi of C which are not
GAC with respect to J we find x ∈ J ′.

Let J be an interpretation that maps arbitrary many variables xi to truth
values, but let all auxiliary variables unassigned: J(si,j) = undef . From now
on every variable assignment is considered w.r.t. an interpretation J ′, where J ′

is achieved by UP: E(C), J ⊢∗
up E(C), J ′ and E(C) is the SWC encoding for

the PB constraint C. This can be done w.l.o.g. because for each interpretation
J ′′ ⊇ J that satisfies E(C), J ′ ⊆ J ′′ holds.

In the rest of this section we prove that the SWC encoding detects inconsis-
tency and maintains GAC by UP.

Lemma 1.
∑

{wj | xj = 1, 1 ≤ j ≤ i} = si≥

If we arbitrary assign the variables xi to 1 or 0, si≥ is the value of the sum
∑

{wj | xj = 1, 1 ≤ j ≤ i}. The clauses (1),(2) and (3) imply the auxiliary
variables si,j for every variable xi in exactly that way.

Now we can prove that SWC detects consistency by UP:

Corollary 2. The Sequential Weight Counter encoding detects inconsistency by
UP.

Proof. With lemma 1 and the clause si−1,k−wi
∨ xi ∈ E(C) this follows directly,

since
∑

{wj | xj = 1, 1 ≤ j ≤ n} > k implies that there exists a variable xi = 1
with si−1

≥ + wi ≥ k, hence si−1,k−wi
= 1.

In analogy to si≥ we define si<, where si≥ is counting the sum from left to

right, i.e.:
∑i

a=1
waxa, and si< from right to left, i.e.:

∑i+1

a=n waxa.

si< =

{

k − u+ 1 where u is the smallest number with si,u = 0

0 else

The auxiliary variable si,j is set to 0 if and only if
∑

{wa | xa = 1, i < j ≤ n} ≥
k − j + 1.

Lemma 3.
∑

{wj | xj = 1, i < j ≤ n} = si<

Proof (sketch). We consider the sum
∑

{wj | xj = 1, i < j ≤ n} as a fixed
sequence of addends wj in descending order according to j . Now we can prove the
lemma by induction, starting with the first addend wi in the sum (i.e. there exists
no xl = 1, with l > i). With si−1,k−wi+1∨xi ∈ E(C) we get sj−1

< = wj =
∑

{wj}.
For the induction step we show that for each xa = 1 with a < i we find a clause



9

sa−1,j ∨xa ∨ sa,j+wa
∈ E(C) such that sa,j+wa

= 0 is the previous addend of the
sum:

sa−1
< = wa + sa< = wa +

∑

{wl | xl = 1, a < l ≤ n}

For each xj 6= 1 it follows from the definitions of SWC that si−1
< = si<, since

si−1,j ∨ si,j ∈ E(C).
⊓⊔

From lemma 1 and 3 follows that:

xi 6= 1 ⇒ si−1

≥ = si≥ (5)

si≥ + si< = min sum(C, J) (6)

Now we can prove that SWC is an encoding for the PB constraint and that the
SWC encoding maintains GAC by UP.

Theorem 4. The SWC is an encoding for the PB constraint
∑n

i=1
wixi ≤ k in

CNF, requiring O(nk) clauses and O(nk) auxiliary variables.

Proof. From the corollary 2 we know that setting the variables xi such set the
sum

∑n

i=1
wixi > k leads to an inconsistent formula by the encoding. Hence we

only have to show that setting the variables xi such that
∑n

i=1
wixi ≤ k does not

lead to a contradiction. Having only the clauses (1),(2) and (3), it follows that
any assignment of the variables xi does not lead to a contradiction, since xi = 1
only implies an auxiliary variable si,j positively (i.e. si,j = 1) and in each of
these clauses one si,j occurs positively. Setting xi = 0 results in no implication,
since xi does not occur positively in any clause. Similar to the proof of lemma 3,
we can prove that the implications of the clause (4) lead to a contradiction if
and only if

∑n

i=1
wixi > k.

⊓⊔

Theorem 5. The Sequential Weight Counter encoding maintains GAC by UP.

Proof. Assume there is a variable xi that is not GAC with respect to C, hence
xi = undef. Since xi is not GAC min sum(C, J) > k−wi holds (i.e. we cannot
assign xi = 1). With (5) and (6) we have:

min sum(C, J) = si≥ + si< = si−1

≥ + si<

Hence there exists a lower bound l for the ith sum that represents the value of
the i − 1th sum (l = si−1

≥ because si−1,l = 1) and an upper bound u for the ith

sum si,u = 0 such that u = k − si< + 1. If the difference between l and u is less
equal than wi, xi needs to be set to xi = 0:

si−1

≥ + si< > k − wi ⇔

l + k − u+ 1 > k − wi ⇔

l + wi + 1 > u (7)



10

case u ≤ wi

with xi ∨ si,u ∈ E(C) this directly contradict our assumption.

case u > wi

with (7) we know that l ≥ 1 and there exists a j ≤ l with j + wi = u. With
si−1,j ∨ xi ∨ si,j+wi

∈ E(C) this contradict our assumption.
⊓⊔

4 Results

In this section we want to show the usefulness of the proposed sequential weight
counter (SWC) encoding. The first advantage of the encoding is its simple struc-
ture. When a PB constraint should be translated to SAT by a BDDs, the algo-
rithm is more complicated [9,2].

As a basis for the experiments we use all decision PB instances of PB com-
petitions 2010 and 20111. Note, that from the big int PB instances none of the
selected solving methods can solve a single instance within the timeout. There-
fore, we decided to drop these instances from the benchmark again. In total,
there are 278 PB instances in the benchmark. The experiments have been per-
formed on an AMD Opteron CPU with 2.66GHz, a memory limit of 2GB and
a timeout of 1800 s.

Before all the single constraints are translated into SAT, we simplified them
accordingly. For a constraint

∑

i wixi ≤ k we immediately assign xi to 0, if
wi > k. Furthermore, all constraints with

∑

i wi ≤ k are removed. Constraints of
the form

∑

i li ≥ 1 are encoded as a single clause. Finally,
∑

i li ≤ k is translated
by an appropriate cardinality constraint encoding [4]. We have not used the
watchdog encoding for several reasons: (i) this encoding almost always produces
more clauses than the SWC encoding, (ii) the encoding is highly complex to be
implemented and (iii) using the tool that has been used in [5] would also encode
all special PBs with the watchdog encoding.

To compare the impact of the novel encoding, we translated all PB instances
into SAT and solved them with the SAT solver glucose 2 because of its high
performance in recent SAT competitions2. Table 2 compares the number of
solved PB instances among the encodings and gives the average time that has
been used to solve a single instance. Encoding PB constraints with BDD has
been done according to [9]. We furthermore added the configuration BEST, that
selects for each PB the encoding that produces the least number of clauses. By
fixing the encoding, both BDD and SWC solve already a high number of in-
stances. However, there is no clear benefit for either of the two encodings. SWC
can solve exactly the same instances as by using BDD and another three in-
stances more. For 58 instances of the 126 commonly solved instances, BDD can
solve the instance faster whereas for the remaining 68 instances SWC returns
an answer more quickly. As already seen in other fields, a portfolio approach

2 We provide the tool at http://tools.computational-logic.org.

http://tools.computational-logic.org


11

Table 2: Comparing the performance of PB solving approaches

Encoding BDD SWC BEST bsolo clasp

Solved instances 126 129 141 98 120

Run time 180.49 s 193.74 s 142.77 s 136.43 s 138.08 s

increases the performance of solvers [21]. By choosing always the best encoding
the configuration BEST solves another 12 instances and also decreases the run
time per instance. Thus, for the translation to SAT the SWC encoding provides
a clear benefit.

Since PB can be solved also natively or by handling PB constraints inside
a SAT solver, we furthermore compare our approach with successful systems
of the last PB competition. bsolo is a native PB solver [13] and clasp [1]
is a SAT solver that can handle PB constraints inside the solver without a
translation to SAT. These solvers are also compared to the translation to SAT
in Table 2. Again, the configuration BEST solves 21 more instances then the
best of the native solvers, and solves all the instances that have been solved by
the native solvers. Summarizing the evaluation it can be stated that adding the
SWC encoding to the portfolio of available PB encodings results in a noticeable
performance improvement for PB solvers.

5 Conclusion and Future Work

In this work we presented the SWC encoding, a new encoding for PB constraints
of the form

∑n

i=1
wixi ≤ k into SAT. The SWC encoding allows unit propagation

to quickly prune the search space by maintaining GAC and needs at most n (2k+
1) clauses and (n − 1)k auxiliary variables. This is a significant improvement
to the state of the art for PB constraints with k ≤ n2: To the best of our
knowledge the local watchdog encoding generates the fewest clauses, namely
O(n3 log(n) log(k)) clauses, while maintaining GAC. This contribution is highly
relevant, because for 99% of the PB constraints even k ≤ n holds.

The new encoding is not only a nice and simple encoding, but also provides
a performance improvement for solving PB instances. By always choosing the
encoding that requires the smallest number of clauses, our PB solver can solve 12
instances more than by forcing to use a single encoding only. With our approach
21 more instances of the PB benchmark can be solved compared to successful
solvers from recent PB competitions.

For future work we leave a detailed comparison between the known encodings,
the SWC, binary decision diagrams, local watchdog and the non-GAC encodings.
With the help of a detailed empirical investigation we want to extend our current
research to a competitive SAT-based PB solver that can also solve optimization
instances fast.



12

References

1. Potsdam answer set solving collection, http://potassco.sourceforge.net/
2. Ab́ıo, I., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: BDDs for pseudo-

boolean constraints: revisited. In: Proc. SAT. pp. 61–75 (2011)
3. Apt, K.: Principles of Constraint Programming. Cambridge University Press (2003)
4. Aśın, R., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: Cardinality net-

works and their applications. In: Proc. SAT. pp. 167–180 (2009)
5. Bailleux, O., Boufkhad, Y., Roussel, O.: New encodings of pseudo-boolean con-

straints into cnf. In: Proc. SAT. pp. 181–194 (2009)
6. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking

using sat procedures instead of BDDs. In: Proc. DAC. pp. 317–320 (1999)
7. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.

Commun. ACM 5(7), 394–397 (Jul 1962)
8. Eén, N., Biere, A.: Effective preprocessing in sat through variable and clause elim-

ination. In: Proc. SAT. pp. 61–75 (2005)
9. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into sat. JSAT

2(1-4), 1–26 (2006)
10. Eibach, T., Pilz, E., Völkel, G.: Attacking Bivium using SAT solvers. In: Proc.

SAT. pp. 63–76 (2008)
11. Großmann, P., Hölldobler, S., Manthey, N., Nachtigall, K., Opitz, J., Steinke, P.:

Solving Periodic Event Scheduling Problems with SAT. In: IEAAIE, to appear in
(2012)

12. Kaiss, D., Skaba, M., Hanna, Z., Khasidashvili, Z.: Industrial strength sat-based
alignability algorithm for hardware equivalence verification. In: Proc. FMCAD. pp.
20–26 (2007)

13. Manquinho, V.M., Silva, J.P.M.: On using cutting planes in pseudo-boolean opti-
mization. JSAT 2(1-4), 209–219 (2006)

14. Marques-Silva, J.a.P., Sakallah, K.A.: Grasp: A search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506–521 (May 1999)

15. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: Proc. DAC. pp. 530–535 (2001)

16. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J.
Symb. Comput. 2(3), 293–304 (Sep 1986)

17. Roussel, O., Manquinho, V.: Pseudo-Boolean and Cardinality Constraints, Fron-
tiers in Artificial Intelligence and Applications, vol. 185, chap. 22, pp. 695–733.
IOS Press (February 2009)

18. Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In:
Proc. CP. pp. 827–831 (Oct 2005)

19. Sörensson, N., Biere, A.: Minimizing learned clauses. In: Proc. SAT. pp. 237–243
(2009)

20. Tseitin, G.S.: On the complexity of derivation in propositional calculus. Studies in
constructive mathematics and mathematical logic 2(115-125), 1013 (1968)

21. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: portfolio-based algo-
rithm selection for SAT. J. Artif. Int. Res. 32(1), 565–606 (Jun 2008)

http://potassco.sourceforge.net/

	A Compact Encoding of Pseudo-Boolean Constraints into SAT
	Steffen Hölldobler, Norbert Manthey and Peter Steinke

