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Abstract. Answer set programming (ASP) is a popular problem
solving paradigm with applications in planning and configuration.
In practice, the number of answer sets can be overwhelmingly high,
which naturally causes interest in a concise characterisation of the
solution space in terms of representative answer sets. We establish
a notion of representativeness that refers to the entropy of specified
target atoms within a collection of answer sets. Accordingly, we pro-
pose different approaches for collecting such representative answer
sets, based on answer set navigation. Finally, we conduct experi-
ments using our prototypical implementation, which reveals promis-
ing results.

1 Introduction
Answer set programming (ASP) [27] is a declarative problem model-
ing and solving paradigm with applications in knowledge represen-
tation, artificial intelligence, planning, and many more. It is widely
used to solve difficult search problems while allowing compact mod-
eling [16]. In ASP, a problem is represented as a set of rules over a set
of atoms, called logic program. Models of a program under the sta-
ble semantics [17, 18] form its solutions, so-called answer sets. ASP
can even be used to solve optimization problems [15, 2], where spec-
ified optimization criteria lead the solver to the optimal solutions.
However, combinatorial search problems such as product configu-
ration [29] or test case generation and planning [30], can have an
exponential number of solutions. In these scenarios a user might not
have an optimization criterion in mind, but rather would like to see
what kind of solutions are possible at all.

Example 1 Suppose we need to schedule n integration tests by
means of their ordering. Consider the following simple encoding:

test(1 . . . n).

{run(X,M) : M = 1 . . . n} = 1← test(X).

Assuming n = 10 is quite optimistic, regarding the sheer number of
functions and specifications usually found in real-world professional
code bases, but such an unrealistically small problem instance al-
ready gives rise to 1010 possible test plans. Luckily, in practice, in-
tegration tests are subject to several dependencies and requirements,
e.g., some tests have to run in parallel, others one after another or
on separate threads, and so on, which naturally restricts the number
of valid test plans. However, the search space will mostly still remain
large, e.g., adding the constraint that no tests may run in parallel still
admits 10! = 3628800 answer sets.

As a consequence it becomes very hard to assess the scope of po-
tential liabilities to test against. Running all test plans is not partic-
ularly productive though, and possibly infeasible. So, how can we
efficiently choose a reasonably large selection of test plans to run,
in order to possibly cover a crucial portion of potential issues in our
code base?

In this paper we seek a way of collecting something of every-
thing, that is, collecting answer sets that (S) represent all specified
target atoms of a program, while (D) being as diverse as possible at
the same time. In general terms, (S) and (D) resemble well-known
NP-complete problems [21]. (S) stems from the set cover problem,
which essentially asks for a set of subsets S of a setM s.t.

⋃
S = M

and |S| ≤ k ∈ N; (D) is the set packing problem, which asks for a set
of pairwise disjoint subsets S of a set M s.t. |S| ≥ k ∈ N; and col-
lecting something of everything, say (S+D), essentially corresponds
to the exact cover problem, which asks for a partition S ∈ 2M of a
setM . You can think ofM being the set of atoms of a logic program
and S being the answer sets.

Example 2 For the sake of easier understanding, consider atoms
consisting of symbols {u,s,n,l,t} and the following an-
swer sets {{u,s}, {t,l,s}, {t,n,s}}. Every solution con-
tains s, so they all have something in common. Collec-
tions c1={{u,s}, {t,l,s}} and c2={{u,s}, {t,n,s}} dif-
fer completely up to s, whereas c3={{t,l,s}, {t,n,s}}
and c4={{u,s}, {t,l,s}, {t,n,s}} do not, as t occurs in
two answer sets. While c3 and c4 are not completely diverse,
c1 and c2 do not represent each symbol. Thus, due to the
small number of answer sets, indeed it turns out that all answer
sets {{u,s}, {t,l,s}, {t,n,s}} form the desired collection in
this minimal setting, as they cover something of everything, i.e., the
entire scope of symbols is represented in the most diverse way possi-
ble.

Now while there exist algorithms for solving the latter problems,
such as Knuth’s algorithm X [23] for the exact cover problem, they
would require enumerating all answer sets, which in practice is often
infeasible. For partial enumeration we are potentially missing out on
huge parts of the input.

Recently, several ideas have been proposed to overcome the diffi-
culty of comprehending large solution spaces [13, 1], which coined
the concept of answer set navigation, a framework that aims at ex-
ploring answer sets with efficient methods, for several purposes, such
as, for instance, finding diverse solutions [4, 5, 10]. Using and ex-
tending certain concepts of answer set navigation, we are convinced



that collecting something of everything contributes to (1) a better un-
derstanding of configuration problems as it reflects the scope of what
is possible; and (2) allows for covering the variety of solutions in
applications such as testing. The main contributions of this work are
the following.

• We discuss and formalise a novel concept of representativeness of
a collection of answer sets by means of entropy;

• we suggest several naive approaches and more sophisticated
heuristics relying on reducing uncertainty and maximising infor-
mation gain; and

• finally, we implemented the proposed methods and conducted pre-
liminary experiments on novel suitable benchmarks.

Related Work. A closely related topic are so called sequence cov-
ering arrays (SCAs) [25, 24], which have applications in testing. An
SCA is an array that consists of permutations of, say, m test cases,
ensuring that any n out of m test cases, will be tested in every n-
way order at least once. There exist several approaches on finding
SCAs using ASP [3, 12], which apply to our setting. However, find-
ing SCAs is a special case for us, as we are not primarily focused on
finding all n-permutations over a specified set of m elements. Our
approach is more generic, in the sense that we are aiming at collec-
tions of answer sets that cover anything possible, in as many different
existing combinations, as possible. This then does not only apply to
test planning or generation, but also to, for instance, configuration
problems, where something of everything may give an impression of
the scope of possibly billion configurations.

Diversity has also been studied in the context of Conjunctive
Queries [28] and Constraint Satisfaction Problems [20].

2 Preliminaries

First, we recall basic notions of ASP. Then, we introduce fundamen-
tal notions of answer set navigation.

Answer Set Programming. We fix a countable set U of (do-
main) elements, also called constants. An atom is an expression
p(t1, . . . , tn), where p is a predicate of arity n ≥ 0 and each
ti is either a variable or an element from U . An atom is ground
if it is free of variables. BU denotes the set of all ground atoms
over U . A (disjunctive) rule r is of the form a0 | . . . | an ←
an+1, . . . , am,¬am+1, . . . ,¬ak where 0 ≤ n ≤ m ≤ k and
a0, . . . , ak are atoms and ¬ denotes default negation. We define
H(r) := {a0, . . . , an}, called head of rule r. The body of r consists
of B+(r) := {an+1, . . . , am} and B−(r) := {am+1, . . . , ak}. A
rule r is ground if no variable occurs in r. A (normal disjunctive
logic) program Π is a finite set of rules. For any program Π, let UΠ

be the set of all constants appearing in Π. Gr(Π) is the set of rules rσ
obtained by applying, to each rule r ∈ Π, all possible substitutions σ
from the variables in r to elements ofUΠ. The set at(r) consists of all
ground atoms of r. By at(Π) :=

⋃
r∈Π at(r) we define the set of all

ground atoms of Π. An interpretation I ⊆ BU satisfies a ground rule
r ∈ Π, iff H(r)∩ I 6= ∅ whenever B+(r) ⊆ I and B−(r)∩ I = ∅.
I satisfies a ground program Π, if I satisfies each rule r ∈ Π. A non-
ground rule r (resp., a program Π) is satisfied by an interpretation I
iff I satisfies all groundings of r (resp., Gr(Π)). The GL-reduct ΠI

is defined by ΠI := {H(r)← B+(r) | I ∩ B−(r) = ∅, r ∈ Π}. I
is an answer set, denoted by I ∈ AS(Π), if I satisfies ΠI and I is
subset-minimal.

Answer Set Navigation. By the term solution space of Π we refer
to 2AS(Π). An atom a ∈ at(Π) induces a facet f ∈ {a,¬a}, if a ∈
F+

Π :=
⋃
AS(Π) \

⋂
AS(Π). A facet f ∈ FΠ = F+

Π ∪ {¬a | a ∈
F+

Π } is activated by modifying Π to obtain Π ∪ ic(f) with ic(f) =
{← ¬a}, if f = a, and otherwise ic(f) = {← a}. We say S ⊆
AS(Π) satisfies f denoted by S |= f , whenever S = {s ∈ AS(Π) |
a ∈ s}, if f = a, and S = {s ∈ AS(Π) | a 6∈ s}, if f = ¬a. A
route δ = f1 ∧ · · · ∧ fn is a finite sequence of facets separated by ∧,
which denotes n arbitrary navigation steps over Π by means of Πδ :=
Π∪ic(f1)∪· · ·∪ic(fn). ∆Π denotes all possible routes over Π and ε
denotes the empty route, meaning, Πε = Π. We say S ⊆ AS(Π)
satisfies δ, if S satisfies each fi ∈ δ, denoted by S |= δ. For more
details we refer to [13].

3 Diversity and Soundness
In this section we will first of all tackle the problems of soundness (S)
and diversity (D) separately, and then go on to present an approach
for collecting something of everything (S + D). Next, we formally
define notions to capture what we understand as diversity and sound-
ness of answer sets.

Definition 1 For a set of target atoms T ⊆ at(Π) and its comple-
ment T := at(Π) \ T , we call collection S ⊆ AS(Π) (i) a packing
over T , whenever for any pair s, s′ ∈ S we find that s

⋂
s′ ⊆ T ; (ii)

sound over T , whenever T ⊆
⋃
S; and (iii) perfect over T , when-

ever S is a sound packing over T .

The reason we take target atoms into consideration is that in some
applications, such as for instance smoke testing, we may only be in-
terested in having representative answer sets with regard to specific
components of our problem, e.g., functionality that is affected by
changes in a code base.

Example 3 Consider program Π0 :

s |u |t n |l← s n |6← u

:← t l |6← :

which admits the following answer sets:

s1 = {n,s} s2 = {l,s} s3 = {u,6}
s4 = {n,u} s5 = {6,t,:} s6 = {l,t,:}.

Set T = at(Π0). For instance, while S = {s1, s2, s4, s5} is sound
over T , it is not a packing over T as atoms s and n appear twice.
However, S is perfect over {l,u,6,t,:}, and by removing s1

from S, we obtain a perfect collection over T .

In fact, some solution spaces admit no perfect collection.

Example 4 Consider Program Π1 = {n |u; Q |6 ← u; s} which
has 3 answer sets {{n,s}, {u,6,s}, {u,Q,s}}. If we choose to
collect over all atoms that induce a facet {n,u,Q,6}, we see that
the answer sets of Π1 admit no perfect collection, as Q and 6 both
require u.

Luckily, regardless of whether a perfect collection over target atoms
exists, we can, in fact, reliably find packings and sound collections
for any program that admits them, respectively, via a greedy ap-
proach, we would like to call “reap and sow”. Essentially we repeat-
edly reap (collect) one seed solution s from a sub-space and then take
a route (sow) towards a sub-space where every solution has nothing
but a specified set of irrelevant atoms in common, as specified in the
subroutine given in Algorithm 1.



Algorithm 1 Reaping and sowing.
Procedure: reap_and_sow
In: satisfiable program Π; target atoms T ⊆ at(Π)
Out: an answer set of Π and a route over Π

1: seed← first found s ∈ AS(Π);
2: return (seed,

∧
a∈seed\T ¬a);

Example 5 (Example 4 cont’d) Let us reap and sow (again) target-
ing atoms {n,u,Q,6}, until we have exhausted possible seed solu-
tions. Suppose we first reap seed solution {n,s} ∈ AS(Π1). Next,
we reap another solution from the sub-space {{u,Q,s}, {u,6,s}}
under route ¬n, say, {u,Q,s}. Since ¬n ∧ ¬u ∧ ¬Q admits no an-
swer set, we are done.

Diverse Answer Sets. Next, we introduce a reap and sow varia-
tion, called D-Greedy search, as given in Algorithm 2, which ignores
all non-target atoms, ultimately producing packings.

Algorithm 2 D-Greedy search.
In: program Π; target atoms T ⊆ at(Π)
Procedure: d_greedy
Out: collection of answer sets

1: S ← ∅; δ ← ε;
2: while AS(Πδ) 6= ∅ do
3: (s, δs)← reap_and_sow(Πδ, T );
4: S ← S ∪ {s}; δ ← δ ∧ δs;
5: return S;

In fact, as shown next, via D-Greedy we can always find a packing
over answer sets of a program admitting at least one packing.

Observation 1 If the input program Π admits pack-
ings {S1, . . . , Sn} over target atoms T , then D-Greedy search
returns S ∈ {S1, . . . , Sn}.

Proof Observing Algorithm 2, we always reap from a sub-
space AS(Πδ) where δ = ¬a1 ∧ · · · ∧ ¬an s.t. ai ∈

⋃
S \ T

for i = 1 . . . n, which means that, if AS(Πδ) 6= ∅, any an-
swer set s ∈ AS(Πδ) added to our final collection S will sat-
isfy

⋃
S ∩ s ⊆ T , and otherwise S = ∅. �

Sound Answer Sets. To obtain a sound collection we can reap
and sow solutions until we have covered the entire scope of facets of
a solution space, as described in Algorithm 3.

Algorithm 3 S-Greedy search.
In: program Π; target atoms T ⊆ at(Π)
Out: collection of answer sets

1: S ← ∅;
2: while T 6= ∅ do
3: guess a ∈ T ;
4: if AS(Πa) 6= ∅ then
5: s← first solution found in AS(Πa);
6: S ← S ∪ {s}; T ← T \ s;
7: else
8: return S;
9: return S;

Observation 2 If the input program Π admits sound collec-
tions {S1, . . . , Sn} regarding target atoms T , then S-Greedy search
returns S ∈ {S1, . . . , Sn}.

Proof Suppose Π admits collections {S1, . . . , Sn} that are sound
regarding T . In Algorithm 3, we can observe that S-Greedy search
collects answer sets S until each target atom t ∈ T has occurred at
least once, so that S ∈ {S1, . . . , Sn}. �

4 Representing Something of Everything
While S-Greedy search will provide us with a sound collection,
diversity among the resulting solutions is not guaranteed. Con-
versely, D-Greedy search will not guarantee soundness. Typically,
soundness will be at the expense of rather similar answer sets, and,
vice versa, pairwise disjunct answer sets will rarely be sound out of
the box. In an ideal setting, we can detect a perfect collection over
target atoms specified by the user, using Algorithm X [23] to detect
an exact cover on the incidence matrix of all the answer sets of a
program. However, as already mentioned, in practice, most of the
time there are simply too many answer sets to enumerate and exact
approaches may not scale for real world problems. Moreover, when-
ever there exists no perfect collection, we would have to settle for
“less” anyways.

As a matter of fact, we are not interested in solving a decision
problem, but rather aim at giving a concise and neutral representation
of the solution space with efficient methods. Representativeness, as
we put it, is meant to convey an idea of how target atoms mesh across
answer sets. The set of all answer sets of a program is a collection
of all possible combinations of parts of a problem that form a solu-
tion to the problem. This, indeed, represents all the ways atoms mesh.
However, (1) due to its sheer size, potentially interesting insights will
be hard to comprehend; (2) when focusing on specific target atoms,
looking into all answer sets causes noise, which might not very well
represent how certain atoms in question mesh; and (3) most impor-
tantly, regardless of what we are focusing on, in general, smaller col-
lections might just be as representative as a collection of all answer
sets. Now, how can we express this conception of representativeness?

4.1 How to Express Representativeness?

We aim at a well-mixed aggregation of all target atoms by means of
a collection of answer sets. Soundness relates to covering all atoms
and diversity relates to well-mixedness. There is not so much to the
concept of soundness as we present it: we need to see each target
atom at least once. Diversity, however, is a bit more complicated, as
there is a broad spectrum on the meaning of diversity of objects. In
terms of how close a collection is to a perfect collection (exact cover),
diversity can be seen as a measure quantifying over the number of
pairwise disjunct answer sets; indirectly this relates to the number of
uniquely appearing atoms. In a perfect collection each target atom
appears once and only once, so there is no bias towards any atom or
thereby induced facet or sub-space of answer sets, which indicates
well-mixedness in terms of the atoms at hand: it is equally surprising
for any atom to show up in an answer set. In terms of entropy, a
perfect collection is well-mixed, because the expected value of self-
information of an atom within the collection, is maximized, but so
is any other collection that induces a uniform distribution on target
atoms showing up in answer sets. Therefore, we propose entropy as
a notion of diversity. In the following, we pursue this idea along the
lines of [26].



Let S|mT be a finite multiset denoted by {am1
1 , . . . , amnn }

where mi corresponds to the frequency of atom ai ∈ T =
{a1, . . . , an} ⊆ at(Π) within a collection S ⊆ AS(Π) of an-
swer sets of program Π. Let T|S be a discrete random variable
that takes values in T and is distributed according to pS(ai) =

mi∑n
j=1mj

∈ [0, 1] with
∑n
i=1 pS(ai) = 1. In short, distribu-

tion pS maps target atom a to its relative frequency of showing
up within answer sets belonging to collection S. pS is uniform,
if pS(ai) = 1

n
for i = 1 . . . n. The Shannon entropy of T|S

is H[T|S ] :=
∑
a∈T pS(a) log2

1
pS(a)

where log2
1

pS(a)
can be re-

garded as the surprise at observing a within S, i.e., the information
gained by observing a is being described. Accordingly, entropy is
a measure for the average amount of information gained per ob-
servation. The more pS concentrates on a single element, the less
the entropy of pS . Accordingly the entropy peaks, if pS is uniform
and results in H[T|S ] = |T | 1

|T | log2
1

1/|T | = log2 |T |. We de-
fine log2

1
0

= 0 and log2 0 =∞.

Example 6 (Example 3 cont’d) Consider S′ = AS(Π0), giv-
ing S′|mT = {u2,n

2,l
2,s

2,62,:2,t
2} and therefore yielding a

uniform distribution pS with pS(a) = 1
7

as each atom a ∈ T occurs
twice.

Formally we define diversity by means of entropy as the func-
tion D(T|S) := 2H[T|S ], which is also known as the perplex-
ity of distribution pS [22] or the order-1 diversity of atoms T
within S|mT [26]. In a nutshell, the diversity of a collection S with
respect to target atoms T is expressed by the average rarity (self-
information) of an atom a ∈ T belonging to an answer set in S.
So, essentially high diversity stands for a well-mixed collection of
answer sets.

Example 7 (Example 6 cont’d) We can observe
that D(T|S\{s1}) = D(T|S′) = 7. We can also con-
sider how well-mixed a collection is w.r.t. specified ig-
nored atoms, e.g., D(T′|S) = 5 for T ′ = {u,l,6,:,t},
whereas D(T|S) ≈ 6.61.

We are now in position to express representativeness of a collec-
tion S over a set of non-empty1 target atoms T by means of

R(T|S) :=
D(T|S)

|T | .

We establish the following observation to motivate R(·).

Observation 3 For any program Π, collection S ⊆ AS(Π) and
target atoms T ⊆ at(Π)

(a) R(T|S) = 1 iff pS over S|mT is uniform; and
(b) R(T|S) = 2H[T|S ]−log2 |T | ∈ [0, 1] .

Proof (a) follows from the fact that 2H[T|S ] is an effective number,
meaning, 2H[T|S ] = |T | for any |T | ∈ N with uniform distribu-
tion pS over T [26]. (b) can be derived as follows:

R(T|S) = D(T|S)/|T | = 2H[T|S ]
/2log2 |T | = 2H[T|S ]−log2 |T | �

What Observation 3 is meant to convey is that representativeness
is effectively describing the similarity between the actual distribu-
tion pS over target atoms T within S and any hypothetical uniform
distribution of |T | objects by means of the base-2 exponential of the
observed error H[T|S ]− log2 |T |. For uniform distributions the error
equals log2 |T |−log2 |T | = 0, hence the representativeness R(T|S)
peaks at 1.

1 From now on we implicitly assume non-empty target atoms.

Example 8 (Example 7 cont’d) R(T′|S) = 1 tells that S is repre-
sentative regarding T ′, as it induces a uniform distribution on target
atoms T ′. But in general, when interested in all atoms as specified
by T , we have R(T|S) ≈ 0.94, because T \ T ′ = {s,n} forms
the answer set s1 ∈ S, whose atoms could be placed in answer
sets s2, s4 respectively to balance the distribution.

So, essentially when it comes to representativeness we seek for a col-
lection that induces a distribution over target atoms that is as close as
possible to a uniform distribution. Thus, in order to maximize repre-
sentativeness, we need to maximize entropy.

4.2 Increasing Representativeness

Our approach for increasing representativeness revolves around a
heuristic that depends on two advances in (faceted) answer set navi-
gation, which we discuss next.

Filtering Relevant Information. When collecting representative
answer sets regarding target atoms T , we are only interested in a cer-
tain portion of the solution space, namely those answer sets, which
contain at least some relevant information a ∈ T . Until now, the way
(faceted) answer set navigation is conceived, routes describe con-
junctions of literals (facets). That way the corresponding sub-spaces
emerge from respective intersections over the set of all answer sets.
While this is useful to sharply bundle answer sets S ⊆ AS(Π)
around an atom in terms of a ∈

⋂
S iff S |= a or a 6∈

⋃
S

iff S |= ¬a, we lack expressiveness in terms of grouping answer
sets by means of unions, in other words, a disjunction of facets. Ac-
cordingly, we introduce a new navigation step operation∨with lower
precedence than ∧, which gives δ ::= ε | f ∈ FΠ | δ ∧ δ | δ ∨ δ.
For the sake of an intuition of how we filter answer sets, think of ∧
and ∨ in terms of classical conjunction and disjunction. We say S
satisfies a1∨· · ·∨ak∨¬ak+1∨· · ·∨¬an∧δ, if S satisfies δ, and ev-
ery s ∈ S satisfies s∩{a1, . . . , ak} 6= ∅ or {ak+1, . . . , an}\s 6= ∅.

To satisfy a route δ that contains a disjunction over atoms it is
sufficient to look into the part of the solution space where the route δ
has been activated, i.e. we only need to look into AS(Πδ).

Theorem 1 Let δ = a1∨· · ·∨ak∨¬ak+1∨· · ·∨¬an∧δ∧ be a route
over program Π where δ∧ ∈ ∆Π and ai ∈ at(Π) for 1 ≤ i ≤ n,
and let Πδ := Πδ∧ ∪ {← ¬a1, . . . ,¬ak, ak+1, . . . , an}. The route
δ can be satisfied within AS(Π) iff AS(Πδ) satisfies δ.

Proof Assume δ = δ∨ ∧ δ∧ where

δ∨ = a1 ∨ · · · ∨ ak ∨ ¬ak+1 ∨ · · · ∨ ¬an
δ∧ = an+1 ∧ . . . am ∧ ¬am+1 ∧ · · · ∧ ¬a`.

(⇒): As δ is satisfied within AS(Π), it is known
that AS(Πδ∧) ⊆ AS(Π) with {an+1, . . . , am} ⊆

⋂
AS(Πδ∧)

and {am+1, . . . , a`} ∩
⋃
AS(Πδ∧) = ∅. Suppose AS(Πδ∧) 6= ∅.

Adding← ¬a1, . . . ,¬ak, ak+1, . . . , an to Πδ∧ , enforces that it can-
not be that all of {a1, . . . , ak} are false and all of {ak+1, . . . , an}
are true. In other words, each answer set s ∈ AS(Πδ) con-
tains at least one atom in {a1, . . . , ak} or omits at least one
atom in {ak+1, . . . , an}. Thus, every s ∈ AS(Πδ) satis-
fies s ∩ {a1, . . . , ak} 6= ∅ or {ak+1, . . . , an} \ s 6= ∅, so
AS(Πδ) satisfies δ.
(⇐): We have that AS(Πδ) ⊆ AS(Π), so it is rather easy to see
that each answer set s ∈ AS(Πδ) that satisfies δ is also contained in
AS(Π), and thus δ is satisfied in AS(Π) as well. �



Answer sets that do not contain any target atoms cannot improve
the representativeness of a collection. Thus, in order to collect rep-
resentative answer sets with respect to a set of target atoms T , we
can ignore all answer sets that do not contain any target atoms. This
means that we only need to search within the part of the solution
space that fulfills the or-constraint over the target atoms.

Proposition 1 For any T ⊆ at(Π) with T = {t1, . . . , tn},
let δt = t1 ∨ · · · ∨ tn and any S ⊆ AS(Π). If S′ ∈
argmax

S′′⊆AS(Πδ
t
)
R(T|S′′), then R(T|S) ≤ R(T|S′).

Proof Suppose S be any collection of answer sets within AS(Π)
and S′ ∈ argmax

S′′⊆AS(Πδ
t
)
R(T|S′′). We can make the following

distinction of cases.

1. Assume S ⊆ AS(Πδt). Then, if S has maximal represen-
tativeness, it follows that R(T|S) = R(T|S′), and other-
wise R(T|S) < R(T|S′).

2. Assume S 6⊆ AS(Πδt).

(a) If S ∩ AS(Πδt) = ∅, then R(T|S) = 0 ≤ R(T|S′).

(b) If S ∩ AS(Πδt) 6= ∅, then R(T|S′) = R(T|S′∪{s}) for
any s ∈ S \ AS(Πδt), therefore R(T|S) ≤ R(T|S′). �

Quantifying Uncertainty. The concept of weighting facets [13]
can express several quantities, such as the answer set count or the
facet count.

Essentially, the answer set count can be used to derive (joint or
conditional) probabilities of events as specified by facets. Next, we
suggest how to derive meaning from counting facets. Increasing rep-
resentativeness is about increasing entropy, a quantity that is, among
other interpretations, being understood as a measure of uncertainty.
With this in mind, we can think of the concept of a facet as a source
of uncertainty in the sense that a facet is an atom whose truth value
is not fixed to true or false within a set of answer sets, but rather
unknown or simply not yet certain based on given information. In
turn, activating a facet causes a certain amount of uncertainty re-
duction or information gain, as previously undetermined truth val-
ues of atoms become certain. Here we are interested in relating facet
counts to sets of target atoms. Thus, we define the facet-counting
weight of a facet f ∈ FΠ regarding target atoms T ⊆ at(Π) and

a set of answer sets S ⊆ AS(Π) by ω|S(f, T ) := 1 −
|FT
Sf
|

|FT
S
|

where FTS :=
⋃
S \ (

⋂
S ∪ T ) are the inclusive facets among T

within S and FTSf :=
⋃
Sf \ (

⋂
Sf ∪ T ) with Sf |= f are the

inclusive facets among T within the subset of S that satisfies f .

Example 9 Consider Example 3 and let T = {n,6}. For exam-
ple, uncertainty regarding T can be reduced by 50% with :, as the
truth value of 6 is unknown and n is false. u and l, for instance,
both erase uncertainty, as ω|AS(Π0)(u, T ) = ω|AS(Π0)(l, T ) = 1;
however, for different reasons. While u entails T , so that n and 6 are
true, no target atoms occur together with l in AS(Π0), meaning, n

and 6 are false.

We assume that reducing uncertainty by counting facets is a useful
tool to assist the search for representative answer sets. In the next
section, we propose heuristics that incorporate relevant information
filtering and uncertainty reduction.

4.3 Heuristics for Collecting Representative Answer
Sets

We consider several heuristics to efficiently collect highly represen-
tative answer sets relative to a specified set of target atoms.

S-Greedy-based Heuristics. As a naive approach, we consider S-
Greedy search as a baseline strategy to find representative answer
sets, as the idea is straightforward: collect all target atoms across an-
swer sets, if possible. We can observe that this approach, in theory,
issues at most |T | calls to a consistency check oracle, which returns
an answer set, whenever there is one. It is well-known that the consis-
tency check for disjunctive programs is a ΣP

2 -complete problem [11].
To filter relevant information right away, we additionally consider the
S-Greedy-sieve heuristic, which is S-Greedy search on route

∨
i=1 ti

over the input program; thus constraining the search space to answer
sets that contain at least one target atom among {t1, . . . , tn} each.

D-Greedy-based Heuristics. D-Greedy-based heuristic are more
involved as they revolve around reducing uncertainty, which relies on
facet counting. Weighting facets by means of counting facets of dis-
junctive programs is in ∆P

3 [13]. Naturally, the following approaches
are computationally more challenging than S-Greedy-based meth-
ods, as, in theory, they require calls to a ∆P

3 -oracle. In particular,

Algorithm 4 Filter facet with maximal information gain.
Procedure: max
In: program Π; route δ; atoms to filter from A 6= ∅; target atoms T ;
Out: filtered facet f ∈ A

1: min← |T |; f ← guess any atom from A;
2: if |A| > 1
3: for f ′ ∈ A do
4: uncertainty← |T ∩ FΠδ∧f′ |;
5: if uncertainty ≤ min
6: if uncertainty = 0
7: return f ′;
8: min← uncertainty; f ← f ′;
9: return f;

filtering procedures to determine facets that reduce uncertainty the
most are required. The max-filter as given by Algorithm 4 identi-
fies the facet (-inducing atom) among atoms A that reduces uncer-
tainty regarding target atoms the most. At most |A| oracle-calls are
required, as, due to Line 6, we terminate earlier whenever a facet
admits no uncertainty. We consider another filter, namely, the max+-
filter, which in addition to the remaining facets, also counts the num-
ber of target atoms that are present by activating a facet. The idea is
to find the facet, which omits the least number of target atoms in re-
sulting answer sets. The max+-filter is realised by changing line 4 in
Algorithm 4 to uncertainty← |T \(FΠδ∧f′ ∪

⋂
AS(Πδ∧f ′))|;.

In theory, this adds no complexity, as we get
⋂
AS(Πδ∧f ′) for

free, when computing FΠδ∧f′ . Algorithm 5 describes two D-Greedy-
based heuristics, each of which use the max-filter (D-Greedy-max)
and max+-filter (D-Greedy-max+), respectively. D-Greedy-max and
D-Greedy-max+ solely differ in their choice of filters. The idea is to
identify a facet, based on which to perform D-Greedy search, using
one of the aforementioned filters. This requires at most |T |2 oracle
calls. We take two more heuristics into consideration in our experi-
ments, that is, D-Greedy-max and D-Greedy-max+, but with Line 4
changed to f ← filter(Π, δ, F+

Π , T );, which means that we will



Algorithm 5 Heuristic using D-Greedy and filter.
In: program Π; target atoms T ⊆ at(Π); filter ∈ {max, max+}
Out: collection S ⊆ AS(Π)

1: S ← ∅; δ ←
∨
t∈T t;

2: while T 6= ∅ and AS(Πδ) 6= ∅ do
3: if |T | > 1 then
4: f ← filter(Π, δ, T, T );
5: S′ ← d_greedy(Πδ∧f , T );
6: S ← S ∪ S′; T ← T \

⋃
S′; δ ←

∨
t∈T t;

7: else
8: s← first found in AS(Πt) where t ∈ T ;
9: S ← S ∪ {s};

10: return S;

look for suitable facets among all facet inducing atoms of the input
program, instead of constraining the filter to target atoms. We call
them D-Greedy-all-max and D-Greedy-all-max+, respectively. This
then requires at most |T | · |F+

Π | oracle calls. However, what could
cause larger runtimes in practice, is that the number of atoms to go
through in the filters is fixed to |F+

Π | and not decreasing with |T |.
To summarize, we propose the following 6 Greedy (abbreviated by

G) heuristics for collecting representative answer sets, all of which
will be evaluated empirically in the next section:

• S-G (Algorithm 3)
• S-G-sieve (Algorithm 3 on constrained search space)
• D-G-max (Algorithm 5 with max-filter)
• D-G-max+: (Algorithm 5 with max+-filter)
• D-G-all-max: (Algorithm 5 with max-filter on all facets)
• D-G-all-max+: (Algorithm 5 with max+-filter on all facets)

5 Experiments
To demonstrate scalability of the proposed approaches on real-world
problems, while providing acceptable results, we generated bench-
marks [6] in the realm of smoke testing (scenario S1) and claim-
augmented argumentation (scenario S2), respectively, and conducted
experiments on them using an implementation of our approach,
called soe.

Scenario S1. We envision a scenario in which certain parts of a
code base have changed and thus require smoke testing to ensure that
the made changes did not break anything. In particular, as is often the
case in practice, a subset of tests is running in parallel, while other
tests are subject to constraints that prohibit parallel execution. To re-
alize this, we used 8 popular open source projects written in the Rust
programming language and encoded test and module relations within
the respective code base by test(i, j) where i, j ∈ N stand for the
module id i and the test id j. We further added rules to choose at least
one module and one test k within the module to run, as expressed
by run_test(k). We added constraints to either always or never run
certain tests or modules in parallel, and included from 10% to 30% of
all tests and modules in such constraints at random, respectively. This
resulted in 25 different logic programs per code base (Rust-project).
Finally, we generated 10 files per Rust-project that contain from 10%
to 100% of possible target atoms run_test(`), which express that
features tested in test ` have changed, thus being subject to smoke
tests. Additionally, 10% of modules to run were added to the target
atoms. Representative answer sets then correspond to test plans that
represent several ways of running tests that include features that have

recently changed. In total we generated 2000 pairs of ASP instances
and target atoms.

Scenario S2. S2 consists of 195 argumentation framework (AF)
instances based on benchmarks A and B from ICCMA 2017 [14]
together with the ASP encodings for stable argumentation seman-
tics [9], where each argument is associated to a claim, as common
in claim-augmented argumentation frameworks CAFs [8] under the
inherited semantics. We envision a scenario in which a user wants to
get an impression of how arguments assigned to chosen target claims
mesh. From the ICCMA instances, we only included instances which
were able to produce at least 10 answer sets within 10 minutes of
solving time. The number of claims is set to 20% of the number of
arguments. Claims are assigned at random, but each claim belongs
to at least two arguments. Target claims were chosen out of facets at
random by a 50% chance, for each instance 10 target atom mappings
were generated, resulting in 1950 AF/ target claim pairs. Represen-
tative answer sets in this scenario then correspond to those stable
extensions (sets of arguments) that are representative with respect to
the target claims.

Setup & Design. Determining representative answer sets should
be feasible on desktop systems, enabling users, or test frameworks
that use our approach in their back-end, to practicably explore, or de-
termine, how atoms mesh, instead of enumerating all or only or a cer-
tain specified number of answer sets, which is typically rather time
consuming. As a consequence, runtime was limited to 300 seconds
and the experiments were run on a single core AMD EPYC 7513, 2.6
GHz with 16 GB of RAM inside a VM (Debian 11, rust 1.68). We
ran our prototypical implementation of the 6 proposed heuristics on
each instance (logic program and input target atoms) of S1 and S2,
respectively, Runtime was measured using perf 5.10.

Expectations. Based on the conception of the heuristics under
evaluation, we expect the following:

(E1) The S-G-based approaches will be significantly faster than the D-
G-based approaches;

(E2) in contrast to other methods, methods using the max+-filter will
produce a small number of rather big answer sets;

(E3) the additional measures imposed in D-G-all-* heuristics (which in
theory increase runtime) will not improve R, as reducing uncer-
tainty by filtering from target atoms is sufficient; and

(E4) the smaller the number of target atoms, the easier the problem, in
terms of observable low run times and high R-values.

Observations & Results. Table 1 affirms expectation (E1) for S1,
and even more so time consumption reflects our considerations re-
garding the complexity of the heuristics. The only exception is S-G-
sieve, terminating faster than S-G, which is reasonable, as adding the
or-constraint to filter relevant information in S-G-sieve causes almost
no overhead while reducing the search space. The timing pattern is
also reflected in the relative number of solved instances, as faster
heuristics solve more instances.

The mean R-value varies between the heuristics, indicating differ-
ent representativeness of their output. Obtaining a general ranking re-
garding R is rather difficult. The reason is that we are missing out on
potential R-values of timed-out data points. For S1, the Rust-project-
based ranking in Table 2 of the R-value reveals that (O1) S-G-sieve
mostly outperforms S-G regarding R; and (O2) D-G-max (resp. D-
G-max+) outperforms D-G-all-max (resp. D-G-all-max+). Also for



heuristic rank mean R mean time [s] solved

S-G 5 0.713 < 0.01 1.00
S-G-sieve 1 0.826 < 0.01 1.00

S1 D-G-max 3 0.772 0.21 0.80
D-G-max+ 2 0.804 0.21 0.80
D-G-all-max 6 0.555 0.55 0.48
D-G-all-max+ 4 0.760 0.61 0.44

S-G 5 0.967 1.88 1.00
S-G-sieve 6 0.958 1.58 1.00

S2 D-G-max 3 0.972 11.00 0.97
D-G-max+ 4 0.969 11.07 0.90
D-G-all-max 2 0.976 46.31 0.86
D-G-all-max+ 1 0.979 54.23 0.83

Table 1: Results regarding scenario S1 and S2, rank regarding R,
solved is the fraction of instances which terminated within timeout.
Heuristics are arranged from lowest to highest complexity.

S1

S-G S-G-sieve D-G-max D-G-max+ D-G-all-max D-G-all-max+
heuristic
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Figure 1: Statistics of output in scenario S1 and S2, including # bins /
# target atoms, which stands for the number of different frequencies
of target atoms across the output divided by the number of target
atoms.

the two extensive Rust-projects G and H with a higher number of po-
tential target atoms, the more sophisticated heuristics were not able
to produce any output within the timeout.

Addressing collection properties, Figure 1 (S1) reveals that (O3)
S-G-based approaches produce the largest collections; (O4) D-G-
based approaches using the max+-filter produce small collections,

A B C D E F G H
# tests 52 251 227 204 406 282 1141 1932
# modules 16 61 94 159 4 159 840 193

S-G 5 5 4 4 1 2 1 1
S-G-sieve 1 1 3 1 2 1 1 1
D-G-max 3 3 2 2 4 1 1 -
D-G-max+ 2 2 1 2 3 1 1 -
D-G-all-max 4 6 4 3 5 3 - -
D-G-all-max+ 2 4 3 2 4 2 - -

Table 2: Ranking heuristics based on mean R for the 8 Rust-projects
(A to H) in S1. - means 100% timeout. Heuristics share a rank if
their data’s p-value passed 0.05 in a standard T-Test for independent
samples.

affirming (E2) ; and (O5) D-G-based approaches using the max-
filter have a tendency to produce outputs where most target atoms
will occur with the same frequency. Regarding (E4), conducting lin-
ear regression analysis on the number of target atoms against time
and R indicates a consistent tendency for the time to increase and R
to decline for rising numbers of target atoms.

For scenario S2 the data shows a rather homogeneous picture as
seen in Table 1 (S2) and Figure 1 (S2). Expectations (E1) and (E3)
are supported, (E2) is partially supported and (E4) cannot be tested
on S2 due to the structure of the instance pairs. The quality of time
consumption compares to S1, but all R-values are nearly identical,
due to the heterogeneous nature of the scenario: instead of 8 basic
instances (Rust-projects), 195 basic instances were used. Therefore
(O3) can be validated and (O4) is partially supported. Also the col-
lection properties do not vary as much as in S1. Noticeable are the
large answer sets, especially for the S-G-based heuristics.

Summary. Our experiments demonstrated that using more com-
plex heuristics pays off, whenever the quality of the output matters
in terms of small size and high representativeness. However, as a
baseline approach, ignoring the output size, less complex methods
like S-G-sieve are the number one choice, as they achieve compara-
bly high representativeness in less than a second. We, thus, suggest
that S-G-sieve is a good choice for generating highly representative
test plans in a short amount of time, whereas D-G-based approaches
are in general the preferred choice, when it comes to exploration sce-
narios, where the size of the collection matters.

6 Conclusion
We discussed the concept of diversity of solutions (answer sets), in-
volving entropy as a reasonable measure that is independent of the
number solutions, which finally evolved into a novel formal con-
cept of representativeness of solutions that solely depends on the dis-
tribution of partial solutions (atoms). Further, we suggested several
methods to produce representative collections of answer sets, rang-
ing from naive to complex heuristics, of which some proved to be
useful to quickly generate a highly representative collection of sev-
eral test plans in a real-world smoke test planning scenario. Others
appeared to be more useful in a more exploration-centric scenario,
when the size of the output has to be small. We used novel suitable
benchmarks to conduct experiments, one instance set of which stems
from claim-augmented argumentation. The other instance set was re-
trieved from 8 popular open source projects using the Rust program-
ming language.

Future Work. Taking the insights of this work into considera-
tion, we assume that starting the search with S-G-based approaches
and using more elaborate heuristics, like D-G-based approaches, to-
wards the end of the search, when most of the target atoms have al-
ready been covered, could be promising. Further, developing efficient
methods to translate representative collections into visual represen-
tations thereof, potentially using tools such as clingraph [19] or
NEXAS [7], is interesting future work.
δ ←

∧
{¬a : a ∈ T ∩

⋃
S}

δ ←
∧
a∈T∩

⋃
S ¬a
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