

International Center for Computational Logic

Sebastian Rudolph International Center for Computational Logic TU Dresden

Existential Rules – Lecture 5

Adapted from slides by Andreas Pieris and Michaël Thomazo Summer Term 2023

BCQ-Answering: Our Main Decision Problem

decide whether $D \land \Sigma \vDash Q$

Universal Models (a.k.a. Canonical Models)

An instance U is a universal model of $D \wedge \Sigma$ if the following holds:

1. *U* is a model of $D \wedge \Sigma$

2. $\forall J \in \text{models}(D \land \Sigma)$, there exists a homomorphism h_J such that $h_J(U) \subseteq J$

Query Answering via the Chase

Theorem: $D \wedge \Sigma \models Q$ iff $U \models Q$, where U is a universal model of $D \wedge \Sigma$

+

Theorem: chase(D, Σ) is a universal model of $D \wedge \Sigma$

=

Corollary: $D \land \Sigma \vDash Q$ iff chase $(D, \Sigma) \vDash Q$

Rest of the Lectrure

- Undecidability of BCQ-Answering
- Gaining decidability terminating chase
- Full Existential Rules
- Acyclic Existential Rules

Undecidability of BCQ-Answering

Theorem: BCQ-Answering is undecidable

Proof : By simulating a deterministic Turing machine with an empty tape

...syntactic restrictions are needed!!!

What is the Source of Non-termination?

$$\Sigma \\ \forall X (Person(X) \rightarrow \exists Y (hasParent(X,Y) \land Person(Y)))$$

chase(D, Σ) = $D \cup \{hasParent(Alice, z_1), Person(z_1), Person(z_1)$

 $hasParent(z_1, z_2), Person(z_2),$

 $hasParent(z_2, z_3), Person(z_3), \dots$

- 1. Existential quantification
- 2. Recursive definitions

Termination of the Chase

- Drop the existential quantification
 - We obtain the class of full existential rules
 - Very close to Datalog

- Drop the recursive definitions
 - We obtain the class of acyclic existential rules
 - o A.k.a. non-recursive existential rules

Full Existential Rules

• A full existential rule is an existential rule of the form

 $\forall \mathsf{X} \forall \mathsf{Y} (\varphi(\mathsf{X},\mathsf{Y}) \to \psi(\mathsf{X}))$

• We denote FULL the class of full existential rules

• A local property - we can inspect one rule at a time

 \Rightarrow given Σ , we can decide in linear time whether $\Sigma \in \mathsf{FULL}$

 $\Rightarrow \text{closed under union - } \Sigma_1 \in \text{FULL}, \, \Sigma_2 \in \text{FULL} \Rightarrow (\Sigma_1 \cup \Sigma_2) \in \text{FULL}$

Why does the chase terminate?

Complexity Measures for Query Answering

- Data complexity: is calculated by considering only the database as part of the input, while the ontology and the query are fixed
- Combined complexity: is calculated by considering, apart from the database, also the ontology and the query as part of the input
- Data complexity vs. Combined complexity
 - Data complexity tends to be a more meaningful measure ontologies and queries tend to be small; databases tend to be large
 - Nevertheless, the combined complexity is a relevant measure identifies the real source of complexity

Some Important Complexity Classes

Problems that can be solved by an algorithm that runs in double-exponential time

We need the power of non-determinism

Problems that can be solved by an algorithm that runs in exponential time

Problems that can be solved by an algorithm that uses a polynomial amount of memory

We need the power of non-determinism

Problems that can be solved by an algorithm that runs in polynomial time

Problems that can be solved by an algorithm that uses a logarithmic amount of memory

Data Complexity of FULL

Theorem: BCQ-Answering under FULL is in PTIME w.r.t. the data complexity

(Analysis of "brute force" materialization and querying algorithm.)

We cannot do better than the naïve algorithm

Theorem: BCQ-Answering under FULL is PTIME-hard w.r.t. the data complexity

Proof : By a LOGSPACE reduction from Monotone Circuit Value problem

Data Complexity of FULL

Does the circuit evaluate to true?

encoding of the circuit as a database D $T(g_1)$ $T(g_3)$ $AND(g_4,g_1,g_2)$ $OR(g_5,g_2,g_3)$ $OR(g_6,g_4,g_5)$ evaluation of the circuit via a *fixed* set Σ

$$\begin{split} &\forall X \forall Y \forall Z \ (T(X) \land OR(Z,X,Y) \rightarrow T(Z)) \\ &\forall X \forall Y \forall Z \ (T(Y) \land OR(Z,X,Y) \rightarrow T(Z)) \\ &\forall X \forall Y \forall Z \ (T(X) \land T(Y) \land AND(Z,X,Y) \rightarrow T(Z)) \end{split}$$

Circuit evaluates to *true* iff $D \land \Sigma \vDash T(g_6)$

Combined Complexity of FULL

Theorem: BCQ-Answering under FULL is in EXPTIME w.r.t. the combined complexity

Proof: Consider a database *D*, a set $\Sigma \in FULL$, and a BCQ Q

We apply the naïve algorithm:

- 1. Construct chase(D, Σ)
- 2. Check for the existence of a homomorphism h such that $h(Q) \subseteq chase(D, \Sigma)$

By our previous analysis, in the worst case, the naïve algorithm runs in time

```
\begin{aligned} (|\operatorname{sch}(\Sigma)| \cdot (|\operatorname{adom}(D)|)^{\max\operatorname{arity}})^2 \cdot |\Sigma| \cdot (|\operatorname{adom}(D)|)^{\max\operatorname{variables}(\Sigma)} \cdot \operatorname{maxbody}(\Sigma) \\ + \\ (|\operatorname{adom}(D)|)^{\#\operatorname{variables}(\mathbb{Q})} \cdot |\mathbb{Q}| \cdot |\operatorname{sch}(\Sigma)| \cdot (|\operatorname{adom}(D)|)^{\max\operatorname{arity}} \end{aligned}
```


Combined Complexity of FULL

We cannot do better than the naïve algorithm

Theorem: BCQ-Answering under FULL is EXPTIME-hard w.r.t. the combined complexity

Proof : By simulating a deterministic exponential time Turing machine

EXPTIME-hardness of FULL

Our Goal: Encode the exponential time computation of a DTM *M* on

input string *I* using a database *D*, a set $\Sigma \in FULL$, and a BCQ *Q* such that

 $D \wedge \Sigma \models Q$ iff *M* accepts *I* in at most $N = 2^m$ steps, where $m = |I|^k$

Symbol[α](*i*,*j*) - at time instant *i*, cell *j* contains α

Cursor(i,j) - at time instant i, cursor points to cell j

State[s](i) - at time instant i, the machine is in state s

Existential Rules – Lecture 5 – Sebastian Rudolph

Accept(i) - at time instant i, the machine accepts

First(0), *Succ*(0,1), *Succ*(1,2), *Succ*(2,3), ..., *Succ*(*N*-2,*N*-1)

will be defined later

Initialization Rules

Assume that $I = \alpha_0 \dots \alpha_{n-1}$

 $\forall T (First(T) \rightarrow Symbol[\alpha_i](T,i) \land Cursor(T,T) \land State[s_0](T))$

 $\forall \mathsf{T} \forall \mathsf{C} \; (\textit{First}(\mathsf{T}) \land \prec (n-1,\mathsf{C}) \rightarrow \textit{Symbol}[\sqcup](\mathsf{T},\mathsf{C}))$

Transition Rules

 $\forall T \forall T_1 \forall C \forall C_1 (State[s_1](T) \land Cursor(T,C) \land Symbol[\alpha](T,C) \land Succ(T,T_1) \land Succ(C,C_1) \rightarrow \\ Symbol[\beta](T_1,C) \land Cursor(T_1,C_1) \land State[s_2](T_1))$

Inertia Rules

Cells that are not changed during the transition keep their old values

$$i \quad x \quad \alpha \quad y \quad s_1$$

$$i+1 \quad x \quad \beta \quad y \quad s_2$$

 $\forall T \forall T_1 \forall C \forall C_1 (Symbol[\alpha](T,C) \land Cursor(T,C_1) \land \prec (C,C_1) \land Succ(T,T_1) \rightarrow Symbol[\alpha](T_1,C))$

 $\forall T \forall T_1 \forall C \forall C_1 (Symbol[\alpha](T,C) \land Cursor(T,C_1) \land \prec (C_1,C) \land Succ(T,T_1) \rightarrow Symbol[\alpha](T_1,C))$

Accepting Rule

Once we reach the accepting state we accept

 $\forall T \left(\textit{State}[s_{acc}](T) \rightarrow \textit{Accept}(T) \right)$

- *First*(0), *Succ*(0,1), *Succ*(1,2), *Succ*(2,3), ..., *Succ*(*N*-2,*N*-1)
- In fact, 0,...,N-1 are in binary form assume the N = 2^m, where m = 3
 First(0,0,0), *Succ*(0,0,0,0,0,1), *Succ*(0,0,1,0,1,0),..., *Succ*(1,1,0,1,1,1)
- Inductive definition of *First*_i and *Succ*_i

 $D = \{First_1(0), Last_1(1), Succ_1(0,1)\}$

*First*₂(0,0), *Last*₂(1,1), *Succ*₂(0,0,0,1), *Succ*₂(0,1,1,0), *Succ*(1,0,1,1)

 $\forall X (First_1(X) \rightarrow First_2(X,X))$

 $\forall X (Last_1(X) \rightarrow Last_2(X,X))$

- *First*(0), *Succ*(0,1), *Succ*(1,2), *Succ*(2,3), ..., *Succ*(*N*-2,*N*-1)
- In fact, 0,...,N-1 are in binary form assume the N = 2^m, where m = 3
 First(0,0,0), *Succ*(0,0,0,0,0,1), *Succ*(0,0,1,0,1,0),..., *Succ*(1,1,0,1,1,1)
- Inductive definition of *First*_i and *Succ*_i

 $D = \{First_1(0), Last_1(1), Succ_1(0,1)\}$

*First*₂(0,0), *Last*₂(1,1), *Succ*₂(0,0,0,1), *Succ*₂(0,1,1,0), *Succ*(1,0,1,1)

 $\forall X \forall Y \forall Z (First_1(X), Succ_1(Y, Z) \rightarrow Succ_2(X, Y, X, Z))$

 $\forall X \forall Y \forall Z (Last_1(X), Succ_1(Y, Z) \rightarrow Succ_2(X, Y, X, Z))$

- *First*(0), *Succ*(0,1), *Succ*(1,2), *Succ*(2,3), ..., *Succ*(*N*-2,*N*-1)
- In fact, 0,...,N-1 are in binary form assume N = 2^m, where m = 3
 First(0,0,0), *Succ*(0,0,0,0,0,1), *Succ*(0,0,1,0,1,0),..., *Succ*(1,1,0,1,1,1)
- Inductive definition of *First*_i and *Succ*_i

 $D = \{First_1(0), Last_1(1), Succ_1(0,1)\}$

*First*₂(0,0), *Last*₂(1,1), *Succ*₂(0,0,0,1), *Succ*₂(0,1,1,0), *Succ*(1,0,1,1)

 $\forall X \forall Y \forall Z \forall W (Last_1(X), First_1(Y), Succ_1(Z, W) \rightarrow Succ_2(Z, X, W, Y))$

 $D = \{First_1(0), Last_1(1), Succ_1(0,1)\}$

Inductive definition of *First*_{*i*+1} and *Succ*_{*i*+1}:

 $\forall \mathbf{X} \forall \mathbf{Y} (Succ_{i}(\mathbf{X}, \mathbf{Y}) \rightarrow Succ_{i+1}(\mathbf{Z}, \mathbf{X}, \mathbf{Z}, \mathbf{Y}))$

 $\forall \mathbf{X} \forall \mathbf{Y} \forall \mathbf{Z} \forall \mathbf{W} (Succ_1(\mathbf{Z}, \mathbf{W}) \land Last_i(\mathbf{X}) \land First_i(\mathbf{Y}) \rightarrow Succ_{i+1}(\mathbf{Z}, \mathbf{X}, \mathbf{W}, \mathbf{Y}))$

 $\forall \mathbf{X} \forall \mathbf{Z} (First_1(\mathbf{Z}) \land First_i(\mathbf{X}) \rightarrow First_{i+1}(\mathbf{Z}, \mathbf{X}))$

 $\forall \mathbf{X} \forall \mathbf{Z} (Last_1(\mathbf{Z}) \land Last_i(\mathbf{X}) \rightarrow Last_{i+1}(\mathbf{Z}, \mathbf{X}))$

Definition of \prec_m :

 $\forall \mathbf{X} \forall \mathbf{Y} (Succ_m(\mathbf{X}, \mathbf{Y}) \rightarrow \prec_m(\mathbf{X}, \mathbf{Y}))$

 $\forall \mathbf{X} \forall \mathbf{Y} \forall \mathbf{Z} (Succ_m(\mathbf{X}, \mathbf{Z}) \prec_m(\mathbf{Z}, \mathbf{Y}) \rightarrow \prec_m(\mathbf{X}, \mathbf{Y}))$

Concluding EXPTIME-hardness of FULL

- Several rules but polynomially many \Rightarrow feasible in polynomial time
- $D \land \Sigma \models \exists X Accept(X) \text{ iff } M \text{ accepts } I \text{ in at most } N \text{ steps}$
- Can be formally shown by induction on the time steps

Corollary: BCQ-Answering under FULL is EXPTIME-complete w.r.t. the combined complexity

Termination of the Chase

- Drop the existential quantification
 - We obtain the class of full existential rules
 - $\circ~$ Very close to Datalog

- Drop the recursive definitions
 - We obtain the class of acyclic existential rules

 \checkmark

o A.k.a. non-recursive existential rules

- The definition of a predicate *P* does not depend on *P* formal definition via the predicate graph
- The predicate graph of a set Σ of existential rules, denoted PG(Σ), is the graph (V,E), where

∨ = {P | P ∈ sch(Σ)}
E = {(P,R) | ∀X∀Y (... ∧ P(X,Y) ∧ ... → ∃Z (... ∧ R(X,Z) ∧ ...)) ∈ Σ}

 $\forall X (Person(X) \rightarrow \exists Y (hasParent(X,Y) \land Person(Y)))$

- The definition of a predicate *P* does not depend on *P* formal definition via the predicate graph
- The predicate graph of a set Σ of existential rules, denoted PG(Σ), is the graph (V,E), where

∨ = {P | P ∈ sch(Σ)}
E = {(P,R) | ∀X∀Y (... ∧ P(X,Y) ∧ ... → ∃Z (... ∧ R(X,Z) ∧ ...)) ∈ Σ}

- A set Σ of existential rules is acyclic if the graph PG(Σ) is acyclic
- We denote ACYCLIC the class of acyclic existential rules

- Given Σ , we can decide in polynomial time whether $\Sigma \in ACYCLIC$
- But, acyclicity is a global property we have to consider $\boldsymbol{\Sigma}$ as a whole

 \Rightarrow not closed under union

 $\forall X \forall Y \ (R(X,Y) \rightarrow P(Y))$ each rule alone is acyclic, but $\forall X \ (P(X) \rightarrow \exists Y \ R(X,Y))$ together form a cyclic set of rules

• Why the chase terminates?

- A stratification of Σ is a sequence of sets Σ₁,..., Σ_n such that, for some function
 μ: sch(Σ) → {1,...,n}:
 - 1. $\{\Sigma_1, \ldots, \Sigma_n\}$ is a partition of Σ
 - 2. For each predicate $P \in sch(\Sigma)$, all the rules with P in the head are in $\Sigma_{\mu(P)}$ (i.e., in the same set of the partition)
 - 3. If $\forall X \forall Y (... \land P(X,Y) \land ... \rightarrow \exists Z (... \land R(X,Z) \land ...)) \in \Sigma$, then $\mu(P) < \mu(R)$

• Lemma: (1) Σ is stratifiable iff $\Sigma \in ACYCLIC$

(2) If there exists a path from *P* to *R* in $PG(\Sigma)$, then $\mu(P) < \mu(R)$

- Thus, by exploiting the predicate graph, we can compute a stratification of $\boldsymbol{\Sigma}$

- Consider $\Sigma \in ACYCLIC$, and let $\Sigma_1, ..., \Sigma_n$ be a stratification of Σ
- Construct the chase by considering one stratum after the other starting from Σ_1

- For each $k \in \{1, \dots, n-1\}$, $L_k = \text{chase}(L_{k-1}, \Sigma_k)$
- *n* is finite \Rightarrow the chase terminates

 \Rightarrow the naïve algorithm gives a decision procedure

...but, can we do better than the naïve algorithm?

 $\forall X \forall Y (P_{n-1}(X) \land P_{n-1}(Y) \rightarrow \exists Z (S_n(X,Y,Z) \land P_n(Z))) \}$

 $\Sigma = \{ \forall X \forall Y \ (P_0(X) \land P_0(Y) \rightarrow \exists Z \ (S_1(X,Y,Z) \land P_1(Z))) \\ \forall X \forall Y \ (P_1(X) \land P_1(Y) \rightarrow \exists Z \ (S_2(X,Y,Z) \land P_2(Z))) \}$

 $D=\{P_0(0),\,P_0(1)\}$

. . .

		L ₁
0	0	Z 00
0	1	Z 01
1	0	Z 10
1	1	Z ₁₁

 $|L_0| = 2$

 $|L_1| = (|L_0|)^2$

 $L_0 = D$

 L_1

 L_2

 L_n

The Naïve Algorithm for ACYCLIC

$\int L_0 = D$	$ L_0 =$	2
$\begin{bmatrix} L_1 \end{bmatrix}$	$ L_1 =$	(<i>L</i> ₀) ²
L_2	$ L_2 =$	(<i>L</i> ₁) ²
÷		
L_n		

$$= \{ D(0) \mid D(1) \}$$

$$\Sigma = \{ \forall X \forall Y \ (P_0(X) \land P_0(Y) \rightarrow \exists Z \ (S_1(X,Y,Z) \land P_1(Z))) \\ \forall X \forall Y \ (P_1(X) \land P_1(Y) \rightarrow \exists Z \ (S_2(X,Y,Z) \land P_2(Z))) \}$$

$$\Sigma = \{ \forall X \forall Y \ (P_0(X) \land P_0(Y) \rightarrow \exists Z \ (S_1(X,Y,Z)) \}$$

$$D = \{P_0(0), P_0(1)\}$$

. . .

z ₀₀	Z ₀₀	Z 0000	
Z ₀₀	Z ₀₁	Z 0001	
Z ₀₀	Z ₁₀	Z 0010	
z ₀₀	Z ₁₁	Z₀₀₁₁	
Z ₀₁	Z ₀₀	Z₀₁₀₀	
Z ₀₁	Z ₀₁	Z₀₁₀₁	
Z ₀₁	Z ₁₀	Z 0110	
Z ₀₁	Z ₁₁	Z 0111	
Z ₁₀	Z ₀₀	Z ₁₀₀₀	
Z ₁₀	Z ₀₁	Z ₁₀₀₁	
Z ₁₀	Z ₁₀	Z ₁₀₁₀	
Z ₁₀	Z ₁₁	Z ₁₀₁₁	
Z ₁₁	Z ₀₀	Z ₁₁₀₀	
Z ₁₁	Z ₀₁	Z ₁₁₀₁	
Z ₁₁	Z ₁₀	Z ₁₁₁₀	
Z ₁₁	Z ₁₁	Z ₁₁₁₁	

 L_2

Existential Rules - Lecture 5 - Sebastian Rudolph

 $\forall X \forall Y (P_{n-1}(X) \land P_{n-1}(Y) \rightarrow \exists Z (S_n(X,Y,Z) \land P_n(Z))) \}$

Slide 39

 $\forall X \forall Y (P_{n-1}(X) \land P_{n-1}(Y) \rightarrow \exists Z (S_n(X,Y,Z) \land P_n(Z))) \}$

 $\Sigma = \{ \forall X \forall Y \ (P_0(X) \land P_0(Y) \rightarrow \exists Z \ (S_1(X,Y,Z) \land P_1(Z))) \}$ $\forall X \forall Y (P_1(X) \land P_1(Y) \rightarrow \exists Z (S_2(X,Y,Z) \land P_2(Z)))$

 $D = \{P_0(0), P_0(1)\}$

. . .

		L _n
Z ₀₀	Z ₀₀	Z ₀₀₀ 0
Z ₁₁	Z ₁₁	Z ₁₁₁₁

The Naïve Algorithm for ACYCLIC

$$|-|-|| - (|/||)^2$$

 $\forall X \forall Y (P_{n-1}(X) \land P_{n-1}(Y) \rightarrow \exists Z (S_n(X,Y,Z) \land P_n(Z))) \}$

 $\Sigma = \{ \forall X \forall Y \ (P_0(X) \land P_0(Y) \rightarrow \exists Z \ (S_1(X,Y,Z) \land P_1(Z))) \\ \forall X \forall Y \ (P_1(X) \land P_1(Y) \rightarrow \exists Z \ (S_2(X,Y,Z) \land P_2(Z))) \}$

 $D=\{P_0(0),\,P_0(1)\}$

. . .

 $|L_n| = 2^{(2^n)}$

The Naïve Algorithm for ACYCLIC

- The naïve algorithm shows that BCQ-Answering under **ACYCLIC** is
 - o in PTIME w.r.t. the data complexity
 - o in 2EXPTIME w.r.t. the combined complexity

...can we do better than the naïve algorithm?

YES!!!

Data Complexity of ACYCLIC

Theorem: BCQ-Answering under ACYCLIC is in LOGSPACE w.r.t. the data complexity

Proof: Not so easy! Different techniques must be applied. This will be the subject of the second part of our course.

Combined Complexity of ACYCLIC

Theorem: BCQ-Answering under ACYCLIC is in NEXPTIME w.r.t. the combined complexity

Proof: We first need to establish the so-called small witness property

Small Witness Property for ACYCLIC

Lemma: chase(D, Σ) $\vDash Q \Rightarrow$ there exists a chase sequence

```
D\langle \sigma_1, h_1 \rangle J_1 \langle \sigma_2, h_2 \rangle J_2 \langle \sigma_3, h_3 \rangle J_3 \dots \langle \sigma_n, h_n \rangle J_n
```

of D w.r.t. Σ with

$$n = \begin{cases} |Q| \cdot \lfloor (\max body(\Sigma)^{|sch(\Sigma)|+1} - 1) / (\max body(\Sigma) - 1) \rfloor, & \text{if maxbody}(\Sigma) > 1 \\ \\ |Q| \cdot |sch(\Sigma)|, & \text{if maxbody}(\Sigma) = 1 \end{cases}$$

such that $J_n \vDash \mathbf{Q}$

Proof:

 By hypothesis, there exists a homomorphism h such that h(Q) ⊆ chase(D, Σ)

Small Witness Property for ACYCLIC

Proof (cont.):

Let us focus on the image of the query

In the worst case, the shaded part forms a rooted tree:

- 1. With depth at most $|sch(\Sigma)|$
- 2. Each node has at most maxbody(Σ) children

 \Rightarrow its size is at most

```
 \lfloor (\max body(\Sigma)^{|sch(\Sigma)|+1} - 1) / (\max body(\Sigma) - 1) \rfloor, \text{ if } \max body(\Sigma) > 1  |sch(\Sigma)|, \text{ if } \max body(\Sigma) = 1
```


Small Witness Property for ACYCLIC

Proof (cont.):

• Let us focus on the image of the query

Therefore, to entail the query we need at most

$$\begin{split} & \left| \mathbf{Q} \right| \cdot \left\lfloor (\max body(\boldsymbol{\Sigma})^{|sch(\boldsymbol{\Sigma})|+1} - 1) / (\max body(\boldsymbol{\Sigma}) - 1) \right\rfloor, \text{ if } \max body(\boldsymbol{\Sigma}) > 1 \\ & \left| \mathbf{Q} \right| \cdot |sch(\boldsymbol{\Sigma})|, \text{ if } \max body(\boldsymbol{\Sigma}) = 1 \end{split}$$

Combined Complexity of ACYCLIC

Theorem: BCQ-Answering under ACYCLIC is in NEXPTIME w.r.t. the combined complexity

Proof: Consider a database *D*, a set $\Sigma \in ACYCLIC$, and a BCQ Q

Having the small witness property in place, we can exploit the following algorithm:

1. Non-deterministically construct a chase sequence

$$D\langle \sigma_1, h_1 \rangle J_1 \langle \sigma_2, h_2 \rangle J_2 \langle \sigma_3, h_3 \rangle J_3 \dots \langle \sigma_n, h_n \rangle J_n$$

of *D* w.r.t.
$$\Sigma$$
 with

$$n = \begin{cases} |Q| \cdot \lfloor (\max body(\Sigma)^{|sch(\Sigma)|+1} - 1) / (\max body(\Sigma) - 1) \rfloor, & \text{if } \max body(\Sigma) > 1 \\ |Q| \cdot |sch(\Sigma)|, & \text{if } \max body(\Sigma) = 1 \end{cases}$$

2. Check for the existence of a homomorphism h such that $h(Q) \subseteq J_n$

Combined Complexity of ACYCLIC

We cannot do better than the previous algorithm

Theorem: BCQ-Answering under ACYCLIC is NEXPTIME-hard w.r.t. the combined complexity

Proof : By reduction from a tiling problem, a classical NEXPTIME-hard problem

Tiling:

Input: $T = \{t_0, ..., t_k\}$, a set of square tile types,

 $H,V\subseteq T\times T,$ the horizontal and vertical compatibility relations

n, an integer in unary

Tiling:

Input: $T = \{t_0, ..., t_k\}$, a set of square tile types,

 $H,V\subseteq T\times T,$ the horizontal and vertical compatibility relations

n, an integer in unary

Tiling:

Input: $T = \{t_0, ..., t_k\}$, a set of square tile types,

 $H,V\subseteq T\times T,$ the horizontal and vertical compatibility relations

n, an integer in unary

Tiling:

Input: $T = \{t_0, ..., t_k\}$, a set of square tile types,

 $H,V\subseteq T\times T,$ the horizontal and vertical compatibility relations

n, an integer in unary

Combined Complexity of ACYCLIC

We cannot do better than the previous algorithm

Theorem: BCQ-Answering under ACYCLIC is NEXPTIME-hard w.r.t. the combined complexity

Proof : By reduction from a tiling problem, a classical NEXPTIME-hard problem

• The database stores the horizontal and the vertical relations

 $D = \{H(t,t') \mid (t,t') \in H\} \cup \{V(t,t') \mid (t,t') \in V\}$

- We use $\Sigma \in ACYCLIC$ to inductively construct $2^k \times 2^k$ tilings from $2^{k-1} \times 2^{k-1}$ tilings
- The key observation is that

X ₁	X ₂	Y ₁	Y ₂
X ₃	X_4	Y ₃	Y ₄
Z_1	Z_2	W_1	W_2
Z_3	Z_4	W_3	W_4

is a $2^k \times 2^k$ tiling

X ₁	X ₂	X ₂	Y ₁	Y ₁	Y ₂
X ₃	X ₄	X ₄	Y ₃	Y ₃	Y ₄
X ₃	X ₄	X ₄	Y ₃	Y ₃	Y ₄
Z ₁	Z ₂	Z ₂	W_1	W_1	W_2
Z ₁	Z ₂	Z ₂	W ₁	W ₁	W ₂
Z ₃	Z ₄	Z ₄	W ₃	W ₃	W ₄

are $2^{k-1} \times 2^{k-1}$ tilings

iff

Base step - construct 2×2 tilings of the form

$\forall \mathsf{X}_1 \forall \mathsf{X}_2 \forall \mathsf{X}_3 \forall \mathsf{X}_4 \ (\textit{H}(\mathsf{X}_1, \mathsf{X}_2) \land \textit{H}(\mathsf{X}_3, \mathsf{X}_4) \land \textit{V}(\mathsf{X}_1, \mathsf{X}_3) \land \textit{V}(\mathsf{X}_2, \mathsf{X}_4) \rightarrow$

 $\exists Y T_1(Y,X_1,X_1,X_2,X_3,X_4))$

Existential Rules – Lecture 5 – Sebastian Rudolph

Inductive step - construct $2^k \times 2^k$ tilings from $2^{k-1} \times 2^{k-1}$ tilings

X ₁	X ₂	X ₂	Y ₁	Y ₁	Y ₂					
X ₃	X ₄	X ₄	Y ₃	Y ₃	Y ₄		X ₁	X ₂	Y ₁	Y ₂
X ₃	X ₄	X ₄	Y ₃	Y ₃	Y ₄]	X ₃	X ₄	Y ₃	Y ₄
Z ₁	Z ₂	Z ₂	W ₁	W_1	W ₂		Z ₁	Z ₂	W ₁	W ₂
Z ₁	Z ₂	Z ₂	W ₁	W ₁	W ₂		Z ₃	Z ₄	W ₃	W ₄
Z ₃	Z ₄	Z ₄	W ₃	W ₃	W ₄	-				

 $T_{k-1}(S_1,O_1,X_1,X_2,X_3,X_4) \land T_{k-1}(S_2,O_2,X_2,Y_1,X_4,Y_3) \land T_{k-1}(S_3,O_3,Y_1,Y_2,Y_3,Y_4) \land$

 $T_{k-1}(S_4, O_4, X_3, X_4, Z_1, Z_2) \land T_{k-1}(S_5, O_5, X_4, Y_3, Z_2, W_1) \land T_{k-1}(S_6, O_6, Y_3, Y_4, W_1, W_2) \land$

 $T_{k-1}(S_7,O_7,Z_1,Z_2,Z_3,Z_4) \land T_{k-1}(S_8,O_8,Z_2,W_1,Z_4,W_3) \land T_{k-1}(S_9,O_9,W_1,W_2,W_3,W_4) \rightarrow T_{k-1}(S_8,O_8,Z_2,W_1,Z_4,W_3) \land T_{k-1}(S_8,O_8,Z_2,W_1,Z_4,W_1) \land T_{k-1}(S_8,O_8,Z_2,W_1) \land T_{k-1}(S_8,O_8,Z_2) \land T_{$

 $\exists U T_k(U,O_1,S_1,S_3,S_7,S_9)$

(V-quantifiers are omitted)

Inductive step - construct $2^k \times 2^k$ tilings from $2^{k-1} \times 2^{k-1}$ tilings

X ₁	X ₂	X ₂	Y ₁	Y ₁	Y ₂					
X ₃	X ₄	X ₄	Y ₃	Y ₃	Y ₄		X ₁	X ₂	Y ₁	Y ₂
X ₃	X ₄	X ₄	Y ₃	Y ₃	Y ₄		X ₃	X ₄	Y ₃	Y ₄
Z ₁	Z ₂	Z ₂	W ₁	W ₁	W ₂		Z ₁	Z ₂	W ₁	W ₂
Z ₁	Z ₂	Z ₂	W ₁	W ₁	W ₂		Z ₃	Z_4	W ₃	W ₄
Z ₃	Z ₄	Z ₄	W ₃	W ₃	W ₄	-				

 $\forall S \forall O \forall X_1 \forall X_2 \forall X_3 \forall X_4 \ (T_n(S,O,X_1,X_2,X_3,X_4) \rightarrow T(S,O))$

Concluding NEXPTIME-hardness of ACYCLIC

- Several rules but polynomially many \Rightarrow feasible in polynomial time
- $D \land \Sigma \vDash \exists X T(X,t_0)$ iff a $2^n \times 2^n$ tiling exists
- Can be formally shown by induction on *n*

Corollary: BCQ-Answering under ACYCLIC is NEXPTIME-complete w.r.t. the combined complexity

Termination of the Chase

- Drop the existential quantification
 - We obtain the class of full existential rules
 - $\circ~$ Very close to Datalog

- Drop the recursive definitions
 - We obtain the class of acyclic existential rules

 \checkmark

o A.k.a. non-recursive existential rules

Sum Up

	Data Complexity					
FULL		Naïve algorithm				
		Reduction from Monotone Circuit Value problem				
ACYCLIC	in LOGSPACE	Second part of our course				

	Combined Complexity					
FULL		Naïve algorithm				
	EAP HIME-C	Simulation of a deterministic exponential time TM				
ACYCLIC	NEXPTIME-c	Small witness property				
		Reduction from Tiling problem				

