

Ridhwan Dewoprabowo¹ Johannes K. Fichte² <u>Piotr Jerzy Gorczyca</u>¹ Markus Hecher² ¹ TU Dresden, ² TU Wien

A Practical Account into Counting Dung's Extensions by Dynamic Programming

LPNMR'22 conference talk, Genova, September 8th 2022

Counting in Abstract Argumentation – Introduction & Motivation

Utilizing Treewidth and Dynamic Programming

Empirical Evaluation

Conclusions & Future Work

Abstract Argumentation (AA)

Argumentation

Formal framework [Dung, 1995] to:

- deal with contentious information and draw conclusions from it
- represent conflicts between arguments

Abstract Argumentation (AA)

Argumentation

Formal framework [Dung, 1995] to:

- deal with contentious information and draw conclusions from it
- represent conflicts between arguments

Extensions

- subsets of arguments congruent mutually
- semantics define how to choose such subsets
 - e.g. admissible, stable, grounded, preferred etc.

Motivation – Counting Extensions

Question

Instead of: **does** the problem **have a solution**? (decision) We ask: **how many solutions** does the problem have? (quantity)

Motivation – Counting Extensions

Question

Instead of: **does** the problem **have a solution**? (decision) We ask: **how many solutions** does the problem have? (quantity)

Counting in Argumentation

- · Quantitative reasoning
- Probabilistic argumentation
- Counting impacts:
 - Bayesian inference, bounded-length adversarial and contingency planning, reliability estimation

Computational complexity

• #P-complete [Valiant, 1979]

Motivation – Counting Extensions

Question

Instead of: **does** the problem **have a solution**? (decision) We ask: **how many solutions** does the problem have? (quantity)

Counting in Argumentation

- · Quantitative reasoning
- Probabilistic argumentation
- Counting impacts:
 - Bayesian inference, bounded-length adversarial and contingency planning, reliability estimation

Counting \neq Enumeration

Computational complexity

• #P-complete [Valiant, 1979]

Our Research

Contributions

- Implementation of theoretical algorithms for counting in AA,
- Development of a (first) dedicated counting solver for counting extensions of AFs under:
 - stable, admissible and complete semantics
- Empirical evaluation illustrating that our system can be competitive.

Extension S is

• **stable** if conflict-free, defends itself, and attacks every $a \in F \setminus S$ in *F*, and for each $a \in A \setminus S, S \rightarrow a$.

A Practical Account into Counting Dung's Extensions by Dynamic Programming Dewoprabowo, Fichte, Gorczyca, Hecher Genova, September 8th 2022

• **stable** if conflict-free, defends itself, and attacks every $a \in F \setminus S$ in *F*, and for each $a \in A \setminus S, S \rightarrow a$.

• **stable** if conflict-free, defends itself, and attacks every $a \in F \setminus S$ in *F*, and for each $a \in A \setminus S, S \rightarrow a$.

• **stable** if conflict-free, defends itself, and attacks every $a \in F \setminus S$ in *F*, and for each $a \in A \setminus S, S \rightarrow a$.

• **stable** if conflict-free, defends itself, and attacks every $a \in F \setminus S$ in *F*, and for each $a \in A \setminus S, S \mapsto a$.

Counting in Abstract Argumentation – Introduction & Motivation

Utilizing Treewidth and Dynamic Programming

Empirical Evaluation

Conclusions & Future Work

Utilizing Treewidth

Problem

#P-complete problems are **hard to solve**...

Idea

Decompose the initial problem into trivial subproblems, combine the subsolutions **Parameter**: overlap between subproblems – treewidth of the primal graph

Tree Decompositions

Definition

A tree decomposition is a tree obtained from an arbitrary graph s.t.

- 1. Each vertex must occur in some bag
- 2. For each edge, there is a bag containing both endpoints
- 3. *Connected*: Connected: If a vertex v appears in bags t_0 and t_1 , then v is also in the bag of each node on the path between t_0 and t_1 .

 $C(a) = in \quad \text{iff } a \in S$ $C(a) = def \quad \text{iff } S \rightarrowtail a$ $C(a) = out \quad \text{iff } S \not\rightarrow a \text{ and } a \notin S$

A Practical Account into Counting Dung's Extensions by Dynamic Programming Dewoprabowo, Fichte, Gorczyca, Hecher Genova, September 8th 2022

 $C(a) = in \quad \text{iff } a \in S$ $C(a) = def \quad \text{iff } S \rightarrowtail a$ $C(a) = out \quad \text{iff } S \not\rightarrow a \text{ and } a \notin S$

b	x	a	
out	out	out	
out	out	def	
out	out	in	
out	def	out	
out	def	def	
out	def	in	
out	in	out	
out	in	def	
out	in	in	
def	out	out	
def	out	def	
def	out	in	
def	def	out	
def	def	def	
def	def	in	
def	in	out	
def	in	def	
def	in	in	

1	b	x	a
	in	out	out
	in	out	def
	in	out	in
	in	def	out
	in	def	def
	in	def	in
	in	in	out
	in	in	def
	in	in	in

 $C(a) = in \quad \text{iff } a \in S$ $C(a) = def \quad \text{iff } S \rightarrowtail a$ $C(a) = out \quad \text{iff } S \not\rightarrow a \text{ and } a \notin S$

b	x	a
out	out	out
out	out	def
out	out	in
out	def	out
out	def	def
out	def	in
out	in	out
out	in	def
out	in	in
def	out	out
def	out	def
def	out	in
def	def	out
def	def	def
def	def	in
def	in	out
def	in	def
def	in	in

_		
b	x	a
in	out	out
in	out	def
in	out	in
in	def	out
in	def	def
in	def	in
in	in	out
in	in	def
in	in	in
_		

_		
b	x	c
out	in	out
out	in	def
out	in	in
def	out	out
def	out	def
def	out	in
in	in	out
in	in	def
in	in	in
b	x	a
out	in	def
def	out	in
in	in	def

 $C(a) = in \quad \text{iff } a \in S$ $C(a) = def \quad \text{iff } S \rightarrowtail a$ $C(a) = out \quad \text{iff } S \not\rightarrow a \text{ and } a \notin S$

b	x	c
out	in	out
out	in	def
out	in	in
def	out	out
def	out	def
def	def	in
in	in	out
in	in	def
in	in	in
b	x	a
out	in	def
def	out	in
in	in	def

 $C(a) = in \quad \text{iff } a \in S$ $C(a) = def \quad \text{iff } S \rightarrowtail a$ $C(a) = out \quad \text{iff } S \not\rightarrow a \text{ and } a \notin S$

A Practical Account into Counting Dung's Extensions by Dynamic Programming Dewoprabowo, Fichte, Gorczyca, Hecher Genova, September 8th 2022

 $C(a) = in \quad \text{iff } a \in S$ $C(a) = def \quad \text{iff } S \rightarrowtail a$ $C(a) = out \quad \text{iff } S \not\rightarrow a \text{ and } a \notin S$

A Practical Account into Counting Dung's Extensions by Dynamic Programming Dewoprabowo, Fichte, Gorczyca, Hecher Genova, September 8th 2022

 $C(a) = in \quad \text{iff } a \in S$ $C(a) = def \quad \text{iff } S \rightarrowtail a$ $C(a) = out \quad \text{iff } S \not\rightarrow a \text{ and } a \notin S$

A Practical Account into Counting Dung's Extensions by Dynamic Programming Dewoprabowo, Fichte, Gorczyca, Hecher Genova, September 8th 2022

 $C(a) = in \quad \text{iff } a \in S$ $C(a) = def \quad \text{iff } S \rightarrowtail a$ $C(a) = out \quad \text{iff } S \not\to a \text{ and } a \notin S$

A Practical Account into Counting Dung's Extensions by Dynamic Programming Dewoprabowo, Fichte, Gorczyca, Hecher Genova, September 8th 2022

 $C(a) = in \quad \text{iff } a \in S$ $C(a) = def \quad \text{iff } S \rightarrowtail a$ $C(a) = out \quad \text{iff } S \not\rightarrow a \text{ and } a \notin S$

A Practical Account into Counting Dung's Extensions by Dynamic Programming Dewoprabowo, Fichte, Gorczyca, Hecher Genova, September 8th 2022

A Practical Account into Counting Dung's Extensions by Dynamic Programming Dewoprabowo, Fichte, Gorczyca, Hecher Genova, September 8th 2022

A Practical Account into Counting Dung's Extensions by Dynamic Programming Dewoprabowo, Fichte, Gorczyca, Hecher Genova, September 8th 2022

A Practical Account into Counting Dung's Extensions by Dynamic Programming Dewoprabowo, Fichte, Gorczyca, Hecher Genova, September 8th 2022

Implementation

DPDB

DPDB [Fichte et al., 2020] – a general framework utilizing: **Tree Decompositions**, **Dynamic Programming** and **Database Management Systems**

• Currently supporting: #SAT, Vertex Cover ...

Implementation

DPDB

DPDB [Fichte et al., 2020] – a general framework utilizing: **Tree Decompositions**, **Dynamic Programming** and **Database Management Systems**

- Currently supporting: #SAT, Vertex Cover ...
- Now also counting extensions of AA frameworks!

Implementation

DPDB

DPDB [Fichte et al., 2020] – a general framework utilizing: **Tree Decompositions**, **Dynamic Programming** and **Database Management Systems**

- Currently supporting: #SAT, Vertex Cover ...
- Now also counting extensions of AA frameworks!

DPDB Architecture

A Practical Account into Counting Dung's Extensions by Dynamic Programming Dewoprabowo, Fichte, Gorzyca, Hecher Genova, September 8th 2022

DPDB in Practice – Generated SQL Query

 def_{in}

Query

1	SELECT va,vb,vx, da,db,dx,
2	sum (model_count) AS model_count
3	FROM (WITH introduce AS
4	(SELECT true val UNION ALL SELECT false)
5	SELECT ia.val va, ib.val vb, ix.val vx,
6	(ix.val) AS da,(ia.val) AS db,FALSE AS dx,
7	1 AS model_count
8	<pre>FROM introduce ib , /*introduce*/</pre>
9	introduce ix, introduce ia) AS candidate
10	WHERE (va OR da) AND /* forget a*/
11	(NOT (va AND vb)) AND /*conflict-free*/
12	(NOT (vx AND va))
13	GROUP BY va, vb, vx, da, db, dx

Query output

vb	db	vx	dx	va	da	$model_count$
0	0	1	0	0	1	1
0	1	0	0	1	0	1
1	0	1	0	0	1	1

Meaning b x aout in def

out	in	def
def	out	in
in	in	def

Counting in Abstract Argumentation – Introduction & Motivation

Utilizing Treewidth and Dynamic Programming

Empirical Evaluation

Conclusions & Future Work

Evaluation – Setup

Other systems

- Leading solvers of the recent editions of ICCMA: μ-toksia [Niskanen and Järvisalo, 2020], aspartix [Dvořák et al., 2020], pyglaf [Alviano, 2017]
- State-of-the-art propositional model counters: SharpSAT-td, d4 ¹

¹using aspartix's ASP encoding and translating the ground ASP instance into a SAT formula (with the help of 1p2normal and 1p2sat) ²more recent instances out of reach for DPDB due to TW.

Evaluation – Setup

Other systems

- Leading solvers of the recent editions of ICCMA: μ-toksia [Niskanen and Järvisalo, 2020], aspartix [Dvořák et al., 2020], pyglaf [Alviano, 2017]
- State-of-the-art propositional model counters: SharpSAT-td, d4 ¹

(Virtual) portfolio solvers

- Portfolio solvers: DPDB+ $X, X \in \{aspartix, \mu\text{-toksia}, pyglaf\}$
- Virtual portfolio solvers: aspartix+ $X, X \in \{ \text{ sharpSAT-td, d4} \}$

¹using aspartix's ASP encoding and translating the ground ASP instance into a SAT formula (with the help of 1p2normal and 1p2sat) ²more recent instances out of reach for DPDB due to TW.

Evaluation – Setup

Other systems

- Leading solvers of the recent editions of ICCMA: μ-toksia [Niskanen and Järvisalo, 2020], aspartix [Dvořák et al., 2020], pyglaf [Alviano, 2017]
- State-of-the-art propositional model counters: SharpSAT-td, d4 ¹

(Virtual) portfolio solvers

- Portfolio solvers: DPDB+ $X, X \in \{aspartix, \mu\text{-toksia}, pyglaf\}$
- Virtual portfolio solvers: aspartix+ $X, X \in \{ \text{ sharpSAT-td, d4} \}$

Benchmarks

- ICCMA'17 instances [Gaggl et al., 2018]²
- 600s timeouts

¹using aspartix's ASP encoding and translating the ground ASP instance into a SAT formula (with the help of 1p2norma1 and 1p2sat) ²more recent instances out of reach for DPDB due to TW.

Evaluation – Results

solver	adm.	comp.	stab.
aspartix	236	362	469
/d4	347	406	483
/sharpSAT-td	368	410	487
dpdb	96	100	113
+aspartix	311	379	475
+µ-toksia21	95	367	468
+pyglaf	300	372	478
μ -toksia21	-	299	446
pyglaf	221	336	463
sharpSAT-td	284	350	387
vbest	371	411	505

(a) Number of solved instances of various solvers.

	adm.	comp.	stab.
median	2.9	0.5	0.0
mean	11.6	8.3	3.8
max	512.6	487.7	498.2
aspartix	7.9	8.3	8.7
dpdb	154.6	119.9	75.0
mu_toksia21	-	5.1	5.2
pyglaf	6.1	6.5	5.8
sharpSAT-td	512.6	487.7	498.2

(b) Observed counts in \log_{10} format.The lower part states the maximum count observed for the respective solver.

Evaluation – Results

solver	adm.	comp.	stab.
aspartix	236	362	469
/d4	347	406	483
/sharpSAT-td	368	410	487
dpdb	96	100	113
+aspartix	311	379	475
+µ-toksia21	95	367	468
+pyglaf	300	372	478
μ -toksia21	-	299	446
pyglaf	221	336	463
sharpSAT-td	284	350	387
vbest	371	411	505

(a) Number of solved instances of various solvers.

	adm.	comp.	stab.
median	2.9	0.5	0.0
mean	11.6	8.3	3.8
max	512.6	487.7	498.2
aspartix	7.9	8.3	8.7
dpdb	154.6	119.9	75.0
mu_toksia21	-	5.1	5.2
pyglaf	6.1	6.5	5.8
sharpSAT-td	512.6	487.7	498.2

(b) Observed counts in \log_{10} format.The lower part states the maximum count observed for the respective solver.

Note:

Enumeration works fine only when the number of solutions is small.

Results - Admissible Semantics

Counting in Abstract Argumentation – Introduction & Motivation

Utilizing Treewidth and Dynamic Programming

Empirical Evaluation

Conclusions & Future Work

Conclusions

(Our extension of) DPDB

- utilizes Dynamic Programming algorithms on Tree Decompositions with Database Management Systems
- + works well with instances of small treewidth and high number of solutions,
 - otherwise enumeration is sufficient
- cannot deal with instances of high treewidth,
- · when used in a portfolio system can be competitive with the state-of-the-art solvers,
- is the first implementation of a dedicated counter for Abstract Argumentation.

Future Work

Upcoming Tasks

- · addressing high treewidths with abstractions of Tree Decompositions (nested dynamic programming),
- · using parallelization for large instances of low treewidth,
- · developing dedicated preprocessing techniques for argumentation.

Future Work

Upcoming Tasks

- · addressing high treewidths with abstractions of Tree Decompositions (nested dynamic programming),
- · using parallelization for large instances of low treewidth,
- developing dedicated preprocessing techniques for argumentation.

Thank you for listening.

Future Work

Upcoming Tasks

- · addressing high treewidths with abstractions of Tree Decompositions (nested dynamic programming),
- · using parallelization for large instances of low treewidth,
- · developing dedicated preprocessing techniques for argumentation.

Thank you for listening.

Sponsors:

 DFG Grant TRR 248 project ID 389792660 (CPEC); BMBF Grant 01IS20056_NAVAS; WWTF grant ICT19-065, FWF grants P32830 and Y698.

Bibliography I

Àlviano, M. (2017).

Ingredients of the argumentation reasoner pyglaf: Python, circumscription, and glucose to taste. In Maratea, M. and Serina, I., editors, *Proceedings of the 24th RCRA International Workshop on Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion 2017 co-located with the 16th International Conference of the Italian Association for Artificial Intelligence (AI*IA 2017), Bari, Italy, November 14-15, 2017*, volume 2011 of *CEUR Workshop Proceedings*, pages 1–16. CEUR-WS.org.

Charwat, G. (2012).

Tree-decomposition based algorithms for abstract argumentation framework. Master's thesis, TU Wien, Vienna, Austria.

Dung, P. M. (1995).

On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games.

AlJ, 77(2).

Dvořák, W., Rapberger, A., Wallner, J., and Woltran, S. (2020).

ASPARTIX-V19 - An Answer-Set Programming Based System for Abstract Argumentation. In *FolKS 2020*, volume 12012. Springer, Cham.

Bibliography II

Fichte, J. K., Hecher, M., Thier, P., and Woltran, S. (2020). Exploiting database management systems and treewidth for counting. In <i>PADL</i> , volume 12007 of <i>LNCS</i> , pages 151–167. Springer.
Gaggl, S. A., Linsbichler, T., Maratea, M., and Woltran, S. (2018). Summary report of the second international competition on computational models of argumentation. <i>Al Magazine</i> , 39(4):77–79.
Niskanen, A. and Järvisalo, M. (2020). [–] -toksia: An efficient abstract argumentation reasoner. In <i>KR 2020</i> , pages 800–804.
Valiant, L. (1979). The complexity of computing the permanent.

Theoretical Computer Science, 8(2):189–201.

 $C(a) = in \quad \text{iff } a \in S$ $C(a) = def \quad \text{iff } S \rightarrowtail a$ $C(a) = out \quad \text{iff } S \not\rightarrow a \text{ and } a \notin S$

 $C(a) = in \quad \text{iff } a \in S$ $C(a) = def \quad \text{iff } S \rightarrowtail a$ $C(a) = out \quad \text{iff } S \not\rightarrow a \text{ and } a \notin S$

b	x	a	
out	out	out	
out	out	def	
out	out	in	
out	def	out	
out	def	def	
out	def	in	
out	in	out	
out	in	def	
out	in	in	
def	out	out	
def	out	def	
def	out	in	
def	def	out	
def	def	def	
def	def	in	
def	in	out	
def	in	def	
def	in	in	

1	b	x	a
	in	out	out
	in	out	def
	in	out	in
	in	def	out
	in	def	def
	in	def	in
	in	in	out
	in	in	def
	in	in	in

 $C(a) = in \quad \text{iff } a \in S$ $C(a) = def \quad \text{iff } S \rightarrowtail a$ $C(a) = out \quad \text{iff } S \not\rightarrow a \text{ and } a \notin S$

_		
Ь	x	a
out	out	out
out	out	def
out	out	in
out	def	out
out	def	def
out	def	in
out	in	out
out	in	def
out	in	in
def	out	out
def	out	def
def	out	in
def	def	out
def	def	def
def	def	in
def	in	out
def	in	def
def	in	in

b	x	a
in	out	out
in	out	def
in	out	in
in	def	out
in	def	def
in	def	in
in	in	out
in	in	def
in	in	in
_		

 $b \quad x$

out out

in def

out out

out

out

def out

in

a

in

in in def

 $C(a) = in \quad \text{iff } a \in S$ $C(a) = def \quad \text{iff } S \rightarrowtail a$ $C(a) = out \quad \text{iff } S \not\rightarrow a \text{ and } a \notin S$

 $b \quad x$

out out

in def

out out

out def

in

a

out

out in

in in def

 $C(a) = in \quad \text{iff } a \in S$ $C(a) = def \quad \text{iff } S \rightarrowtail a$ $C(a) = out \quad \text{iff } S \not\rightarrow a \text{ and } a \notin S$

 $b \quad x$

out out

in def

in def

out

def out

in out out

in

a

out

in

 $C(a) = in \quad \text{iff } a \in S$ $C(a) = def \quad \text{iff } S \rightarrowtail a$ $C(a) = out \quad \text{iff } S \not\rightarrow a \text{ and } a \notin S$

b x

in def

out

def out

a

in

in in def

 $C(a) = in \quad \text{iff } a \in S$ $C(a) = def \quad \text{iff } S \rightarrowtail a$ $C(a) = out \quad \text{iff } S \not\rightarrow a \text{ and } a \notin S$

b	x	c
out	in	out
out	in	def
out	in	in
def	out	out
def	out	def
def	out	in
in	in	out
in	in	def
in	in	in
_		
(b	x	a
out	in	def
def	out	in
in	in	def

 $C(a) = in \quad \text{iff } a \in S$ $C(a) = def \quad \text{iff } S \rightarrowtail a$ $C(a) = out \quad \text{iff } S \not\rightarrow a \text{ and } a \notin S$

b	x	c
out	in	out
out	in	def
out	in	in
def	out	out
def	out	def
def	out	in
in	in	out
in	in	def
in	in	in
Ь	x	a
out	in	def
def	out	in
in	in	def

 $C(a) = in \quad \text{iff } a \in S$ $C(a) = def \quad \text{iff } S \rightarrowtail a$ $C(a) = out \quad \text{iff } S \not\rightarrow a \text{ and } a \notin S$

b xcout inout def out inout inindefout out defdefout def out def inininoutdef inininininb xaout indefdefoutinindef in

 $C(a) = in \quad \text{iff } a \in S$ $C(a) = def \quad \text{iff } S \rightarrowtail a$ $C(a) = out \quad \text{iff } S \not\rightarrow a \text{ and } a \notin S$

Ь	x	c
out	in	out
out	in	def
out	in	in
def	out	out
def	out	def
def	def	in
in	in	out
in	in	def
in	in	in
b	x	a
out	in	def
def	out	in
in	in	def
<u> </u>		

 $C(a) = in \quad \text{iff } a \in S$ $C(a) = def \quad \text{iff } S \rightarrowtail a$ $C(a) = out \quad \text{iff } S \not\rightarrow a \text{ and } a \notin S$

b	x	c
out	in	out
out	in	def
out	in	in
def	out	out
def	out	def
def	def	in
in	in	out
in	in	def
in	in	in
Ь	x	a
out	in	def
def	out	in
in	in	def

 $C(a) = in \quad \text{iff } a \in S$ $C(a) = def \quad \text{iff } S \rightarrowtail a$ $C(a) = out \quad \text{iff } S \not\rightarrow a \text{ and } a \notin S$

 $C(a) = in \quad \text{iff } a \in S$ $C(a) = def \quad \text{iff } S \rightarrowtail a$ $C(a) = out \quad \text{iff } S \not\to a \text{ and } a \notin S$

 $C(a) = in \quad \text{iff } a \in S$ $C(a) = def \quad \text{iff } S \rightarrowtail a$ $C(a) = out \quad \text{iff } S \not\rightarrow a \text{ and } a \notin S$

 $C(a) = in \quad \text{iff } a \in S$ $C(a) = def \quad \text{iff } S \rightarrowtail a$ $C(a) = out \quad \text{iff } S \not\rightarrow a \text{ and } a \notin S$

 $C(a) = in \quad \text{iff } a \in S$ $C(a) = def \quad \text{iff } S \rightarrowtail a$ $C(a) = out \quad \text{iff } S \not\rightarrow a \text{ and } a \notin S$

 $C(a) = in \quad \text{iff } a \in S$ $C(a) = def \quad \text{iff } S \rightarrowtail a$ $C(a) = out \quad \text{iff } S \not\rightarrow a \text{ and } a \notin S$

 $C(a) = in \quad \text{iff } a \in S$ $C(a) = def \quad \text{iff } S \rightarrowtail a$ $C(a) = out \quad \text{iff } S \not\rightarrow a \text{ and } a \notin S$

 $C(a) = in \quad \text{iff } a \in S$ $C(a) = def \quad \text{iff } S \rightarrowtail a$ $C(a) = out \quad \text{iff } S \not\rightarrow a \text{ and } a \notin S$

 $C(a) = in \quad \text{iff } a \in S$ $C(a) = def \quad \text{iff } S \rightarrowtail a$ $C(a) = out \quad \text{iff } S \not\rightarrow a \text{ and } a \notin S$

Choice of Benchmarks

Figure: Distribution of heuristically computed widths. The x-axis lists intervals into which the heuristically computed width of a TD falls (K). The y-axis states the number (N) of instances.

Abstract Argumentation – Basics

Framework

An argumentation framework is a pair F = (A, R) where

- *A* is a set of arguments and
- $R \subseteq A \times A$ is an attack relation.

Framework

Further, for $a, b \in A$ and $S, S' \subseteq A$ we denote the following attack relation \rightarrow :

- $a \rightarrowtail b$ if $(a, b) \in R$,
- $S \rightarrow a$ if there exists $b \in S$ s.t. $(b, a) \in R$,
- $a \rightarrow S$ if there exists $b \in S$ s.t. $(a, b) \in R$ and
- $S \rightarrow S'$ if there exists $a \in S$, $b \in S'$ s.t. $(a, b) \in R$.

and that:

- *S* is conflict-free if there are no $a, b \in S$ s.t. $(a, b) \in R$,
- *S* defends *a* if for each *b* s.t. $b \rightarrow a$, $S \rightarrow b$.

Abstract Argumentation – Semantics & Extensions

Semantics:

- are functions $\sigma: F \mapsto 2^A$, i.e. map the framework F = (A, R) to set of subsets of A satisfying certain conditions,
- those subsets are called σ -extensions,
- in this work we focus on admissible, stable and complete semantics.

Semantics - definitions

Given an AF F = (A, R), $a \in A$, $S \subseteq A$, S is a(n):

- admissible extension if it is conflict-free in *F* and each $a \in S$ is defended by *S*.
- stable extension if it is conflict-free in *F* and for each $a \in A \setminus S, S \rightarrow a$.
- complete extension if it is conflict-free in *F* and for each $a \in A$, if *S* defends *a*, then $a \in S$.

SQL - Admissible Semantics (1)

SELECT vb. db. vx. dx. va. da. sum(model count) AS model count 3 FROM (WITH introduce AS (SELECT false val UNION ALL SELECT true) Δ 5 SELECT ib. val vb. ix. val vx. ia. val va. CASE WHEN is val THEN true WHEN (FALSE) AND (NOT ia.val) OR (FALSE) 8 THEN false 9 FLSE null ··· BOOLEAN 10 END AS db, CASE WHEN FALSE THEN true 11 12 WHEN (ia.val) AND (TRUE) OR (FALSE) 13 THEN false 14 ELSE null: BOOLEAN 15 END AS dx. 16 CASE WHEN ix , val THEN true 17 WHEN (ib.val) AND (NOT ix.val) OR (FALSE) 18 THEN false 19 FISE null ... BOOLEAN 20 END AS da, 21 1 AS model count 22 FROM introduce ix. /*introduce*/ 23 introduce ib, introduce ia) AS candidate 24 WHERE (da IS NOT false) AND /* forget a*/ 25 (NOT (va AND vb)) AND /* conflict - free */ (NOT (vx AND va)) 26 27 GROUP BY vb.vx. va. db.dx.da

SQL – Admissible Semantics (2)

Query output

ſ	vb	db	vx	dx	va	da	#
ľ	false	NULL	false	NULL	false	NULL	1
	false	NULL	true	_	false	true	1
	false	true	false	false	1	_	1
l	true	-	true	_	false	true	1

Meaning

b	x	a
out	out	out
out	in	def
def	att	in
in	in	def

vi	di	meaning
0	NULL	out
0	0	att
0	1	def
1	-	in

SQL - Complete Semantics (1)

vi	di	meaning
0	false	in
1	false	defp
1	true	def
2	false	outp
2	true	out

SELECT vb.vx. va. db.dx.da. sum(model count) AS model count FROM (WITH introduce AS 4 (SELECT 0 val UNION ALL SELECT 1 UNION ALL SELECT 2) 5 6 SELECT ib. val vb. ix. val vx. ia. val va. 7 ((ib, val = 1 AND (ia, val = 0)) OR (ib, val = 2 AND (ia, val = 2))) AS db,8 (FALSE OR FALSE) AS dx. ((ia, val = 1 AND (ix, val = 0)) OR (ia, val = 2 AND (ix, val = 2))) AS da,9 10 1 AS model count 11 FROM introduce ia. /*introduce*/ 12 introduce ib, introduce ix) AS candidate 13 WHERE (va = 0 OR da) AND /* forget a*/ 14 (NOT (va = 0 AND vb = 0)) AND15 (NOT (yx = 0 AND ya = 0)) AND /* conflict - free */16 (NOT (va = 2 AND vb = 0)) AND17 (NOT (vx = 2 AND va = 0)) AND18 (NOT (va = 0 AND vb = 2)) AND19 (NOT (yx = 0 AND ya = 2))/*colouring*/ 20 GROUP BY vb, vx, va, db, dx, da

SQL – complete semantics (2)

Query output

vb	db	vx	dx	va	da	#
1	false	0	false	1	true	1
1	true	1	false	0	false	1
1	false	2	false	2	true	1
2	true	2	false	2	true	1
0	false	0	false	1	true	1
2	false	0	false	1	true	1

Meaning

Ь	x	a
defp	in	def
def	defp	in
defp	outp	out
out	outp	out
in	in	def
outp	in	def

vi	di	meaning
0	false	in
1	false	defp
1	true	def
2	false	outp
2	true	out

Stable Algorithm in Set Notation

Listing 1: Table algorithm $S(t, \chi(t), F_t, \langle \tau_1, ..., \tau_\ell \rangle)$ for stable semantics on TDs.

In: Node t, bag $\chi(t)$, AF F_t , sequence $\langle \tau_1, \ldots, \tau_\ell \rangle$ of child tables. **Out:** Table τ_t . 1 if type(t) = leaf then $\tau_t := \{\langle \mathcal{O}, 1 \rangle\}$ 2 else if type $(t) = intr, and a \in \chi(t)$ is introduced then 3 $|\tau_t := \{\langle J \sqcup \{b \mapsto def \mid b \in J^{out}, J^{in} \rightarrow b\}, c \rangle \mid \langle I, c \rangle \in \tau_1, J \in \{I_{a \mapsto in}^*, I_{a \to out}^*\}, J^{in} \not\rightarrow J^{in}\}$ 4 else if type $(t) = forget, and a \notin \chi(t)$ is removed then 5 $|\tau_t := \{\langle I_a^-, \Sigma_{\langle J, c \rangle \in \tau_1: I_a^- = I_a^-, a \notin J^{out} c} \rangle \mid \langle I, c \rangle \in \tau_1, a \notin I^{out}\}$ 6 else if type(t) = join then 7 $|\tau_t := \{\langle I_1 \sqcup \{b \mapsto def \mid b \in I_2^{def}\}, c_1 \cdot c_2 \rangle \mid \langle I_1, c_1 \rangle \in \tau_1, \langle I_2, c_2 \rangle \in \tau_2, I_1^{in} = I_2^{in}\}$

 $S_s^- := S \setminus \{s \mapsto \text{in}, s \mapsto \text{def}, s \mapsto \text{out}\}, S^l := \{s \mid S(s) = l\}, S_s^+ := S \cup \{s\}, S \sqcup D := \bigcup_{s \in \text{dom}(S) \setminus \text{dom}(D)} \{s \mapsto S(s)\} \cup D.$

Stable Semantics – Table Algorithm using Relational Algebra

Listing 2: Table algorithm $S(t, \chi(t), F_t, \langle \tau_1, \ldots, \tau_\ell \rangle)$ for stable semantics.

Admissible Semantics – Table Algorithm in Relational Algebra

Listing 3: Table algorithm $\mathbb{A}(t, \chi(t), F_t, \langle \tau_1, \ldots, \tau_\ell \rangle)$ for admissible semantics.

In: Node *t*, bag $\chi(t)$, framework $F_t = (A_t, R_t)$, sequence $\langle \tau_1, \ldots, \tau_\ell \rangle$ of child tables. **Out:** Table τ_t .

- 1 **if** type(*t*) = *leaf* **then** $\tau_t := \{\{(cnt, 1)\}\}$
- **2** else if type(t) = intr, and $a \in \chi(t)$ is introduced **then**
- $\mathbf{3} \quad \left| \tau_t := \Pi_{\chi(t), \cup \{d_b \leftarrow \mathsf{df}_t(d_b, b)\}}(\tau_1 \bigotimes_{\substack{b \land \neg b \lor \neg c \\ (b,c) \in R_t}} \{\{(a, 1), (d_a, 0)\}, \{(a, 0), (d_a, 0)\}\} \right)$
- **4 else if** type(t) = forget, and $a \notin \chi(t)$ is removed **then**
- 6 else if type(t) = join then

Let jn(d, e) := 2 if d=2 or e=2; else 1 if d=1 or e=1; else 0, and $df_t(d, b) := jn(d, 2$ if $(\bigvee c)$; else 1 if $(\bigvee c)$; else 0). $(c,b) \in \mathbb{R}_t$ $(b,c) \in \mathbb{R}_t$

