
From the Calculus of Structures to

Term Rewriting Systems

Steffen Hölldobler∗, Ozan Kahramanoğullari†

WV–04–03

Abstract

The calculus of structures is a recently developed proof theoretical for-
malism that extends one-sided sequent calculus, with the gain of interesting
proof theoretical properties. In contrast to sequent calculus, it does not rely
on the notion of main connective and, like in term rewriting, permits the
application of inference rules anywhere deep inside a formula. In this paper,
exploiting this resemblance, we present a procedure turning derivations in the
calculus of structures in four steps into rewritings in a term rewriting system
modulo equality.

1 Motivation

The calculus of structures is a proof theoretical formalism, like natural deduction,
the sequent calculus and proof nets, for specifying logical systems syntactically.
It was first introduced by Alessio Guglielmi in [6] where it was used to express a
logical system, called BV , with two associative and commutative operators and
a self-dual, associative, but non-commutative operator, which is shown to be not
definable in any sequent calculus system [13]. Then it turned out to yield systems
with interesting and exciting properties for existing logics and new insights to
proof theory (see e.g.[12, 2, 4]).

The calculus of structures can be considered as a generalization of the one-sided
sequent calculus that provides a more refined analysis of proofs: structures are
expressions which share properties of formulae and sequents, allowing more con-
trol over the mutual dependencies of logical relations. The two main aspects that
distinguish this formalism from sequent calculus are deep inference and symme-
try : inferences are symmetric between premises and conclusions and, like in term
rewriting, inference rules are deeply applicable inside expressions. Whereas the

∗Technische Universität Dresden, International Center for Computational Logic, sh@iccl.tu-
dresden.de

†Universität Leipzig, visiting research associate at the ICCL, ozan@informatik.uni-leipzig.de

1

main work in the calculus of structures was developed with respect to the sequent
calculus, we have always suspected that it is strongly related to rewriting with
respect to a term rewriting and an equational system. The main purpose of this
paper is to investigate into this relationship.

But there are additional questions. The notion of a structure is a non-standard
one and people may raise concerns because a “structure” is a well-defined notion
in mathematics and logic, which differs from its use in the calculus of structure.
Hence, we would like to answer the question of what exactly is a structure. Last
but not least the definition of a derivation in the calculus of structures is not
operational and lacks precision. For example, notions like a context, a hole in a
structure, an instance of an inference rule etc. are not formally defined although
their meanings are intuitively obvious. Nevertheless, we wanted to give a concise
definition thereof.

The paper is organized as follows: After recollecting some basic definitions in
Section 2 we present system BV , a typical system in the calculus of structures,
taken from [7]. We then define a four step transformation: reasoning within
an equivalence class are replaced by explicit equality steps in Section 4, n-ary
operators are replaced by binary ones in Section 5, the notion of a structure is
replaced by the notion of a term in Section 6 and inference rules are replaced by
rewriting rules in Section 8. Finally, in Section 9 we discuss possible future work.

2 Basic Definitions

In this section we collect basic definitions for terms, positions, replace-
ments, substitutions, equations and rewrite rules as can be found in
e.g. [1] or [10]. The reader familiar with these notions may skip this
section.

Given a set Σ of graded function symbols and a set V of variables with Σ∩V = ∅ ,
the set T (Σ,V) of all Σ -terms over V is defined as usual. The set of positions
pos(s) of a term s is inductively defined as follows:

• If s = X ∈ V , then pos(s) = {Λ} .

• If s = f(s1, . . . , sn) then pos(s) = {Λ} ∪
⋃n
i=1{iπ | π ∈ pos(si)} .

For π ∈ pos(s) the sub-term of s at position π , denoted by s|π , is inductively
defined as follows:

• s|Λ = s .

• f(s1, . . . , sn)|iπ = si|π .

2

s, t, . . . X, Y, . . . π σ, θ, . . . R, S, . . .

terms variables positions substitutions structures

Table 1: Notational Conventions.

For π ∈ pos(s) the term obtained from s by replacing the sub-term at position
π by t , denoted by s|t|π , is inductively defined as follows:

• s|t|Λ = t .

• f(s1, . . . , sn)|t|iπ = f(s1, . . . , si|t|π, . . . , sn) .

A substitution σ is a mapping from the set V of variables to the set T (Σ,V) of
Σ -terms, which is equal to the identity except for finitely many variables. Thus,
σ can be represented by {X 7→ σ(X) | σ(X) 6= X} . ε denotes the empty
substitution. The instance of a term s wrt σ , is defined as usual.

An equation is an expression of the form s ≈ t , where s and t are Σ -terms
over a countably infinite set V of variables. An equational system is a set of
(conditional) equations. We implicitly assume that the equational axioms, i.e.,
the axioms for reflexivity, symmetry, transitivity and substitutivity, are added to
each equational system. Let ≈E be the finest congruence relation generated by
an equational system E .

A rewrite rule is an expression of the form l→ r , where l is a non-variable term
and r is a term. A term rewriting system is a set of rewrite rules. A redex is
an instance of a left-hand side of a rewrite rule. Given terms s, t and a term
rewriting system R , s rewrites to t wrt R , denoted by s→R(ρ,π,σ) t if there is a
position π ∈ pos(s) and a substitution σ such that s|π = σ(l) and t = s|σ(r)|π ,
where ρ is the rewrite rule being applied. Contracting a redex means replacing
it by the corresponding instance of the right-hand side of the rule.

Given terms s, t , a term rewriting system R and an equational system E , s
rewrites to t wrt R and E , denoted by s→R/E(ρ,π,σ) t if there are terms s′, t′ ,
a rewrite rule ρ = l → r , a position π ∈ pos(s′) and a substitution σ such that
s ≈E s′ , s′|π = σ(l) , t′ = s′|σ(r)|π and t′ ≈E t . In other words, s→R/E(ρ,π,σ) t
iff (∃s′, t′) s ≈E s′ →R(ρ,π,σ) t

′ ≈E t .

Throughout this paper we will make use of the notations shown in Table 1, where
all symbols may be indexed.

3 System BV in the Calculus of Structures

In this section we present system BV , the system which started the
research into the calculus of structures, following [7].

3

Associativity

〈~R; 〈~T 〉; ~U〉 ≈ 〈~R; ~T ; ~U〉

[~R, [~T]] ≈ [~R, ~T]

(~R, (~T)) ≈ (~R, ~T)

Singleton

〈R〉 ≈ [R] ≈ (R) ≈ R

Units

〈◦; ~R〉 ≈ 〈~R; ◦〉 ≈ 〈~R〉

[◦, ~R] ≈ [~R]

(◦, ~R) ≈ (~R)

Commutativity

[~R, ~T] ≈ [~T , ~R]

(~R, ~T) ≈ (~T , ~R)

Negation

◦ ≈ ◦

〈R;T 〉 ≈ 〈R;T 〉

[R, T] ≈ (R, T)

(R, T) ≈ [R, T]

R ≈ R

Figure 1: The equational system underlying BV .

In BV there are infinitely many positive atoms and infinitely many negative atoms.
Atoms, no matter whether positive or negative, are denoted with a , b , c ,
Structures, denoted with R , S , T , . . . are generated by

S ::= ◦ | a | 〈 S; . . . ;S
︸ ︷︷ ︸

>0

〉 | [S, . . . , S
︸ ︷︷ ︸

>0

] | (S, . . . , S
︸ ︷︷ ︸

>0

) | S ,

where ◦ , the unit is not an atom. 〈 S; . . . ;S 〉 is called a seq structure, [S; . . . ;S]
is called a par structure, and (S; . . . ;S) is called a copar structure, S is the
negation of the structure S . Structures with a hole that do not appear in the
scope of a negation are denoted as in S{ } , and are called structure context.

Negation obeys the usual De Morgan laws for par and copar, it switches them. It
is natural to state that 〈 S1; . . . ;Sh 〉 ≈ 〈 S1; . . . ;Sh 〉 . Negation can always be
pushed inward to atoms.

Structures are considered equivalent modulo the relation ≈ , which is the finest
congruence relation defined by the equational system shown in Figure 1.1 There
~R , ~T and ~U stand for finite, non-empty sequence of structures. A structure, or
a structure context, is said to be in normal form when the only negated structures
appearing in it are atoms, no unit ◦ appears in it and no parentheses can be
equivalently eliminated.

All structures can equivalently be considered in normal form, because negations

1In [7] axioms for context closure are added. However, because each equational system includes
the axioms of equality context closure follows from the substitutivity axioms.

4

can always be pushed in-wards to atoms by using the negation axioms, and units
can be removed, as well as extra parentheses (by associativity and singleton laws).

An inference rule is a scheme of the kind

V
ρ

U
,

where ρ is the name of the rule, V is its premise and U is its conclusion;
rule names are denoted with ρ . In an inference rule, either the premise or the
conclusion can be missing, but not both. A (formal) system is a set of inference
rules, formal systems are denoted with S . A derivation in a certain formal
system S is either a structure or a finite chain of instances of inference rules
in S ; derivations are denoted with ∆ . The topmost structure in a derivation,
if present, is called the premise of the derivation; if present, the bottommost
structure is called its conclusion. A derivation ∆ whose premise is T , conclusion
is R , and whose inference rules are in S is indicated by

T

R
S∆

(the name ∆ can be omitted). The length of a derivation is the number of
instances of inference rules appearing in it.

In this paper we consider only analytical systems, where the conclusion is the
starting point of a derivation and inference rules are used to reach the desired
premises. This analytical way of looking at systems is called the bottom-up view
in [7].

The following (logical axiom) rule ◦↓ is called unit :

◦↓
◦

.

A proof is a derivation whose topmost inference rule is the unit rule. Proofs are
denoted with Π . A formal system S proves R if there is in S a proof Π
whose conclusion is R , written

R

SΠ

(the name Π can be omitted).

The system {◦↓, ai↓, q↓, s} , shown in Figure 2, is denoted BV and called basic
system V , where V stands for one non-commutative operator2. We consider ai↓
to be a schema for all positive atoms a .

2This name is due to the intuition that W stands for two non-commutative operators.

5

◦↓
◦

S{◦}
ai↓

S [a, ā]

S 〈 [R, T] ; [R′, T ′] 〉
q↓

S [〈R;R′ 〉 , 〈 T ;T ′ 〉]

S ([R,U] , T)
s

S [(R, T) , U]

Figure 2: System BV .

As an example consider the following proof in BV :

◦
ai↓

[c, c̄]
ai↓

[(c, [b̄, b]), c̄]
s

[[b, (c, b̄)], c̄]
ai↓

[〈 [ā, a] ; [b, (b̄, c)]〉, c̄]
q↓

[〈ā; b〉, 〈a; (b̄, c)〉, c̄]

We have stated here the definitions as they are given in [7], where the only mod-
ifications were linguistic or graphical ones with the exception of the replacement
of the axioms for context closure by the axioms of susbstitutivity. Some remarks:

1. In the literature the notion of positive and negative atoms is often replaced
by the notion of (positive and negative) literals.

2. Inference rules consist of structures over atoms and variables, however, these
structures are not formally defined in [7]. Likewise, the notion of an instance
of an inference rule is undefined; this is a non-standard notion because the
context variable S appearing in the inference rules of system BV needs also
to be instantiated, and this cannot be done by a standard substitution.

3. The notion of a derivation is also not operational because it does not spec-
ify a procedure for computing a possible extension of a derivation. One
should also observe that the definition of a derivation does not require that
structures are in normal form.

4. One should also keep in mind, that holes in structure are not within the
scope of negation.

5. The notion of a topmost/bottommost structure of a derivation is undefined.

6

4 Replacing Equivalence Classes by Equality Steps

Each derivation step between two equivalence classes in BV is split
into (1) an equality step leading to a new representative of the first
equivalence class, (2) an application of an inference rule to this rep-
resentative and (3) an equality step leading to a new representative of
the second equivalence class.

In a first step to-wards an operational definition of a derivation and, in particular,
in the search for an operational definition for the application of an inference rule,
we have to make precise the role played by the syntactic equalities in a deriva-
tion. A second motivation is the fact that deduction are difficult to read because
structures represent equivalence classes.

The step taken in this section is to separate the notion of a structure from the
equivalence class defined by the equations shown in Figure 1. Hence, from this
point on, a structure is a structure and no longer an equivalence class of structures.
Let ≈ be the finest congruence relation generated by the equations shown in
Figure 1. We can now reformulate derivations as being sequences of equality and
inference steps:

A structure R is a derivation from R to R . If ∆ is a derivation from structure
R to structure T , T ≈ T ′ , there is an instance of an inference rule ρ with
conclusion T ′ and premise Q′ , and Q′ ≈ Q then

Q
≈

Q′

ρ
T ′

≈
T

R
∆

is a derivation from R to Q . For notational convenience we combine two subse-
quent equality steps occurring in a derivation into a single equality step.

The notion of a proof can be analogously redefined. If ∆ is a derivation from R
to T and T ≈ ◦ , then

◦↓
◦
≈

T

R
∆

is a proof of R . As an example consider the following proof which corresponds

7

to the proof depicted in Section 3:

◦↓
◦
≈

◦
ai↓

[c, c̄]
≈

[(◦, c), c̄]
ai↓

[([b, b̄] , c), c̄]
≈

[([b̄, b] , c), c̄]
s

[[(b̄, c), b] , c̄]
≈

[〈◦; [b, (b̄, c)]〉, c̄]
ai↓

[〈 [a, ā] ; [b, (b̄, c)]〉, c̄]
≈

[〈 [ā, a] ; [b, (b̄, c)]〉, c̄]
q↓

[[〈ā; b〉, 〈a; (b̄, c)〉] , c̄]
≈

[〈ā; b〉, [〈a; (b̄, c)〉, c̄]]

One should observe that not all structures occurring in the previous proof are in
normal form. Moreover, we still have not defined the notion of an instance of an
inference rule, but rely on the readers intuition. As before we assume that holes
in a structure are not within a negation.

Because ≈ is the finest congruence relation generated by the equational system
shown in Figure 1, each derivation and each proof as defined in Section 3 can be
transformed into a derivation and a proof as defined in this section, respectively.
We have thus clarified the role of the equational theory underlying derivations in
BV . The same kind of changes to BV have already been considered in [2].

5 Replacing n-ary Operators by binary Ones

The n-ary operators par, copar and seq are replaced by their binary
counterparts.

The use of a family of operators, one for each arity, might be helpful in presenting
structures, derivations and proofs. However, from a technical point of view binary
operators suffice and restricting ourselves to those may simplify proofs. The fol-
lowing recursive transformation turns each structure into a structure, where only

8

the binary operators 〈 ; 〉 , (,) and [,] are used:

n22(S) =







◦ if S = ◦,

S if S is a positive atom,

n22(R) if S = R,

〈n22(R);n22(~T)〉 if S = 〈R; ~T 〉,

(n22(R), n22(~T)) if S = (R, ~T),

[n22(R), n22(~T)] if S = [R, ~T].

As an example consider:

n22([〈ā; b〉, 〈a; (b̄, c)〉, c̄])

= [n22(〈ā; b〉), n22([〈a; (b̄, c)〉, c̄])]

= [〈n22(ā);n22(b)〉, [n22(〈a; (b̄, c)〉) , n22(c̄)]]

= [〈n22(a) ; b〉, [〈n22(a);n22((b̄, c)) 〉, n22(c̄)]]

= [〈ā ; b〉, [〈a; (n22(b̄) , n22(c)) 〉, n22(c)]]

= [〈ā ; b〉, [〈a; (n22(b) , c) 〉, c̄]]

= [〈ā ; b〉, [〈a; (b̄ , c) 〉, c̄]].

As a consequence, we can also simplify the equations defining the syntactic equiv-
alence leading to a refined set of equations as shown in Figure 3. Let ≈EBV denote
the finest congruence relation generated by this equational theory. Because

n22(〈R〉) = 〈R; ◦〉 ≈EBV R,

n22([R]) = [R, ◦] ≈EBV R,

n22((R)) = (R, ◦) ≈EBV R

we do not need the equations for singletons (see Figure 1) any more.

Because the inference rules for BV (see Figure 2) use only binary seq-, par- and
copar-operators, there is no need to change them.

Because n22(S) ≈ S derivations and proofs wrt n-ary seq-, par- and copar-
operators can be equivalently turned into derivations and proofs using only binary
seq, par- and copar-operators and vice versa. This may lead to less intelligible
structures, but the n-ary operators may be reintroduced as abbreviations (see e.g.
[5, 9]).

6 Replacing Structures by Terms

We replace the notion of a structure by the notion of a term, and con-
sider terms over variables, thus formalizing the concept of structures

9

Associativity

〈R; 〈S;T 〉〉 ≈ 〈〈R;S〉;T 〉

[R, [S, T]] ≈ [[R,S], T]

(R, (S, T)) ≈ ((R,S), T)

Units

〈◦;R〉 ≈ 〈R; ◦〉 ≈ R

[◦, R] ≈ R

(◦, R) ≈ R

Commutativity

[R, T] ≈ [T,R]

(R, T) ≈ (T,R)

Negation

◦̄ ≈ ◦

〈R;T 〉 ≈ 〈R;T 〉

[R, T] ≈ (R, T)

(R, T) ≈ [R, T]

¯̄R ≈ R

Figure 3: The equational system EBV .

with variable occurrences.

The notion of a structure is non-standard one. Let

ΣBV = {◦, , [,] , (,) , 〈 ; 〉 } ∪ {a | a is a positive atom}.

Then, structures as defined in Section 3 are simply ΣBV -terms over the empty
set of variables, i.e., ground ΣBV -terms. On the other hand, by considering a
non-empty set V of variables, we obtain ΣBV -terms over V , which correspond
to structures with variables.

From now on we use the notions structure and ΣBV -term synonymously.

7 Replacing Context by Positions

We replace the notion of context in derivations within BV by the notion
of a position, thus being precise about which substructure or sub-term
is replaced in a derivation step.

As structures are nothing but terms the notions introduced in Section 2 can be
applied. For example, let s = [[(b̄, c) , b] , c̄] and t = ([b̄, b] , c) then

pos(s) = {Λ, 1, 11, 111, 1111, 112, 12, 2, 21}

and
s|t|1 = [([b̄, b] , c) , c̄] .

Thus, the notion of positions, sub-terms and the replacement of a sub-term by
another one at a particular position take over the role of a context in BV .

10

8 Replacing Inference Rules by Rewrite Rules

We define the term rewriting system RBV and the equational theory
EBV corresponding to BV such that derivations in BV correspond to
rewritings →RBV/EBV .

In the final step the context occurring in inference rules is eliminated and inference
rules are turned into rewrite rules. Each inference rule occurring in BV as shown
in Figure 2 except ◦↓ is turned into a rewrite rules as shown in Figure 4 by
dropping the context S . As before, ai↓ is a schema for all positive atoms a . We
allow the rewrite rules to be applied only to those terms, which are not sub-terms
of the function symbol “¯”. This restriction corresponds to the counterpart in the
calculus of structures which states that stucture contexts are not under the scope
of negation. We can then compute rewrite sequences as follows:

[〈ā; b〉, [〈a; (b̄, c)〉, c̄]]

≈EBV [[〈ā; b〉, 〈a; (b̄, c)〉] , c̄]

→RBV(q↓,1,{R 7→ā, R′ 7→b, T 7→a, T ′ 7→(b̄,c)}) [〈 [ā, a] ; [b, (b̄, c)]〉, c̄]

≈EBV [〈 [a, ā] ; [b, (b̄, c)]〉, c̄]

→RBV(ai↓,11, ε) [〈◦; [b, (b̄, c)]〉, c̄]

≈EBV [[(b̄, c), b] , c̄]

→RBV(s,1,{R 7→b̄, T 7→c, U 7→b}) [([b̄, b] , c), c̄]

≈EBV [([b, b̄] , c), c̄]

→RBV(ai↓,11, ε) [(◦, c), c̄]

≈EBV [c, c̄]

→RBV(ai↓,Λ, ε) ◦

This rewrite sequence corresponds precisely to the proof given in Section 4.

[a, ā] → ◦ ai↓

[〈R;R′〉, 〈T ;T ′〉] → 〈[R, T]; [R′, T ′]〉 q↓

[(R, T), U] → ([R,U], T) s

Figure 4: The rewrite system RBV corresponding to BV .

Proposition 1 Let s and t be two ΣBV -terms or structures.

11

1. There is a derivation in BV from s to t having length n iff there exists a
rewriting s

n
→RBV/EBV t .

2. There is a proof of s in BV having length n iff there exists a rewriting
s

n
→RBV/EBV ◦ .

Proof (sketch) The proof of 1. is by induction on the length of the derivation in
BV and the number of rewrite steps in RBV/EBV , respectively, for the if part and
the only if part, respectively, and follows immediately from the discussion in this
an the previous sections. 2. follows immediately from 1. 2

One should observe that in the rewritings generated by this proposition correspond
one to one to the inference steps in derivations of BV . Because in the latter
derivations no holes in structures are within the scope of negation no contracted
redex in the former occurs within the scope of a negation sign.

9 Outlook

In this paper we have shown that structures are nothing but ΣBV -terms, where

ΣBV = {◦, , [,] , (,) , 〈 ; 〉 } ∪ {a | a is a positive atom}.

Moreover, we have shown that derivations and proofs in the BV can be replaced
by rewritings with respect to RBV and EBV . The fact that in the latter only
binary par-, copar- and seq-operators are allowed is not a restriction because the
n-ary ones can be reintroduced as abbreviations.

9.1 Other Systems

We claim that the procedure described in this paper does not only apply to BV

but to any system in the calculus of structures. Some examples are shown in the
following.

System KS A system is local if the application of each inference rule consumes
a bounded amount of computational resources, i.e., time and space. System KS

is a local system for classical propositional logic in the calculus of structures. It
was first introduced in [3]. There, structures are ΣKS -terms, where

ΣKS = {t, f, , [,] , (,) } ∪ {a | a is a positive atom}.

Figures 5 and 6 show the equational system EKS and the term rewriting system
RKS corresponding to KS , where the rules ai↓ , aw↓ and ac↓ are schemas.

12

System LS System LS is a system for linear logic in the calculus of structures.
It was first introduced in [11] where also a local version is presented. There,
structures are ΣLS -terms, where

ΣLS = {1, 0, >, ⊥, ? , ! , , [,], (,), [• , •], (• , •)}

∪ {a | a is a positive atom}.

Figures 7 and 8 show the equational system ELS and the term rewriting system
RLS corresponding to LS , where the rule ai↓ is a schema.

System NEL System NEL is a non-commutative extension of MELL in the calcu-
lus of structures. It was first introduced in [8]. There, structures are ΣNEL -terms,
where

ΣNEL = {◦, ? , ! , , [,] , (,) , 〈 ; 〉 } ∪ {a | a is a positive atom}.

Figures 9 and 10 show the equational system ENEL and the term rewriting system
RNEL corresponding to NEL , where the rule ai↓ is a schema.

9.2 Open Problems

The procedure we presented may be the starting point for further investigations:
Is it possible to replace →RBV/EBV by →RBV,EBV ? We expect that this can
be achieved by considering critical pairs between RBV and EBV and introducing
corresponding additional rewriting rules.

In this paper, we have only considered the deep rules, that is, the rules that can
be applied in an arbitrary context. However, in the calculus of structures, it is
possible to define rules which are not deep, i.e., shallow rules. As an example
consider the shallow instance of the s rule:

([R,U] , T)
s′

[(R, T) , U]

Such a rule corresponds to a rewrite rule which can only be applied at the root
position. i.e., position Λ . We can express this restriction by introducing a unary
function symbol, say “ str ”, which is the outer most function symbol of a struc-
ture. Then the above rule can be expressed as the following rewrite rule.

str [(R, T), U] → str ([R,U], T) s′

In the definition of normal form of a structure, the requirement that the only
negated structures appearing in it are atoms, is a standard one corresponding to
the negation normal form of formulas. The advantage of considering the negation
normal form of a formula is that the syntactic equivalences concerning negation

13

can be removed provided that each application of an inference rule yields again
a formula in negation normal form. An inspection of system BV shows that in
an application of an inference rule in an analytic way, i.e., from the conclusion to
the premise, no new negation signs are introduced. Moreover, because holes in a
structure do not appear in the scope of a negation sign, the property that negated
structures appear only in atoms is preserved by the application of an inference
rule.

This observation points out the possibility of orienting the equalities for negation
as rewrite rules from left to right, aiming at the negation normal form of the
structures at the very beginning, which will be preserved all through the proof
search. Furthermore, we conjecture that by orienting the equalities for unit from
left to right as rewrite rules the completeness of the system will not be lost, and
this will make it possible to remove the units that appear after the application of
the rule ai↓ .

References

[1] Franz Baader and Tobias Nipkow. Term Rewriting and All That, volume 1.
Cambridge University Press, 1998.

[2] Kai Brünnler. Deep Inference and Symmetry in Classical Proofs. PhD thesis,
Technische Universität Dresden, 2003.

[3] Kai Brünnler and Alwen Fernanto Tiu. A local system for classical logic. In
R. Nieuwenhuis and A. Voronkov, editors, LPAR 2001, volume 2250 of Lecture
Notes in Artificial Intelligence, pages 347–361. Springer-Verlag, 2001.

[4] Paola Bruscoli. A purely logical account of sequentiality in proof search. In
Peter J. Stuckey, editor, Logic Programming, 18th International Conference,
volume 2401 of Lecture Notes in Computer Science, pages 302–316. Springer-
Verlag, 2002.

[5] Melvin C. Fitting. First–Order Logic and Automated Theorem Proving.
Springer, Berlin, 2nd edition, 1996.

[6] Alessio Guglielmi. A calculus of order and interaction. Technical Report
WV-99-04, TU Dresden, 1999.

[7] Alessio Guglielmi. A system of interaction and structure. Technical Report
WV-02-10, TU Dresden, 2002. to appear in ACM Transactions on Compu-
tational Logic.

[8] Alessio Guglielmi and Lutz Straßburger. A non-commutative extension of
MELL. In M. Baaz and A. Voronkov, editors, LPAR 2002, volume 2514 of
Lecture Notes in Artificial Intelligence, pages 231–246. Springer-Verlag, 2002.

14

[9] Steffen Hölldobler. Logik und Logikprogrammierung. Synchron Publishers
GmbH, second, extended edition, 2001.

[10] David A. Plaisted. Equational reasoning and term rewriting systems. In Dov
Gabbay, Christopher Hogger, and J. A. Robinson, editors, The Handbook of
Logic in Artificial Intelligence and Logic Programming, Volume 1: Deductive
Methodologies, pages 274–367. Oxford University Press, Oxford, 1993.

[11] Lutz Straßburger. A local system for linear logic. In Matthias Baaz and An-
drei Voronkov, editors, Logic for Programming, Artificial Intelligence, and
Reasoning, LPAR 2002, volume 2514 of LNAI, pages 388–402. Springer-
Verlag, 2002.

[12] Lutz Straßburger. Linear Logic and Noncommutativity in the Calculus of
Structures. PhD thesis, TU Dresden, 2003.

[13] Alwen Fernanto Tiu. Properties of a logical system in the calculus of struc-
tures. Technical Report WV-01-06, Technische Universität Dresden, 2001.

15

Associativity

[R, [T,U]] ≈ [[R, T], U]

(R, (T,U)) ≈ ((R, T), U)

Units

(f, f) ≈ f [f, R] ≈ R

[t, t] ≈ t (t, R) ≈ R

Commutativity

[R, T] ≈ [T,R]

(R, T) ≈ (T,R)

Negation

f ≈ t

t ≈ f

[R, T] ≈ (R, T)

(R, T) ≈ [R, T]

R ≈ R

Figure 5: The equational system EKS .

[a, ā] → t ai↓

[(R, T), U] → ([R,U], T) s

([R, T], [U, V]) → [(R,U), (T, V)] m

a → f aw↓

a → [a, a] ac↓

Figure 6: The rewrite system RKS corresponding to KS .

16

Associativity

[R, [T,U]] ≈ [[R, T], U]

(R, (T,U)) ≈ ((R, T), U)

[•R, [•T,U•]•] ≈ [•[•R, T •], U•]

(•R, (•T,U•)•) ≈ (•(•R, T •), U•)

Units

[⊥, R] ≈ R (1, R) ≈ R

[•0, R•] ≈ R (•>, R•) ≈ R

[•⊥,⊥•] ≈ ⊥ ≈ ?⊥

(•1, 1•) ≈ 1 ≈ !1

Exponentials

??R ≈ R

!!R ≈ R

Commutativity

[R, T] ≈ [T,R]

(R, T) ≈ (T,R)

[•R, T •] ≈ [•T,R•]

(•R, T •) ≈ (•T,R•)

Negation

[R, T] ≈ (R, T)

(R, T) ≈ [R, T]

[•R, T •] ≈ (•R, T •)

(•R, T •) ≈ [•R, T •]

?R ≈ !R

!R ≈ ?R

R ≈ R

Figure 7: The equational system ELS .

[a, ā] → 1 ai↓

[(R, T), U] → ([R,U], T) s

[(•R, T •), [•U, V •]] → (•[R,U], [T, V]•) d↓

R → 0 t↓

R → [•R,R•] c↓

[!R, ?T] → ![R, T] p↓

?R → ⊥ w↓

?R → [?R,R] b↓

Figure 8: The rewrite system RLS corresponding to LS .

17

Associativity

〈R; 〈T ;U〉〉 ≈ 〈〈R;T 〉;U〉

[R, [T,U]] ≈ [[R, T], U]

(R, (T,U)) ≈ ((R, T), U)

Units

〈◦;R〉 ≈ 〈R; ◦〉 ≈ R

[◦, R] ≈ R

(◦, R) ≈ R

Exponentials

?◦ ≈ !◦ ≈ ◦

??R ≈ ?R

!!R ≈ !R

Commutativity

[R, T] ≈ [T,R]

(R, T) ≈ (T,R)

Negation

◦ ≈ ◦

〈R;T 〉 ≈ 〈R;T 〉

[R, T] ≈ (R, T)

(R, T) ≈ [R, T]

R ≈ R

Figure 9: The equational system ENEL .

[a, ā] → ◦ ai↓

[(R, T), U] → ([R,U], T) s

[〈R;T 〉, 〈U ;V 〉] → 〈[R,U]; [T, V]〉 q↓

[!R, ?T] → ![R, T] p↓

?R → ◦ w↓

?R → [?R,R] b↓

Figure 10: The rewrite system RNEL corresponding to NEL .

18

