
Verification of Knowledge-Based Programs over Description Logic Actions

Benjamin Zarrieß
Theoretical Computer Science

TU Dresden, Germany
zarriess@tcs.inf.tu-dresden.de

Jens Claßen
Knowledge-Based Systems Group

RWTH Aachen University, Germany
classen@kbsg.rwth-aachen.de

Abstract

A knowledge-based program defines the behavior
of an agent by combining primitive actions, pro-
gramming constructs and test conditions that make
explicit reference to the agent’s knowledge. In
this paper we consider a setting where an agent is
equipped with a Description Logic (DL) knowledge
base providing general domain knowledge and an
incomplete description of the initial situation. We
introduce a corresponding new DL-based action
language that allows for representing both physi-
cal and sensing actions, and that we then use to
build knowledge-based programs with test condi-
tions expressed in the epistemic DL. After prov-
ing undecidability for the general case, we then
discuss a restricted fragment where verification be-
comes decidable. The provided proof is construc-
tive and comes with an upper bound on the proce-
dure’s complexity.

1 Introduction
Since the GOLOG [Levesque et al., 1997; De Giacomo et al.,
2000] family of action programming languages has become a
popular means for control of high-level agents, the verifica-
tion of temporal properties of GOLOG programs has recently
received increasing attention [Claßen and Lakemeyer, 2008;
De Giacomo et al., 2010]. Both the GOLOG language it-
self and the underlying Situation Calculus [McCarthy and
Hayes, 1969; Reiter, 2001a] are of high (first-order) expres-
sivity, which renders the general problem undecidable. Iden-
tifying non-trivial fragments where decidability is given is
therefore a worthwhile endeavour [De Giacomo et al., 2012;
Zarrieß and Claßen, 2014].

Here we consider the class of so-called knowledge-based
programs, which are suited for more realistic scenarios where
the agent possesses only incomplete information about its
surroundings and has to use sensing in order to acquire ad-
ditional knowledge at run-time. As opposed to classical
GOLOG, knowledge-based programs contain explicit refer-
ences to the agent’s knowledge, thus enabling it to choose
its course of action based on what it knows and does not
know. Formalizations of knowledge-based programs were

proposed by Reiter [2001b] and later by Claßen and Lake-
meyer [2006] based on Scherl and Levesque’s [2003] ac-
count of an epistemic Situation Calculus and Lakemeyer
and Levesque’s [2004; 2010] modal variant ES, respectively.
Common to these approaches is that conditions in the pro-
gram are evaluated by reducing reasoning about both knowl-
edge and action to standard first-order theorem proving.

In this paper, we propose a new epistemic action formalism
based on the basic Description Logic (DL) ALC by combin-
ing and extending earlier proposals for DL action formalisms
[Baader et al., 2005] and epistemic DLs [Donini et al., 1998].
From the latter we use a concept constructor for knowledge to
formulate test conditions within programs and desired proper-
ties thereof, while we extend the former by not only including
physical, but also sensing actions. As will become apparent,
representing and verifying knowledge-based programs with
this language yields multiple advantages. First, we obtain de-
cidability of verification for a formalism whose expressive-
ness goes far beyond propositional logic. Moreover, it en-
ables us to resort to powerful DL reasoning systems. Finally,
the new formalism also inherits many useful properties of the
epistemic Situation Calculus and ES such as Reiter’s [1991]
solution to the frame problem, a variant of Levesque’s [1990]
notion of only-knowing, and a reasoning mechanism resem-
bling Levesque and Lakemeyer’s [2001] Representation The-
orem where reasoning about knowledge is reduced to stan-
dard DL reasoning.

As a motivating example, consider a mobile robot in a fac-
tory whose task it is to detect faults in gears and do the nec-
essary repairs before turning them on. The agent is equipped
with an (objective) DL knowledge base consisting of a TBox
and an ABox, as usual. The TBox defines basic terminol-
ogy such as the role name has-f that relates a system to its
faults. The ABox gives an incomplete description of the ini-
tial situation and provides some properties of possible faults.
Assume that the agent has two pure sensing actions at its dis-
posal, namely sense-f(gear, x) to sense whether the individ-
ual gear has fault x and sense-on(gear) to check if gear is
on or not. Furthermore, the physical action repair(gear, x)
is available to remove a fault. An example for a knowledge-
based program for this agent is given in Figure 1. As long
as the agent does not know that gear has no known fault, a
known fault x is chosen non-deterministically for which it is
unknown whether gear has it or not. The agent then senses

while ¬K(∀has-f.¬KFault)(gear)
pick(x) : KFault(x) ∧ ¬Khas-f(gear, x) ∧ ¬K¬has-f(gear, x)?.

sense-f(gear, x);

if Khas-f(gear, x) then repair(gear, x) else continue;

end
turn-on(gear); sense-on(gear);
if K¬On(gear) then raise-alarm else continue;

Figure 1: Example program

whether gear has this fault and repairs it if necessary. After
completing the loop the agent turns on the gear system and
checks if this was successful. If not, then there must be an
unknown fault and an alarm is raised. An example for a prop-
erty of this program to be verified is if a gear initially has an
unknown critical fault, then the agent will eventually come to
know it.

The remainder of this paper starts with recalling basic no-
tion of DLs for representing initial knowledge, effect con-
ditions of primitive actions, sensing properties, tests in pro-
grams and temporal properties of programs. In Section 3
we present our new action formalism that allows us to model
both sensing and acting and consider the projection problem
as a basic reasoning task. Section 4 then is about the ver-
ification of programs. We define syntax and semantics of
the programming language and show how to specify tem-
poral properties of programs. Afterwards, we discuss a re-
stricted fragment where verification becomes decidable and
that in some respect even goes beyond earlier work on non-
epistemic programs [Zarrieß and Claßen, 2014], namely by
re-introducing a limited variant of the operator for the non-
deterministic choice of arguments (“pick operator”). We pro-
vide a constructive proof (along with an upper bound on the
procedure’s complexity) in which our variant of the Repre-
sentation Theorem is used to build a finite abstraction of a
program’s transition system by means of DL reasoning, after
which standard propositional model checking can be applied.

Due to space constraints all detailed proofs must be omit-
ted. They can be found in the accompanying technical report
[Zarrieß and Claßen, 2015].

2 The Epistemic Description Logic ALCOK
Here we introduce the syntax and semantics of the epis-
temic DL ALCOK following [Donini et al., 1998]. It ex-
tends the basic DL ALC by singleton concepts called nomi-
nals (O), and by an epistemic role and concept constructor
(K). Although we sometimes only use the objective sub-
logics ALC and ALCO, we present all basic notions here for
full ALCOK.

Let NR, NC , NI be countably infinite sets of role names,
concept names and individual names, respectively. A gener-
alizedALCOK-role P is built from role names using the epis-
temic role constructor and role negation (see Table 1). A sim-
pleALCOK-role (role for short) is a generalized role without
role negation. ALCOK-concept descriptions (concepts for
short) are built from (simple) roles, concept names and the

concept constructors shown in the lower part of Table 1 where
a ∈ NI . The following concept constructors are defined as
abbreviations: CtD := ¬(¬Cu¬D), KwC := KCtK¬C
and ∀R.C := ¬∃R.¬C. Intuitively, an object belongs to the
concept KwC if it is known whether it belongs toC or to ¬C.
In the following we often use the symbols r for a role name,
R for a role, P for a generalized role, A for a concept name,
C,D for possibly complex concepts, and a, b for individual
names (individuals).

Name Syntax Semantics under (I,W)

role name r rI

role negation ¬P (∆×∆) \ P I,W

epistemic role KP
⋂
J∈W PJ ,W

concept name A AI

top > ∆
negation ¬C ∆ \ CI,W

conjunction C uD CI,W ∩DI,W

exist. rest. ∃R.C {d | ∃e : (d, e) ∈ RI,W , e ∈ CI,W}
nominal {a} {aI}
epist. concept KC

⋂
J∈W(CJ ,W)

Table 1: Syntax and semantics of roles and concepts

The different kinds of ALCOK-axioms are shown in Table 2.
A TBox T is a finite set of concept inclusions (CIs for short)
and an ABox A is a finite set of concept and role assertions
(also called ABox assertions), where assertions of the form
A(a),¬A(a), r(a, b),¬r(a, b) are called literals. A knowl-

Name Axiom % (I,W) ||= %, iff

TBox T concept inclusion C v D CI,W ⊆ DI,W

ABox A concept assertion C(a) a ∈ CI,W

role assertion P (a, b) (a, b) ∈ P I,W

Table 2: Syntax and semantics of axioms

edge base (KB)K = (T ,A) consists of a TBox and an ABox.
ALCOK uses a possible world semantics defined in terms

of interpretations. An interpretation I = (∆I , ·I) consists of
a non-empty domain ∆I and a mapping ·I with AI ⊆ ∆I

for all A ∈ NC , rI ⊆ ∆I ×∆I for all r ∈ NR and aI ∈ ∆I

for all a ∈ NI . Here we adopt the so called standard name
assumption (SNA): all interpretations are defined over a fixed
countably infinite domain of standard names, denoted by ∆,
with a fixed interpretation of individuals: We define ∆ :=
NI and we assume that for any interpretation I, ∆I = ∆
and aI = a for all a ∈ NI . An epistemic interpretation
is a pair (I,W) consisting of an interpretation I and a set
of interpretationsW . The interpretation function ·I,W maps
concepts and roles to subsets of ∆ and ∆ ×∆, respectively,
as given in Table 1. Satisfaction of an axiom % in (I,W),
denoted by (I,W) ||= %, is defined as given in Table 2, and
translates to ABoxes, TBoxes and KBs in the obvious way.

An epistemic model of a KB K is a non-empty set of
interpretations M such that for all I ∈ M it holds that

(I,M) ||= K and for all sets of interpretations M′ with
M (M′ there exists J ∈M′ such that (J ,M′) 6||= K.

An axiom % is epistemically entailed byK, written asK ||=
%, iff for all epistemic modelsM of K and for all I ∈ M it
holds that (I,M) ||= %. K is called consistent if K has an
epistemic model.

A concept, axiom, TBox, ABox or KB without any occur-
rences of K is called objective, and subjective if all occurring
concept and role names occur within the scope of a K.

In case of an objective concept C we sometimes write CI
instead of CI,W and I |= X instead of (I,W) ||= X for
an objective axiom, KB, TBox or ABox X . Likewise, for
an objective KB K and objective axiom % we write K |= %
instead ofK ||= %. We also sometimes omit I if we deal with
subjective concepts, roles and axioms.

For an objective KB K there exists a unique epistemic
model. This unique epistemic model of K is given by
M(K) = {I | I |= K}.

3 Actions with Sensing
We introduce a simple notion of primitive actions describing
the basic abilities of an agent to change the world and to gain
new information from the environment. Primitive actions
are defined as syntactical objects composed of (parametrized)
ABox assertions representing effects, effect conditions and
properties of the environment that can be sensed, and are
equipped with a purely model-theoretic semantics.

To define the syntax of actions, let NV be a countably infi-
nite set of variables. An atom is an ABox assertion where in
place of individuals also variables are allowed, i.e. atoms are
of the form C(z) or P (z, z′) with z, z′ ∈ NV ∪ NI . Primi-
tive atoms are of the form A(z), ¬A(z), r(z, z′) or ¬r(z, z′).
A formula is a boolean combination of atoms. The set of all
variables occurring in a formula ψ is denoted by Var(ψ). A
formula without variables is called ground formula. Subjec-
tivity and objectivity of formulas is defined in the obvious
way. We will use the symbols ϕ for atoms, γ for primitive
atoms and ψ for formulas.
Definition 1. An effect is either of the form ψ/γ (conditional
effect) or of the form γ (unconditional effect), where ψ is an
objective formula called effect condition and γ a primitive
atom. A primitive action α is a pair α : (eff, sense) where
eff is a finite set of effects and sense a finite set of objective
formulas. We often write α(x1, . . . , xn) where x1, . . . , xn
are the variables occurring in α. An action without variables
is called ground action.

turn-on(x) : (eff = {(¬∃has-f.CritFault(x))/On(x)})
sense-on(x) : (sense = {On(x)}).

Figure 2: Example actions

Figure 2 shows an example of a pure physical action and a
pure sensing action where the sets sense and eff, respectively,
are omitted. turn-on(x) has a single conditional effect that
causes x to be On after the action is executed only if x pre-
viously has no critical fault. Note that here effects and their

conditions are restricted to be objective since eff is supposed
to only encode physical effects. sense-on(x) is a sensing
action that represents the agent’s ability to perceive whether
On(x) is true in the real world. Again, formulas in sense are
objective since sensors only provide information about the
outside world.

Semantically, a primitive action induces a binary relation
on epistemic interpretations (I,W) which allows us to ex-
plicitly distinguish changes affecting the real world repre-
sented by I and changes to the knowledge stateW .

To execute an action we first need to instantiate it. A vari-
able mapping ν is a total function of the form ν : NV → ∆.
We write ψν to denote the ground formula that is obtained
from the formula ψ by replacing each variable x ∈ Var(ψ)
by ν(x). Similarly, given a primitive action α : (eff, sense),
αν : (effν , senseν) denotes the corresponding ground action.

Next we define how a single interpretation I is affected by
a set of literals L. The update of I with L is an interpretation
IL that is defined as follows:

AI
L

:= (AI \ {a | ¬A(a) ∈ L}) ∪ {a | A(a) ∈ L};

rI
L

:= (rI \ {(a, b) | ¬r(a, b) ∈ L}) ∪
{(a, b) | r(a, b) ∈ L}

for all A ∈ NC and all r ∈ NR. For a given set of ground
effects E and an interpretation I we define an effect function
E that maps E and I to a set of literals given by:

E(E, I) := {γ | ψ/γ ∈ E, I |= ψ} ∪ {γ ∈ E}.
To define how sensing affects the knowledge of the agent we
introduce the notion of sensing compatibility of interpreta-
tions. Two interpretations I and J are sensing compatible
w.r.t. a primitive ground action β : (eff, sense), written as
I ∼β J , if for all ψ ∈ sense it holds that I |= ψ iff J |= ψ.

Now we are ready to define the execution semantics of a
primitive ground action.
Definition 2. Let β : (eff, sense) be a primitive ground ac-
tion, (I,W) an epistemic interpretation with I ∈ W and
(I ′,W ′) an epistemic interpretation. We write (I,W) =⇒β

(I ′,W ′), if the following conditions are satisfied:
• I ′ = IL with L = E(eff, I) and
• W ′ = {J L | J ∈ W,J ∼β I, L = E(eff,J)}.

Let σ = β0, . . . , βn−1 be a sequence of primitive ground ac-
tions. We write (I0,W0) =⇒σ (In,Wn) as an abbreviation
for (I0,W0) =⇒β0

(I1,W1) =⇒β1
· · · =⇒βn−1

(In,Wn).

The real world I of an epistemic interpretation (I,W) is up-
dated according to the physical effects eff. Intuitively, from I
the agent receives information about the truth of each formula
in sense. Interpretations inW contradicting this information
are discarded, while those that agree with I are updated as
well, yielding the new knowledge state. Thus, in our seman-
tics the agent is fully aware of all effects of an action.

As a basic reasoning task we consider projection.
Definition 3 (projection). Let K = (T ,A) be an objec-
tive KB, σ a sequence of primitive ground actions and ψ an
ALCOK-ground formula or ALC-CI. We say that ψ is valid
after executing σ in K iff for all I ∈ M(K) it holds that
(I ′,W ′) ||= ψ where (I,M(K)) =⇒σ (I ′,W ′).

Note that the TBox T is only required to hold and to be
known in the initial state, and that later states resulting from
the execution of actions may violate it. While the persistence
of T is thus not enforced in our formalization, checking this
property is simply a special case of the projection problem.

T = {Fault v CritFault t UncritFault,
∃has-f.> v System, System v ∀has-f.Fault}

A = {System(gear),¬On(gear),Fault(blocked)}

Figure 3: Example initial knowledge base K = (T ,A)

Example 4. Figure 3 shows an initial KB K for our example
domain. The first CI in T states that faults are critical faults
or uncritical ones, the last two CIs define the domain System
and range Fault for the role has-f. A describes a simple ini-
tial situation. Assume K is all the agent knows initially about
the world. Thus, it is known that gear is not on, but the ef-
fect condition ¬∃has-f.CritFault(gear) of turn-on(gear) is
unknown (there is a least one possible world inM(K) satis-
fying it and one that does not). Consequently, after executing
turn-on(gear) in K, we get that ¬KwOn(gear) is valid. If
the agent now in turn executes sense-on(gear), it will also
come to know whether gear has a critical fault or not, i.e. both
Kw∃has-f.CritFault(gear) and KwOn(gear) are valid.

The correctness of our action semantics can be shown by an
embedding into the epistemic Situation Calculus based on the
modal first-order logic ES [Lakemeyer and Levesque, 2004;
2010]. The embedding is done by translating the initial KB
and the primitive actions into a Reiter-style basic action the-
ory (BAT) formulated in ES. The definition of our action se-
mantics and the projection problem cause the initial KB and
the (possibly conditional) effects of primitive actions to be
everything the agent knows about the world and its dynamics.
We have shown in [Zarrieß and Claßen, 2015] that the projec-
tion problem in our formalism thus exactly corresponds to an
entailment problem in ES formulated by means of the only-
knowing modality and the translated BAT.

4 Verification of Knowledge-Based Programs
We are now ready to assemble complex programs for describ-
ing the behavior of a knowledge-based agent. To specify de-
sired properties of such programs we use a temporal exten-
sion of ALCOK. Our main objective is to identify fragments
of the programming language such that the verification prob-
lem, i.e. the problem of deciding whether all runs of a pro-
gram satisfy the specified property, is decidable.

4.1 ALCOK-Golog Programs
In this section we define the syntax and semantics of a Golog-
like action programming language [Levesque et al., 1997]
that uses the action formalism introduced in the previous sec-
tion. It allows to define complex behaviour through program
expressions which are constructed from primitive actions,
programming constructs, and tests formulated in ALCOK.

A program expression δ is built according to the following
grammar:

δ ::= [] | α | ψ? | δ; δ | δ∗ | δ|δ | pick(~x) : ψ?.δ

A program can thus be the empty program [], a primitive ac-
tion α, a test ψ?, where ψ is an ALCOK-formula, or con-
structed from subprograms by means of sequence δ; δ, non-
deterministic iteration δ∗ (meaning execute δ zero or more
times), non-deterministic choice δ|δ, and the guarded pick
constructor pick(~x) : ψ?.δ, where ψ is a ALCOK-formula
and ~x are free variables in ψ and δ. Intuitively, the agent
executes a guarded pick by non-deterministically choosing a
binding ~a from ∆ for the ~x such that ψ with ~x replaced by ~a
is satisfied, after which it executes δ using the same bindings.
An expression pick(~x) : ψ? is called guarded pick. Condi-
tionals and while-loops can be defined in terms of the above,
namely by if ψ then δ else δ′ end := (ψ?; δ)|(¬ψ?; δ′) and
while ψ do δ end := (ψ?; δ)∗;¬ψ?.

Definition 5 (ALCOK-Golog Program). Let K = (T ,A)
be a consistent ALC-KB, Σ a finite set of primitive actions,
and δ a program expression such that all primitive actions in
δ are from Σ. An ALCOK-Golog program is of the form
P = (K,Σ, δ), where we require that Σ contains two pre-
defined purely physical actions ε : (eff = {Term(p)}) and
f : (eff = {Fail(p)}) for indicating termination and failure
of a program, respectively. Both special actions do not oc-
cur in δ and also the names Term and Fail are not used in T
or in any other action or test. Furthermore, we require that
{¬Term(p),¬Fail(p)} ⊆ A and δ is closed, i.e. all variables
in δ are bound by a guarded pick. P is called knowledge-
based if all tests in δ are subjective.

For the execution of a program we split up the program
expression into its atomic programs and then execute these
atomic programs step by step. An atomic program, denoted
by a, is either a primitive action, a test or a guarded pick.
We introduce two functions head(·) and tail(·, ·). Intuitively,
head(δ) contains those atomic programs that can be executed
first when executing the program expression δ. It is defined
by induction on the structure of δ. For instance, we have
head([]) := {ε}, head(δ∗) := {ε} ∪ head(δ) and

head(δ1; δ2) :={a ∈ head(δ1) | a 6= ε}∪
{a ∈ head(δ2) | ε ∈ head(δ1)}.

For a ∈ head(δ), tail(a, δ) yields the remainder of the pro-
gram, i.e., the part that still needs to be executed after a has
been executed. For instance we have

tail(a, δ∗) := {δ′; (δ)∗ | δ′ ∈ tail(a, δ), a 6= ε} ∪
{[] | a = ε}

tail(a, δ1; δ2) := {δ′; δ2 | δ′ ∈ tail(a, δ1)} ∪
{δ′ | ε ∈ head(δ1), δ′ ∈ tail(a, δ2)}.

The complete definitions of head and tail can be found in
[Zarrieß and Claßen, 2015]. Note that if a program is “eaten
up” completely, the termination action ε can be found in the
head. We call a program expression that can be reached by
a sequence of such head and tail applications a reachable

subprogram. The set of all reachable subprograms for an
expression δ is denoted by sub(δ). For a program expres-
sion ρ and a variable mapping ν, ρν denotes the program
expression obtained by replacing each occurrence of a free
variable x in ρ by ν(x). We define subg(ρ) := {ζν | ζ ∈
sub(ρ), ν is a variable mapping}.

Given these auxiliary notions, we can define the semantics
of a program P = (K,Σ, δ) as a transition system TP =
(Q,→, I) with a set of states Q, a transition relation→ and
a set of initial states I ⊆ Q. A state is a pair 〈(I,W), ρ〉 ∈ Q
consisting of an epistemic interpretation (I,W) with I ∈ W
and ρ ∈ subg(δ).

There is a transition 〈(I,W), ρ〉 → 〈(I ′,W ′), ρ′〉, iff

• there exists a primitive action α ∈ head(ρ) such that
(I,W) =⇒α (I ′,W ′) and ρ′ ∈ tail(α, ρ) or

• there exists a test ψ? ∈ head(ρ) such that (I,W) ||= ψ,
(I ′,W ′) = (I,W) and ρ′ ∈ tail(ψ?, ρ) or

• there exists pick(~x) : ψ? ∈ head(ρ) and a variable map
ν such that (I,W) ||= ψν , (I ′,W ′) = (I,W) and there
is ζ ∈ tail(pick(~x) : ψ?, ρ) with ρ′ = ζν ,

• or, if no atomic program in the head of ρ is applicable,
then the failure action f is executed in (I,W) by leaving
ρ unchanged.

Due to the distinguished actions ε and f, a successor state is
always guaranteed to exist. The initial states are of the form
〈(I,M(K)), δ〉 with I ∈ M(K). A run π of a program P is
an infinite path in TP = (Q,→, I) starting in an initial state.
The infinite sequence of epistemic interpretations occurring
in the states along a run π is denoted by I(π).

4.2 Specifying Temporal Properties of Programs
To specify temporal properties of a given program we use
the logicALCOK-LTL that generalizesALC-LTL [Baader et
al., 2008]. ALCOK-LTL formulas are built according to the
following grammar:

Φ ::= % | ¬Φ | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | XΦ | Φ1 U Φ2

where % stands for an ALCOK-ABox assertion or ALC-CI.
We use the following usual abbreviations: 3Φ := >(a) U Φ
(eventually), 2Φ := ¬3¬Φ (globally) and Φ1 → Φ2 :=
¬Φ1 ∨ Φ2.

The semantics of ALCOK-LTL is based on the notion of
an ALCOK-LTL structure, which is an infinite sequence of
epistemic interpretations I = (Ii,Wi)i=0,1,2,.... Let Φ be
an ALCOK-LTL formula, I an ALCOK-LTL structure, and
i ∈ {0, 1, 2, . . .} a time point. Validity of Φ in I at time i,
denoted by I, i |= Φ, is defined as follows:

I, i |= % iff (Ii,Wi) |= %,

I, i |= ¬Φ iff I, i 6|= Φ,

I, i |= Φ1 ∧ Φ2 iff I, i |= Φ1 and I, i |= Φ2,

I, i |= XΦ iff I, i+ 1 |= Φ,

I, i |= Φ1 U Φ2 iff ∃k ≥ i : I, k |= Φ2 and
∀j, i ≤ j < k : I, j |= Φ1.

Now, we are ready to define the verification problem.

Definition 6. Let P = (K,Σ, δ) be an ALCOK-Golog pro-
gram and Φ anALCOK-LTL formula. The formula Φ is valid
in P iff for all runs π of P it holds that I(π), 0 |= Φ.
Example 7. In a program that uses the program expression
given in Figure 1 and the initial KB in Figure 3 the following
property is valid:

∃has-f.(CritFaultu¬KFault)(gear)→
3K∃has-f.(CritFault u ¬KFault)(gear)

saying that if gear has an unknown critical fault initially, then
the agent will eventually recognize it. We can also verify ex-
ecutability and whether the TBox T is preserved along each
run by checking validity of 2

(∧
%∈T % ∧ ¬Fail(p)

)
.

4.3 Verifying Restricted Programs
Unfortunately, it turns out that in the general case the verifi-
cation problem is undecidable. The main source of undecid-
ability is the high degree of non-determinism introduced by
the guarded pick operator that allows to quantify arguments
ranging over the whole countably infinite domain ∆. We get
undecidability even in an already quite restricted subset of our
language by a straightforward reduction of the halting prob-
lem of two-counter machines [Minsky, 1967].
Theorem 8. The verification problem is undecidable even if
no CIs are used, the initial TBox is empty and the primitive
actions have only unconditional effects, at most one argu-
ment, and provide no sensing result.
In order to retain decidability of the verification problem we
restrict the syntax of the guards allowed in the pick-operators.
Definition 9. Let P = (K,Σ, δ) be an ALCOK-Golog pro-
gram. P is called restricted if all guarded picks occurring in
δ are of the form

pick(x1, . . . , xn) : (ψ1 ∨ · · · ∨ ψm) ∧ ψ′?

with m ≥ 1 and for each ψi with 1 ≤ i ≤ m it holds that
{x1, . . . , xn} ⊆ Var(ψi) and ψi is a conjunction of concept
and role atoms of the form KC(z) and Kr(z, z′), respectively,
where C is an ALC-concept with K 6|= > v C. There are no
restrictions on the formula ψ′.

Note that the example program in Figure 1 is restricted.
The restricted atoms in the guard of the pick-operator can also
be viewed as objective instance queries posed to the current
KB of the agent. The agent then chooses a binding for the
variables among the retrieved answers. As a consequence of
the restriction we obtain the following property for the tran-
sition system. From now on let Ind ⊆ ∆ be a fixed finite set
of individuals, including all individuals occurring in P .
Lemma 10. Let P = (K,Σ, δ) be a restricted program,
〈(I,W), ρ〉 a state in TP reachable from an initial state, C
an ALC-concept with K 6|= > v C and r a role name. It
holds that (Kr)W ⊆ Ind× Ind and (KC)W ⊆ Ind.

Consequently, the concepts and roles we use as qualifiers
for objects chosen in the guards of a pick-operator have finite
extensions under knowledge states reachable from an initial
state. Thus, the range of the pick operator is limited to ob-
jects mentioned in P . Intuitively, the agent won’t be able to

directly cope with unknown individuals. As seen in our run-
ning example, the agent is able to recognize whether or not
there is some unknown fault, but there is no possibility to di-
rectly access it.

However, even in this restricted setting the transition sys-
tem has still infinitely many states. Since the epistemic model
M(K) is infinite, there also infinitely many initial states,
namely one initial state for each I ∈ M(K).

To show decidability of the verification problem for re-
stricted programs, we basically proceed as in [Baader and
Zarrieß, 2013; Zarrieß and Claßen, 2014]: We show that a
finite bisimilar abstraction of the transition system of the pro-
gram can be constructed such that the verification problem
boils down to a propositional model checking problem of the
finite abstraction against the propositional abstraction of the
ALCOK-LTL formula. In the following we briefly outline the
main steps of the construction of the abstraction.

Recall that a state in the transition system is of the form
〈(I,W), ρ〉where ρ ∈ subg(δ). As a consequence of Lemma
10 we only need to consider possible instantiations with ob-
jects from the finite set Ind. Therefore, we are able to show
that there are only polynomially many (in the size of δ) reach-
able program expressions in the transition system. Our focus
now is on how to partition the epistemic interpretations that
appear in the transition system into finitely many equivalence
classes such that the satisfaction of temporal properties is pre-
served. First, we use Lemma 10 to identify a finite set of rel-
evant axioms. By considering all axioms in the initial KB, in
the temporal property, all groundings of atoms appearing as
tests in the program and primitive actions, we obtain a finite
set of relevant ALCOK-axioms that we call context of P , de-
noted by CK(P). This set is the basis for constructing types,
i.e. equivalence classes, of single interpretations. To do this
we need to deal with the references to knowledge in the ax-
ioms of the context. We make use of the following simple
structure of the reachable knowledge states.

Lemma 11. Let KD be anALCOK-concept mentioning only
individuals from Ind and 〈(I,W), ρ〉 a reachable state in the
transition system of a restricted program. If there exists d ∈
∆ \ Ind such that d ∈ (KD)W , then ∆ \ Ind ⊆ (KD)W .

Consequently, (KD)W is a finite subset of Ind, or a finite
subset of Ind plus all unnamed elements from ∆ \ Ind. This
result together with the property of epistemic roles shown in
Lemma 10 gives rise to a rewriting of epistemic sub-concepts
by non-epistemic ones. We define the notion of an instance
function κ that maps concepts of the form KD to a subset
of {{a} | a ∈ Ind} ∪ {¬N} where N :=

⊔
a∈Ind{a},

and a given role name r and an individual a to a subset of
{{a} | a ∈ Ind}. Intuitively, an instance function repre-
sents an abstraction of a possible knowledge state. Given an
ALCOK-concept C and an instance function κ we have de-
fined a rewriting that yields an objective concept Cκ. The
rewriting technique is very similar to the one used in the
Representation Theorem [Levesque and Lakemeyer, 2001],
where the idea is to replace each knowledge subformula by a
description of its instances.

Clearly, the context CK(P) contains only finitely many
epistemic roles and epistemic subconcepts. Therefore there

are only finitely many relevant instance functions we need
to consider. Using the rewriting operator we can close up
the context under all possible rewritings of epistemic subcon-
cepts and roles, which yields the so-called knowledge closure
of the context. Let Ĉ(P) be the set of all non-epistemic ax-
ioms contained in the knowledge closure and 2Lit denote the
set of all sets of literals occurring in the context, used for rep-
resenting accumulated physical effects. The dynamic type of
an interpretation I is then given by:

d-type(I) := {(%,E) ∈ Ĉ(P)× 2Lit | IE |= %}.

Obviously, there are only finitely many different dynamic
types. We showed that the problem whether a given subset of
Ĉ(P)× 2Lit represents the dynamic type of an interpretation
I ∈ M(K) is reducible to a consistency check in ALCO.

The knowledge closure and the dynamic types are the main
technical notions used to construct the abstract transition sys-
tem. The abstraction of a state is given by the dynamic type
of the real world, the set of dynamic types for the possible
worlds in the knowledge state, and the program expression.
Given this finite abstract transition system which preserves
satisfaction of temporal properties, we can treat axioms in the
ALCOK-LTL property as propositional atoms and apply LTL
model checking to solve the verification problem.

Theorem 12. Let P be a restricted ALCOK-Golog program
and Φ an ALCOK-LTL formula. The problem whether Φ is
valid in P or not is decidable in 2EXPSPACE.

Since the size of Ĉ(P) and 2Lit is exponential in the size of
the input, there are at most double-exponentially many dy-
namic types and at most triple-exponentially many states in
the abstract transition system, which can be constructed on-
the-fly. We thus obtain a 2EXPSPACE upper bound.

The presented decidable fragment is also maximal in the
sense that relaxing any of the restrictions leads to undecid-
ability. For instance it can be shown that this happens if the
restricted conjunct of the guard is allowed to contain nom-
inals or nested K operators within concept atoms, or role
atoms of the form K¬r(z, z′). The problem is that such ex-
tensions may open the domain of the pick-operator for anony-
mous objects, which immediately causes undecidability.

Finally note that although the projection problem (see Def-
inition 3) can be viewed as a special case of the verification
problem, it is worth special consideration as it is also the ba-
sic reasoning task for executing a knowledge-based program.
We have the following result:

Theorem 13. The projection problem is EXPTIME-complete,
and PSPACE-complete if the initial TBox is empty.

The proofs of the results presented in this section can be
found in the technical report [Zarrieß and Claßen, 2015].

5 Conclusion
So far, little work has been done on decidable verification of
knowledge-based Golog programs. De Giacomo, Lespérance
and Patrizi [2013] present a class of epistemic Situation Cal-
culus action theories for which they show decidability of µ-
calculus properties, however they do not consider Golog and

rely on a purely semantical definition of this class. On the
propositional level, Lang and Zanuttini [2012] have investi-
gated the complexity of verifying post-conditions of a class of
modal logic knowledge-based programs that could be viewed
as a (deterministic) subset of Golog.

Finally, alternative approaches for reasoning about actions
and programs using DLs were proposed. The formaliza-
tion presented in [Calvanese et al., 2011] for example adopts
Levesque’s functional view on knowledge bases, where all in-
teractions with the agent’s KB to happen through the two op-
erations ASK (test evaluation) and TELL (update after action
execution). While this allows for tractable solutions to the
executability and projection problems for certain light-weight
DLs, this non-declarative representation makes no distinction
between world-changing and sensing actions as we do. Also,
verification of temporal properties is not considered.

In this paper, we introduced an action language for both
physical and sensing actions based on the epistemic DL
ALCOK. We showed that under suitable restrictions, verify-
ing LTL properties over possibly epistemic ALCOK-axioms
of knowledge-based Golog programs based on our action lan-
guage is decidable. The main idea to obtain decidability is to
syntactically limit the domain of the guarded pick operator to
contain named objects only.

Furthermore, we investigated the complexity of projection
as the basic reasoning task for executing knowledge-based
programs. As future work, among other things, we want to in-
vestigate whether the obtained upper complexity bound of the
verification problem can be improved, or it is actually tight.

Acknowledgments This work was supported by the Ger-
man Research Foundation (DFG) research unit FOR 1513 on
Hybrid Reasoning for Intelligent Systems (http://www.
hybrid-reasoning.org).

References
[Baader and Zarrieß, 2013] F. Baader and B. Zarrieß. Verification

of Golog programs over description logic actions. In FroCoS’13,
volume 8152 of LNAI. Springer-Verlag, 2013.

[Baader et al., 2005] F. Baader, C. Lutz, M. Miličić, U. Sattler, and
F. Wolter. Integrating description logics and action formalisms:
First results. In AAAI 2005, AAAI Press, 2005.

[Baader et al., 2008] F. Baader, S. Ghilardi, and C. Lutz. LTL over
description logic axioms. In KR 2008, AAAI Press, 2008.

[Calvanese et al., 2011] D. Calvanese, G. De Giacomo, M. Lenz-
erini, and R. Rosati. Actions and programs over description logic
knowledge bases: A functional approach. In Knowing, Reason-
ing, and Acting: Essays in Honour of Hector J. Levesque. Col-
lege Publications, 2011.

[Claßen and Lakemeyer, 2006] J. Claßen and G. Lakemeyer. Foun-
dations for knowledge-based programs using ES. In KR 2006,
AAAI Press, 2006.

[Claßen and Lakemeyer, 2008] J. Claßen and G. Lakemeyer. A
logic for non-terminating Golog programs. In KR 2008, AAAI
Press, 2008.

[De Giacomo et al., 2000] G. De Giacomo, Y. Lespérance, and
H. J. Levesque. ConGolog, a concurrent programming language
based on the situation calculus. Artificial Intelligence, 121(1–
2):109–169, 2000.

[De Giacomo et al., 2010] G. De Giacomo, Y. Lespérance, and
A. R. Pearce. Situation calculus based programs for represent-
ing and reasoning about game structures. In KR 2010, AAAI
Press, 2010.

[De Giacomo et al., 2012] G. De Giacomo, Y. Lespérance, and F.
Patrizi. Bounded situation calculus action theories and decidable
verification. In KR 2012, AAAI Press, 2012.

[De Giacomo et al., 2013] G. De Giacomo, Y. Lespérance, and F.
Patrizi. Bounded epistemic situation calculus theories. In IJCAI
2013, IJCAI/AAAI, 2013.

[Donini et al., 1998] F. M. Donini, M. Lenzerini, D. Nardi, W. Nutt,
and A. Schaerf. An epistemic operator for description logics.
Artif. Intell., 100(1-2):225–274, 1998.

[Lakemeyer and Levesque, 2004] G. Lakemeyer and H. J.
Levesque. Situations, si! situation terms, no! In KR 2004, AAAI
Press, 2004.

[Lakemeyer and Levesque, 2010] G. Lakemeyer and H. J.
Levesque. A semantic characterization of a useful fragment of
the situation calculus with knowledge. Artificial Intelligence,
175(1):142–164, 2010.

[Lang and Zanuttini, 2012] J. Lang and B. Zanuttini. Knowledge-
based programs as plans - the complexity of plan verification. In
ECAI 2012, 2012.

[Levesque and Lakemeyer, 2001] H. J. Levesque and G. Lake-
meyer. The Logic of Knowledge Bases. MIT Press, 2001.

[Levesque et al., 1997] H. J. Levesque, R. Reiter, Y. Lespérance,
F. Lin, and R. B. Scherl. GOLOG: A logic programming lan-
guage for dynamic domains. Journal of Logic Programming,
31(1–3):59–83, 1997.

[Levesque, 1990] H. J. Levesque. All I know: A study in autoepis-
temic logic. Artif. Intell., 42(2-3):263–309, 1990.

[McCarthy and Hayes, 1969] J. McCarthy and P. Hayes. Some
philosophical problems from the standpoint of artificial intelli-
gence. In Machine Intelligence 4, pages 463–502. American El-
sevier, New York, 1969.

[Minsky, 1967] M. L. Minsky. Computation: Finite and Infinite
Machines. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1967.

[Reiter, 1991] R. Reiter. The frame problem in the situation calcu-
lus: A simple solution (sometimes) and a completeness result for
goal regression. Artificial Intelligence and Mathematical The-
ory of Computation: Papers in Honor of John McCarthy, pages
359–380, 1991.

[Reiter, 2001a] R. Reiter. Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems. MIT
Press, 2001.

[Reiter, 2001b] R. Reiter. On knowledge-based programming with
sensing in the situation calculus. ACM Trans. Comput. Log.,
2(4):433–457, 2001.

[Scherl and Levesque, 2003] R. B. Scherl and H. J. Levesque.
Knowledge, action, and the frame problem. Artif. Intell., 144(1-
2):1–39, 2003.

[Zarrieß and Claßen, 2014] B. Zarrieß and J. Claßen. Verifying
CTL∗ properties of Golog programs over local-effect actions. In
ECAI 2014, IOS Press, 2014.

[Zarrieß and Claßen, 2015] B. Zarrieß and J. Claßen. Verification
of knowledge-based programs over description logic actions.
LTCS-Report 15-10, TU Dresden, 2015. See http://lat.inf.tu-
dresden.de/research/reports.html.

