Problem 9.1
Consider the program

\[P = \{ \neg p \leftarrow \sim p \} \]

- Compute \(P_{\emptyset}, P_{\{p\}}, P_{\{p\}} \)
- Present all answer sets of \(P \).

Problem 9.2
Consider the program

\[P = \{ p \leftarrow \sim q, p \leftarrow \neg p, q \leftarrow p \wedge \sim q, p \leftarrow, q \leftarrow \} \]

- Compute all answer sets of \(P \).
- What happens if we delete \(q \leftarrow \) from \(P \)?

Problem 9.3
Proof that answer set programming is non-monotonic.

Problem 9.4
Write a answer set program that corresponds to the following specification:

\(X \) can fly, if \(X \) is a bird, nothing abnormal is the case, and we can safely assume that \(X \) can fly.
One abnormal situation is that \(X \) is a penguin.

Problem 9.5
Proof that the program presented in slide 46 has an answer set if and only if the graph \(G \) has a Hamiltonian cycle.

Problem 9.6
Write a an answer set program \(P \) such that all its answer sets correspond to a solution of a Sudoku puzzle.