
Ridhwan Dewoprabowo1 Johannes K. Fichte2 Piotr Jerzy Gorczyca1 Markus Hecher2
1 TU Dresden, 2 TU Wien

A Practical Account into Counting Dung’sExtensions by Dynamic Programming
LPNMR’22 conference talk, Genova, September 8th 2022

Counting in Abstract Argumentation – Introduction & Motivation

Utilizing Treewidth and Dynamic Programming

Empirical Evaluation

Conclusions & Future Work

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 1 of 15

Abstract Argumentation (AA)

Argumentation
Formal framework [Dung, 1995] to:
• deal with contentious information and draw conclusions from it
• represent conflicts between arguments

Extensions
• subsets of arguments congruent mutually
• semantics define how to choose such subsets

– e.g. admissible, stable, grounded, preferred etc.

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 2 of 15

Abstract Argumentation (AA)

Argumentation
Formal framework [Dung, 1995] to:
• deal with contentious information and draw conclusions from it
• represent conflicts between arguments
Extensions
• subsets of arguments congruent mutually
• semantics define how to choose such subsets

– e.g. admissible, stable, grounded, preferred etc.

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 2 of 15

Motivation – Counting Extensions
Question
Instead of: does the problem have a solution? (decision)We ask: how many solutions does the problem have? (quantity)

Counting in Argumentation
• Quantitative reasoning
• Probabilistic argumentation
• Counting impacts:

– Bayesian inference, bounded-length adversarial and contingencyplanning, reliability estimation

Computational complexity
• #P-complete [Valiant, 1979]

Counting ̸= Enumeration

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 3 of 15

Motivation – Counting Extensions
Question
Instead of: does the problem have a solution? (decision)We ask: how many solutions does the problem have? (quantity)
Counting in Argumentation
• Quantitative reasoning
• Probabilistic argumentation
• Counting impacts:

– Bayesian inference, bounded-length adversarial and contingencyplanning, reliability estimation

Computational complexity
• #P-complete [Valiant, 1979]

Counting ̸= Enumeration

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 3 of 15

Motivation – Counting Extensions
Question
Instead of: does the problem have a solution? (decision)We ask: how many solutions does the problem have? (quantity)
Counting in Argumentation
• Quantitative reasoning
• Probabilistic argumentation
• Counting impacts:

– Bayesian inference, bounded-length adversarial and contingencyplanning, reliability estimation

Computational complexity
• #P-complete [Valiant, 1979]

Counting ̸= Enumeration

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 3 of 15

Our Research

Contributions
• Implementation of theoretical algorithms for counting in AA,
• Development of a (first) dedicated counting solver for counting extensions of AFs under:

– stable, admissible and complete semantics
• Empirical evaluation illustrating that our system can be competitive.

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 4 of 15

Example of an AA – what’s for dinner tonight?

Framework F
F = (A, R), R ⊆ A× A

green pesto isalla genoveseeat other pesto,also tasty

no green pesto,ate yesterdayeat green pestoanyway, so tastyno pesto at all

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 5 of 15

Example of an AA – what’s for dinner tonight?

Framework F
F = (A, R), R ⊆ A× A

green pesto isalla genoveseeat other pesto,also tasty

no green pesto,ate yesterdayeat green pestoanyway, so tastyno pesto at all

Extension S is
• stable if conflict-free, defends itself, and attacks every a ∈ F \ S in F, and for each a ∈ A \ S, S ↣ a.

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 5 of 15

Example of an AA – what’s for dinner tonight?

Framework F
F = (A, R), R ⊆ A× A

green pesto isalla genoveseeat other pesto,also tasty

no green pesto,ate yesterdayeat green pestoanyway, so tastyno pesto at all

Extensions
stable:

∣∣∣

{{gp, gen}, {op, ngp}}

∣∣∣ = 2

Extension S is
• stable if conflict-free, defends itself, and attacks every a ∈ F \ S in F, and for each a ∈ A \ S, S ↣ a.

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 5 of 15

Example of an AA – what’s for dinner tonight?

Framework F
F = (A, R), R ⊆ A× A

green pesto isalla genoveseeat other pesto,also tasty

no green pesto,ate yesterdayeat green pestoanyway, so tastyno pesto at all

Extensions
stable:

∣∣∣

{{gp, gen}, {op, ngp}}

∣∣∣ = 2

Extension S is
• stable if conflict-free, defends itself, and attacks every a ∈ F \ S in F, and for each a ∈ A \ S, S ↣ a.

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 5 of 15

Example of an AA – what’s for dinner tonight?

Framework F
F = (A, R), R ⊆ A× A

green pesto isalla genoveseeat other pesto,also tasty

no green pesto,ate yesterdayeat green pestoanyway, so tastyno pesto at all

Extensions
stable:

∣∣∣

{{gp, gen}, {op, ngp}}

∣∣∣ = 2

Extension S is
• stable if conflict-free, defends itself, and attacks every a ∈ F \ S in F, and for each a ∈ A \ S, S ↣ a.

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 5 of 15

Example of an AA – what’s for dinner tonight?

Framework F
F = (A, R), R ⊆ A× A

green pesto isalla genoveseeat other pesto,also tasty

no green pesto,ate yesterdayeat green pestoanyway, so tastyno pesto at all

Extensions
stable: ∣∣∣ {{gp, gen}, {op, ngp}}

∣∣∣ = 2

Extension S is
• stable if conflict-free, defends itself, and attacks every a ∈ F \ S in F, and for each a ∈ A \ S, S ↣ a.

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 5 of 15

Counting in Abstract Argumentation – Introduction & Motivation

Utilizing Treewidth and Dynamic Programming

Empirical Evaluation

Conclusions & Future Work

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 5 of 15

Utilizing Treewidth

Problem
#P-complete problems are hard to solve...
Idea
Decompose the initial problem into trivial subproblems, combine the subsolutionsParameter: overlap between subproblems – treewidth of the primal graph

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 6 of 15

Tree Decompositions
Tree Decomposition T of G

ab
xcy

G :
b, c b, c

b, x, c

b, x, a
︸ ︷︷ ︸

width

b, c, y

b, cT :

Definition
A tree decomposition is a tree obtained from an arbitrary graph s.t.
1. Each vertex must occur in some bag
2. For each edge, there is a bag containing both endpoints
3. Connected: Connected: If a vertex v appears in bags t0 and t1, then v is also in the bag of each node onthe path between t0 and t1.

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 7 of 15

Counting Stable Extensions [Charwat, 2012]

ab
xcy

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 8 of 15

Counting Stable Extensions [Charwat, 2012]

ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 8 of 15

Counting Stable Extensions [Charwat, 2012]
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

C(a) = in iff a ∈ S
C(a) = de f iff S ↣ a
C(a) = out iff S ̸↣ a and a ̸∈ S

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 8 of 15

Counting Stable Extensions [Charwat, 2012]
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

C(a) = in iff a ∈ S
C(a) = de f iff S ↣ a
C(a) = out iff S ̸↣ a and a ̸∈ S

b x a
out out out
out out def
out out in
out def out
out def def
out def in
out in out
out in def
out in in
def out out
def out def
def out in
def def out
def def def
def def in
def in out
def in def
def in in

b x a
in out out
in out def
in out in
in def out
in def def
in def in
in in out
in in def
in in in

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 8 of 15

Counting Stable Extensions [Charwat, 2012]
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

C(a) = in iff a ∈ S
C(a) = de f iff S ↣ a
C(a) = out iff S ̸↣ a and a ̸∈ S

b x a
out out out
out out def
out out in
out def out
out def def
out def in
out in out
out in def
out in in
def out out
def out def
def out in
def def out
def def def
def def in
def in out
def in def
def in in

b x a
in out out
in out def
in out in
in def out
in def def
in def in
in in out
in in def
in in in

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 8 of 15

Counting Stable Extensions [Charwat, 2012]
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

C(a) = in iff a ∈ S
C(a) = de f iff S ↣ a
C(a) = out iff S ̸↣ a and a ̸∈ S

b x a
out in def
def out in
in in def

b x c
out in out
out in def
out in in
def out out
def out def
def out in
in in out
in in def
in in in

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 8 of 15

Counting Stable Extensions [Charwat, 2012]
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

C(a) = in iff a ∈ S
C(a) = de f iff S ↣ a
C(a) = out iff S ̸↣ a and a ̸∈ S

b x a
out in def
def out in
in in def

b x c
out in out
out in def
out in in
def out out
def out def
def def in
in in out
in in def
in in in

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 8 of 15

Counting Stable Extensions [Charwat, 2012]
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

C(a) = in iff a ∈ S
C(a) = de f iff S ↣ a
C(a) = out iff S ̸↣ a and a ̸∈ S

b c
out out
def in
in def

b x c
out in out
def def in
in in def

b c
out out
out in
in def

b x a
out in def
def out in
in in def

b c y
out out in
out in def
in def def

b c
out out
def in
in def

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 8 of 15

Counting Stable Extensions [Charwat, 2012]
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

C(a) = in iff a ∈ S
C(a) = de f iff S ↣ a
C(a) = out iff S ̸↣ a and a ̸∈ S

b c
out out
def in
in def

b x c
out in out
def def in
in in def

b c
out out
out in
in def

b x a
out in def
def out in
in in def

b c y
out out in
out in def
in def def

b c
out out
def in
in def

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 8 of 15

Counting Stable Extensions [Charwat, 2012]
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

C(a) = in iff a ∈ S
C(a) = de f iff S ↣ a
C(a) = out iff S ̸↣ a and a ̸∈ S

b c
out out
def in
in def

b x c
out in out
def def in
in in def

b c
out out
out in
in def

b x a
out in def
def out in
in in def

b c y
out out in
out in def
in def def

b c
out out
def in
in def

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 8 of 15

Counting Stable Extensions [Charwat, 2012]
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

C(a) = in iff a ∈ S
C(a) = de f iff S ↣ a
C(a) = out iff S ̸↣ a and a ̸∈ S

b c
out out
def in
in def

b x c
out in out
def def in
in in def

b c
out out
out in
in def

b x a
out in def
def out in
in in def

b c y
out out in
out in def
in def def

b c
out out
def in
in def

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 8 of 15

Counting Stable Extensions [Charwat, 2012]

ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

b c
out out
def in
in def

b x c
out in out
def def in
in in def

b c
out out
out in
in def

b x a
out in def
def out in
in in def

b c y
out out in
out in def
in def def

b c
out out
def in
in def

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 8 of 15

Counting Stable Extensions [Charwat, 2012]

ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

b c #
out out −
def in 1
in def 1

b c #
out out 1
def in 1
in def 1

b x c #
out in out 1
def def in 1
in in def 1

b c #
out out 1
out in 1
in def 1

b x a #
out in def 1
def out in 1
in in def 1

b c y #
out out in 1
out in def 1
in def def 1

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 8 of 15

Counting Stable Extensions [Charwat, 2012]
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

b c #
out out −
def in 1
in def 1

b c #
out out 1
def in 1
in def 1

b x c #
out in out 1
def def in 1
in in def 1

b c #
out out 1
out in 1
in def 1

b x a #
out in def 1
def out in 1
in in def 1

b c y #
out out in 1
out in def 1
in def def 1

Semantics Colouring RuntimeStable Ct : χ(t) 7→ {in, def , out} 3O(treewidth) · poly(|Args|)

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 8 of 15

Implementation
DPDB

DPDB [Fichte et al., 2020] – a general framework utilizing: Tree Decompositions, DynamicProgramming and Database Management Systems
• Currently supporting: #SAT, Vertex Cover ...

• Now also counting extensions of AA frameworks!
DPDB Architecture

ab
xcy htd Query

Generator DBMS Σ

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

SELECT ...
SELECT ...

...

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 9 of 15

Implementation
DPDB

DPDB [Fichte et al., 2020] – a general framework utilizing: Tree Decompositions, DynamicProgramming and Database Management Systems
• Currently supporting: #SAT, Vertex Cover ...
• Now also counting extensions of AA frameworks!

DPDB Architecture

ab
xcy htd Query

Generator DBMS Σ

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

SELECT ...
SELECT ...

...

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 9 of 15

Implementation
DPDB

DPDB [Fichte et al., 2020] – a general framework utilizing: Tree Decompositions, DynamicProgramming and Database Management Systems
• Currently supporting: #SAT, Vertex Cover ...
• Now also counting extensions of AA frameworks!
DPDB Architecture

ab
xcy htd Query

Generator DBMS Σ

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

SELECT ...
SELECT ...

...

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 9 of 15

DPDB in Practice – Generated SQL Query
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

vi di meaning
0 0 out
0 1 def
1 − in

Query
1 SELECT va , vb , vx , da , db , dx ,2 sum(model_count) AS model_count3 FROM (WITH introduce AS4 (SELECT true va l UNION ALL SELECT false)5 SELECT i a . va l va , ib . va l vb , i x . va l vx ,6 (i x . va l) AS da , (i a . va l) AS db , FALSE AS dx ,7 1 AS model_count8 FROM introduce ib , /* introduce */9 introduce ix , introduce ia) AS candidate10 WHERE (va OR da) AND /* forget a*/11 (NOT (va AND vb)) AND /* con f l i c t − free */12 (NOT (vx AND va))13 GROUP BY va , vb , vx , da , db , dx
Query output
vb db vx dx va da model_count
0 0 1 0 0 1 1
0 1 0 0 1 0 1
1 0 1 0 0 1 1

Meaning
b x a
out in def
def out in
in in def

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 10 of 15

Counting in Abstract Argumentation – Introduction & Motivation

Utilizing Treewidth and Dynamic Programming

Empirical Evaluation

Conclusions & Future Work

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 10 of 15

Evaluation – Setup
Other systems
• Leading solvers of the recent editions of ICCMA: µ-toksia [Niskanen and Järvisalo, 2020],

aspartix [Dvořák et al., 2020], pyglaf [Alviano, 2017]
• State-of-the-art propositional model counters: SharpSAT-td, d4 1

(Virtual) portfolio solvers
• Portfolio solvers: DPDB+X, X ∈ {aspartix, µ-toksia, pyglaf}
• Virtual portfolio solvers: aspartix+X, X ∈ { sharpSAT-td, d4 }
Benchmarks
• ICCMA’17 instances [Gaggl et al., 2018]2
• 600s timeouts

1using aspartix’s ASP encoding and translating the ground ASP instance into a SAT formula (with the help of lp2normal and lp2sat)2more recent instances out of reach for DPDB due to TW.
A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 11 of 15

Evaluation – Setup
Other systems
• Leading solvers of the recent editions of ICCMA: µ-toksia [Niskanen and Järvisalo, 2020],

aspartix [Dvořák et al., 2020], pyglaf [Alviano, 2017]
• State-of-the-art propositional model counters: SharpSAT-td, d4 1

(Virtual) portfolio solvers
• Portfolio solvers: DPDB+X, X ∈ {aspartix, µ-toksia, pyglaf}
• Virtual portfolio solvers: aspartix+X, X ∈ { sharpSAT-td, d4 }

Benchmarks
• ICCMA’17 instances [Gaggl et al., 2018]2
• 600s timeouts

1using aspartix’s ASP encoding and translating the ground ASP instance into a SAT formula (with the help of lp2normal and lp2sat)2more recent instances out of reach for DPDB due to TW.
A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 11 of 15

Evaluation – Setup
Other systems
• Leading solvers of the recent editions of ICCMA: µ-toksia [Niskanen and Järvisalo, 2020],

aspartix [Dvořák et al., 2020], pyglaf [Alviano, 2017]
• State-of-the-art propositional model counters: SharpSAT-td, d4 1

(Virtual) portfolio solvers
• Portfolio solvers: DPDB+X, X ∈ {aspartix, µ-toksia, pyglaf}
• Virtual portfolio solvers: aspartix+X, X ∈ { sharpSAT-td, d4 }
Benchmarks
• ICCMA’17 instances [Gaggl et al., 2018]2
• 600s timeouts

1using aspartix’s ASP encoding and translating the ground ASP instance into a SAT formula (with the help of lp2normal and lp2sat)2more recent instances out of reach for DPDB due to TW.
A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 11 of 15

Evaluation – Results
solver adm. comp. stab.
aspartix 236 362 469
... /d4 347 406 483
... /sharpSAT-td 368 410 487
dpdb 96 100 113
...+aspartix 311 379 475
...+µ-toksia21 95 367 468
...+pyglaf 300 372 478
µ-toksia21 – 299 446
pyglaf 221 336 463
sharpSAT-td 284 350 387
vbest 371 411 505

(a) Number of solved instances of various solvers.

adm. comp. stab.
median 2.9 0.5 0.0mean 11.6 8.3 3.8max 512.6 487.7 498.2
aspartix 7.9 8.3 8.7
dpdb 154.6 119.9 75.0
mu_toksia21 – 5.1 5.2
pyglaf 6.1 6.5 5.8
sharpSAT-td 512.6 487.7 498.2

(b) Observed counts in log10 format.The lower part states themaximum count observed for the respective solver.

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 12 of 15

Evaluation – Results
solver adm. comp. stab.
aspartix 236 362 469
... /d4 347 406 483
... /sharpSAT-td 368 410 487
dpdb 96 100 113
...+aspartix 311 379 475
...+µ-toksia21 95 367 468
...+pyglaf 300 372 478
µ-toksia21 – 299 446
pyglaf 221 336 463
sharpSAT-td 284 350 387
vbest 371 411 505

(a) Number of solved instances of various solvers.

adm. comp. stab.
median 2.9 0.5 0.0mean 11.6 8.3 3.8max 512.6 487.7 498.2
aspartix 7.9 8.3 8.7
dpdb 154.6 119.9 75.0
mu_toksia21 – 5.1 5.2
pyglaf 6.1 6.5 5.8
sharpSAT-td 512.6 487.7 498.2

(b) Observed counts in log10 format.The lower part states themaximum count observed for the respective solver.

Note:
Enumeration works fine only when the number of solutions is small.

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 12 of 15

Results – Admissible Semantics

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

n[#]/t[s]

vbest
dpdb+aspartix
dpdb+pyglaf
sharpSAT-td
d4
aspartix
pyglaf
dpdb

Figure: Runtime of various solvers for admissible semantics.

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 13 of 15

Counting in Abstract Argumentation – Introduction & Motivation

Utilizing Treewidth and Dynamic Programming

Empirical Evaluation

Conclusions & Future Work

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 13 of 15

Conclusions

(Our extension of) DPDB
• utilizes Dynamic Programming algorithms on Tree Decompositions with Database ManagementSystems+ works well with instances of small treewidth and high number of solutions,

– otherwise enumeration is sufficient- cannot deal with instances of high treewidth,
• when used in a portfolio system can be competitive with the state-of-the-art solvers,
• is the first implementation of a dedicated counter for Abstract Argumentation.

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 14 of 15

Future Work

Upcoming Tasks
• addressing high treewidths with abstractions of Tree Decompositions (nested dynamic programming),
• using parallelization for large instances of low treewidth,
• developing dedicated preprocessing techniques for argumentation.

Thank you for listening.
Sponsors:
• DFG Grant TRR 248 project ID 389792660 (CPEC); BMBF Grant 01IS20056_NAVAS;WWTF grant ICT19-065, FWF grants P32830 and Y698.

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

https://perspicuous-computing.science

Future Work

Upcoming Tasks
• addressing high treewidths with abstractions of Tree Decompositions (nested dynamic programming),
• using parallelization for large instances of low treewidth,
• developing dedicated preprocessing techniques for argumentation.

Thank you for listening.

Sponsors:
• DFG Grant TRR 248 project ID 389792660 (CPEC); BMBF Grant 01IS20056_NAVAS;WWTF grant ICT19-065, FWF grants P32830 and Y698.

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

https://perspicuous-computing.science

Future Work

Upcoming Tasks
• addressing high treewidths with abstractions of Tree Decompositions (nested dynamic programming),
• using parallelization for large instances of low treewidth,
• developing dedicated preprocessing techniques for argumentation.

Thank you for listening.
Sponsors:
• DFG Grant TRR 248 project ID 389792660 (CPEC); BMBF Grant 01IS20056_NAVAS;WWTF grant ICT19-065, FWF grants P32830 and Y698.

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

https://perspicuous-computing.science

Bibliography I
Alviano, M. (2017).Ingredients of the argumentation reasoner pyglaf: Python, circumscription, and glucose to taste.In Maratea, M. and Serina, I., editors, Proceedings of the 24th RCRA International Workshop onExperimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion 2017 co-locatedwith the 16th International Conference of the Italian Association for Artificial Intelligence (AI*IA 2017), Bari,Italy, November 14-15, 2017, volume 2011 of CEUR Workshop Proceedings, pages 1–16. CEUR-WS.org.
Charwat, G. (2012).Tree-decomposition based algorithms for abstract argumentation framework.Master’s thesis, TU Wien, Vienna, Austria.
Dung, P. M. (1995).On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logicprogramming and n-person games.AIJ, 77(2).
Dvořák, W., Rapberger, A., Wallner, J., and Woltran, S. (2020).ASPARTIX-V19 - An Answer-Set Programming Based System for Abstract Argumentation.In FoIKS 2020, volume 12012. Springer, Cham.

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

Bibliography II
Fichte, J. K., Hecher, M., Thier, P., and Woltran, S. (2020).Exploiting database management systems and treewidth for counting.In PADL, volume 12007 of LNCS, pages 151–167. Springer.
Gaggl, S. A., Linsbichler, T., Maratea, M., and Woltran, S. (2018).Summary report of the second international competition on computational models ofargumentation.AI Magazine, 39(4):77–79.
Niskanen, A. and Järvisalo, M. (2020).
¯-toksia: An efficient abstract argumentation reasoner.In KR 2020, pages 800–804.
Valiant, L. (1979).The complexity of computing the permanent.Theoretical Computer Science, 8(2):189–201.

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

Counting Stable Extensions (Detailed) [Charwat, 2012]

ab
xcy

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

Counting Stable Extensions (Detailed) [Charwat, 2012]

ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

Counting Stable Extensions (Detailed) [Charwat, 2012]
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

C(a) = in iff a ∈ S
C(a) = de f iff S ↣ a
C(a) = out iff S ̸↣ a and a ̸∈ S

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

Counting Stable Extensions (Detailed) [Charwat, 2012]
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

C(a) = in iff a ∈ S
C(a) = de f iff S ↣ a
C(a) = out iff S ̸↣ a and a ̸∈ S

b x a
out out out
out out def
out out in
out def out
out def def
out def in
out in out
out in def
out in in
def out out
def out def
def out in
def def out
def def def
def def in
def in out
def in def
def in in

b x a
in out out
in out def
in out in
in def out
in def def
in def in
in in out
in in def
in in in

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

Counting Stable Extensions (Detailed) [Charwat, 2012]
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

C(a) = in iff a ∈ S
C(a) = de f iff S ↣ a
C(a) = out iff S ̸↣ a and a ̸∈ S

b x a
out out out
out out def
out out in
out def out
out def def
out def in
out in out
out in def
out in in
def out out
def out def
def out in
def def out
def def def
def def in
def in out
def in def
def in in

b x a
in out out
in out def
in out in
in def out
in def def
in def in
in in out
in in def
in in in

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

Counting Stable Extensions (Detailed) [Charwat, 2012]
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

C(a) = in iff a ∈ S
C(a) = de f iff S ↣ a
C(a) = out iff S ̸↣ a and a ̸∈ S

b x a
out out out
out in def
def out in
in out out
in in def

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

Counting Stable Extensions (Detailed) [Charwat, 2012]
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

C(a) = in iff a ∈ S
C(a) = de f iff S ↣ a
C(a) = out iff S ̸↣ a and a ̸∈ S

b x a
out out out
out in def
def out in
in out out
in in def

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

Counting Stable Extensions (Detailed) [Charwat, 2012]
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

C(a) = in iff a ∈ S
C(a) = de f iff S ↣ a
C(a) = out iff S ̸↣ a and a ̸∈ S

b x a
out out out
out in def
def out in
in out out
in in def

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

Counting Stable Extensions (Detailed) [Charwat, 2012]
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

C(a) = in iff a ∈ S
C(a) = de f iff S ↣ a
C(a) = out iff S ̸↣ a and a ̸∈ S

b x a
out in def
def out in
in in def

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

Counting Stable Extensions (Detailed) [Charwat, 2012]
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

C(a) = in iff a ∈ S
C(a) = de f iff S ↣ a
C(a) = out iff S ̸↣ a and a ̸∈ S

b x a
out in def
def out in
in in def

b x c
out in out
out in def
out in in
def out out
def out def
def out in
in in out
in in def
in in in

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

Counting Stable Extensions (Detailed) [Charwat, 2012]
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

C(a) = in iff a ∈ S
C(a) = de f iff S ↣ a
C(a) = out iff S ̸↣ a and a ̸∈ S

b x a
out in def
def out in
in in def

b x c
out in out
out in def
out in in
def out out
def out def
def out in
in in out
in in def
in in in

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

Counting Stable Extensions (Detailed) [Charwat, 2012]
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

C(a) = in iff a ∈ S
C(a) = de f iff S ↣ a
C(a) = out iff S ̸↣ a and a ̸∈ S

b x a
out in def
def out in
in in def

b x c
out in out
out in def
out in in
def out out
def out def
def ��out def in
in in out
in in def
in in in

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

Counting Stable Extensions (Detailed) [Charwat, 2012]
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

C(a) = in iff a ∈ S
C(a) = de f iff S ↣ a
C(a) = out iff S ̸↣ a and a ̸∈ S

b x a
out in def
def out in
in in def

b x c
out in out
out in def
out in in
def out out
def out def
def def in
in in out
in in def
in in in

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

Counting Stable Extensions (Detailed) [Charwat, 2012]
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

C(a) = in iff a ∈ S
C(a) = de f iff S ↣ a
C(a) = out iff S ̸↣ a and a ̸∈ S

b x a
out in def
def out in
in in def

b x c
out in out
out in def
out in in
def out out
def out def
def def in
in in out
in in def
in in in

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

Counting Stable Extensions (Detailed) [Charwat, 2012]
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

C(a) = in iff a ∈ S
C(a) = de f iff S ↣ a
C(a) = out iff S ̸↣ a and a ̸∈ S

b x a
out in def
def out in
in in def

b x c
out in out
def out out
def def in
in in def

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

Counting Stable Extensions (Detailed) [Charwat, 2012]
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

C(a) = in iff a ∈ S
C(a) = de f iff S ↣ a
C(a) = out iff S ̸↣ a and a ̸∈ S

b x a
out in def
def out in
in in def

b x c
out in out
def out out
def def in
in in def

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

Counting Stable Extensions (Detailed) [Charwat, 2012]
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

C(a) = in iff a ∈ S
C(a) = de f iff S ↣ a
C(a) = out iff S ̸↣ a and a ̸∈ S

b c
out out
def in
in def

b x c
out in out
def def in
in in def

b c
out out
out in
in def

b x a
out in def
def out in
in in def

b c y
out out in
out in def
in def def

b c
out out
def in
in def

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

Counting Stable Extensions (Detailed) [Charwat, 2012]
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

C(a) = in iff a ∈ S
C(a) = de f iff S ↣ a
C(a) = out iff S ̸↣ a and a ̸∈ S

b c
out out
def in
in def

b x c
out in out
def def in
in in def

b c
out out
out in
in def

b x a
out in def
def out in
in in def

b c y
out out in
out in def
in def def

b c
out out
def in
in def

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

Counting Stable Extensions (Detailed) [Charwat, 2012]
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

C(a) = in iff a ∈ S
C(a) = de f iff S ↣ a
C(a) = out iff S ̸↣ a and a ̸∈ S

b c
out out
def in
in def

b x c
out in out
def def in
in in def

b c
out out
out in
in def

b x a
out in def
def out in
in in def

b c y
out out in
out in def
in def def

b c
out out
def in
in def

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

Counting Stable Extensions (Detailed) [Charwat, 2012]
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

C(a) = in iff a ∈ S
C(a) = de f iff S ↣ a
C(a) = out iff S ̸↣ a and a ̸∈ S

b c
out out
def in
in def

b x c
out in out
def def in
in in def

b c
out out
out in
in def

b x a
out in def
def out in
in in def

b c y
out out in
out in def
in def def

b c
out out
def in
in def

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

Counting Stable Extensions (Detailed) [Charwat, 2012]
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

C(a) = in iff a ∈ S
C(a) = de f iff S ↣ a
C(a) = out iff S ̸↣ a and a ̸∈ S

b c
out out
def in
in def

b x c
out in out
def def in
in in def

b c
out out
out in
in def

b x a
out in def
def out in
in in def

b c y
out out in
out in def
in def def

b c
out out
def in
in def

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

Counting Stable Extensions (Detailed) [Charwat, 2012]
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

C(a) = in iff a ∈ S
C(a) = de f iff S ↣ a
C(a) = out iff S ̸↣ a and a ̸∈ S

b c
out out
def in
in def

b x c
out in out
def def in
in in def

b c
out out
out in
in def

b x a
out in def
def out in
in in def

b c y
out out in
out in def
in def def

b c
out out
def in
in def

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

Counting Stable Extensions (Detailed) [Charwat, 2012]
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

b c #
out out −
def in 1
in def 1

b c #
out out 1
def in 1
in def 1

b x c #
out in out 1
def def in 1
in in def 1

b c #
out out 1
out in 1
in def 1

b x a #
out in def 1
def out in 1
in in def 1

b c y #
out out in 1
out in def 1
in def def 1

Semantics Colouring RuntimeStable Ct : χ(t) 7→ {in, def , out} 3O(treewidth) · poly(|Args|)Admissible Ct : χ(t) 7→ {in, def , att, out} 4O(treewidth) · poly(|Args|)Complete Ct : χ(t) 7→ {in, def , defp, out, outp} 5O(treewidth) · poly(|Args|)

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

Choice of Benchmarks

1-2
0

21
-30

31
-50

51
-10

0

10
1-2

00

20
1-5

00
50

1+
0

200

400

600

800

N/K

2017
2019
2021

Figure: Distribution of heuristically computed widths. The x-axis lists intervals into which the heuristically computedwidth of a TD falls (K). The y-axis states the number (N) of instances.

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

Abstract Argumentation – Basics
Framework
An argumentation framework is a pair F = (A, R) where
• A is a set of arguments and
• R ⊆ A× A is an attack relation.
Framework
Further, for a, b ∈ A and S, S′ ⊆ A we denote the following attack relation↣:
• a ↣ b if (a, b) ∈ R,
• S ↣ a if there exists b ∈ S s.t. (b, a) ∈ R,
• a ↣ S if there exists b ∈ S s.t. (a, b) ∈ R and
• S ↣ S′ if there exists a ∈ S, b ∈ S′ s.t. (a, b) ∈ R.
and that:
• S is conflict-free if there are no a, b ∈ S s.t. (a, b) ∈ R,
• S defends a if for each b s.t. b ↣ a, S ↣ b.

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

Abstract Argumentation – Semantics & Extensions
Semantics:
• are functions σ : F 7→ 2A, i.e. map the framework F = (A, R) to set of subsets of A satisfying certainconditions,
• those subsets are called σ-extensions,
• in this work we focus on admissible, stable and complete semantics.
Semantics – definitions
Given an AF F = (A, R), a ∈ A, S ⊆ A, S is a(n):
• admissible extension if it is conflict-free in F and each a ∈ S is defended by S.
• stable extension if it is conflict-free in F and for each a ∈ A \ S, S ↣ a.
• complete extension if it is conflict-free in F and for each a ∈ A, if S defends a, then a ∈ S.

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

SQL – Admissible Semantics (1)
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

vi di meaning
0 NULL out
0 0 att
0 1 def
1 − in

1 SELECT vb , db , vx , dx , va , da ,2 sum(model_count) AS model_count3 FROM (WITH introduce AS4 (SELECT false va l UNION ALL SELECT true)5 SELECT ib . va l vb , i x . va l vx , i a . va l va ,6 CASE WHEN i a . va l THEN true7 WHEN (FALSE) AND (NOT i a . va l) OR (FALSE)8 THEN false9 ELSE null : : BOOLEAN10 END AS db ,11 CASE WHEN FALSE THEN true12 WHEN (i a . va l) AND (TRUE) OR (FALSE)13 THEN false14 ELSE null : : BOOLEAN15 END AS dx ,16 CASE WHEN i x . va l THEN true17 WHEN (ib . va l) AND (NOT i x . va l) OR (FALSE)18 THEN false19 ELSE null : : BOOLEAN20 END AS da ,21 1 AS model_count22 FROM introduce ix , /* introduce */23 introduce ib , introduce ia) AS candidate24 WHERE (da IS NOT false) AND /* forget a*/25 (NOT (va AND vb)) AND /* con f l i c t − free */26 (NOT (vx AND va))27 GROUP BY vb , vx , va , db , dx , da
A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

SQL – Admissible Semantics (2)
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

vi di meaning
0 NULL out
0 0 att
0 1 def
1 − in

Query output
vb db vx dx va da #

false NULL false NULL false NULL 1
false NULL true − false true 1
false true false false 1 − 1
true − true − false true 1

Meaning
b x a

out out out
out in def
def att in
in in def

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

SQL – Complete Semantics (1)
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

vi di meaning
0 false in
1 false defp
1 true def
2 false outp
2 true out

12 SELECT vb , vx , va , db , dx , da ,3 sum(model_count) AS model_count4 FROM (WITH introduce AS5 (SELECT 0 va l UNION ALL SELECT 1 UNION ALL SELECT 2)6 SELECT ib . va l vb , i x . va l vx , i a . va l va ,7 ((ib . va l = 1 AND (i a . va l = 0)) OR (ib . va l = 2 AND (i a . va l = 2))) AS db ,8 (FALSE OR FALSE) AS dx ,9 ((i a . va l = 1 AND (i x . va l = 0)) OR (i a . va l = 2 AND (i x . va l = 2))) AS da ,10 1 AS model_count11 FROM introduce ia , /* introduce */12 introduce ib , introduce i x) AS candidate13 WHERE (va = 0 OR da) AND /* forget a*/14 (NOT (va = 0 AND vb = 0)) AND15 (NOT (vx = 0 AND va = 0)) AND /* con f l i c t − free */16 (NOT (va = 2 AND vb = 0)) AND17 (NOT (vx = 2 AND va = 0)) AND18 (NOT (va = 0 AND vb = 2)) AND19 (NOT (vx = 0 AND va = 2)) /* colouring */20 GROUP BY vb , vx , va , db , dx , da

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

SQL – complete semantics (2)
ab
xcy

b, c b, c

b, x, c

b, x, a

b, c, y

b, c

vi di meaning
0 false in
1 false defp
1 true def
2 false outp
2 true out

Query output
vb db vx dx va da #
1 false 0 false 1 true 1
1 true 1 false 0 false 1
1 false 2 false 2 true 1
2 true 2 false 2 true 1
0 false 0 false 1 true 1
2 false 0 false 1 true 1

Meaning
b x a

defp in def
def defp in
defp outp out
out outp out
in in def

outp in def

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

Stable Algorithm in Set Notation

Listing 1: Table algorithm S(t, χ(t), Ft , ⟨τ1, . . . , τℓ⟩) for stable semantics on TDs.
In: Node t, bag χ(t), AF Ft , sequence ⟨τ1, . . . , τℓ⟩ of child tables. Out: Table τt .1 if type(t) = leaf then τt := {⟨∅, 1⟩}

2 else if type(t) = intr, and a∈ χ(t) is introduced then
3 τt := {⟨J ⊔ {b 7→ def | b ∈ Jout, Jin ↣ b}, c⟩ | ⟨I, c⟩ ∈ τ1,

J ∈ {I+
a 7→in, I+

a 7→out}, Jin ̸↣ Jin}
4 else if type(t) = forget, and a ̸∈ χ(t) is removed then
5 τt := {⟨I−a , Σ⟨J,c⟩∈τ1:I−a =J−a ,a/∈Jout c⟩ | ⟨I, ·⟩ ∈ τ1, a /∈ Iout}
6 else if type(t) = join then
7 τt := {⟨I1 ⊔ {b 7→ def | b ∈ Idef

2 }, c1 · c2⟩ | ⟨I1, c1⟩ ∈ τ1, ⟨I2, c2⟩ ∈ τ2, Iin
1 =Iin

2 }

S−s :=S \ {s 7→ in, s 7→ def, s 7→ out}, Sl :={s | S(s) = l}, S+
s :=S ∪ {s}, S ⊔ D :=

⋃
s∈dom(S)\dom(D){s 7→ S(s)} ∪ D.

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

Stable Semantics – Table Algorithm using Relational Algebra

Listing 2: Table algorithm S(t, χ(t), Ft , ⟨τ1, . . . , τℓ⟩) for stable semantics.
In: Node t, bag χ(t), framework Ft = (At , Rt), sequence ⟨τ1, . . . , τℓ⟩ of child tables. Out: Table τt .1 if type(t) = leaf then τt := {{(cnt, 1)}}

2 else if type(t) = intr, and a∈ χ(t) is introduced then
3 τt :=Π̇χ(t),

⋃

b∈χ(t)
{db←db∨(¬b∧[

∨

(c,b)∈Rt
c])}(τ1 ▷◁∧

(b,c)∈Rt
¬b∨¬c {{(a, 1), (da , 0)}, {(a, 0), (da , 0)}})

4 else if type(t) = forget, and a ̸∈ χ(t) is removed then
5 τt := {b,db|b∈χ(t)}Gcnt←SUM(cnt)(Πcol(τ1)\{a,da}(σa∨¬da (τ1)))

6 else if type(t) = join then
7 τt := Π̇χ(t),

⋃

b∈χ(t)
{cnt←cnt·cnt′ ,db←db∨d′b}

(τ1 ▷◁∧

b∈χ(t)
b=b′ ρ⋃

x∈col(τ2)
{x 7→x′ }τ2)

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

Admissible Semantics – Table Algorithm in Relational Algebra

Listing 3: Table algorithm A(t, χ(t), Ft , ⟨τ1, . . . , τℓ⟩) for admissible semantics.
In: Node t, bag χ(t), framework Ft = (At , Rt), sequence ⟨τ1, . . . , τℓ⟩ of child tables. Out: Table τt .1 if type(t) = leaf then τt := {{(cnt, 1)}}

2 else if type(t) = intr, and a∈ χ(t) is introduced then
3 τt := Π̇χ(t),

⋃

b∈χ(t)
{db←dft (db ,b)}(τ1 ▷◁∧

(b,c)∈Rt
¬b∨¬c {{(a, 1), (da , 0)}, {(a, 0), (da , 0)}})

4 else if type(t) = forget, and a ̸∈ χ(t) is removed then
5 τt := {b,db|b∈χ(t)}Gcnt←SUM(cnt)(Πcol(τ1)\{a,da}(σa∨da=1(τ1)))

6 else if type(t) = join then
7 τt := Π̇χ(t),

⋃

b∈χ(t)
{cnt←cnt·cnt′ ,db←jn(db ,d′b)}(τ1▷◁∧

b∈χ(t)
b=b′ ρ⋃

x∈col(τ2)
{x 7→x′ }τ2)

Let jn(d, e) :=2 if d=2 or e=2; else 1 if d=1 or e=1; else 0, and dft(d, b) :=jn(d, 2 if (
∨

(c,b)∈Rt
c); else 1 if (

∨
(b,c)∈Rt

c); else 0).

A Practical Account into Counting Dung’s Extensions by Dynamic ProgrammingDewoprabowo, Fichte, Gorczyca, HecherGenova, September 8th 2022 Slide 15 of 15

	Counting in Abstract Argumentation – Introduction & Motivation
	Utilizing Treewidth and Dynamic Programming
	Empirical Evaluation
	Conclusions & Future Work

