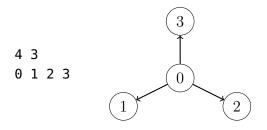

Exercise Sheet 1: Getting to Know Graphs and the Resource Description Framework Maximilian Marx, Markus Krötzsch Knowledge Graphs, 2020-11-10, Winter Term 2020/2021


Exercise 1.1. Show that the number of vertices of odd degree is even in every simple graph.

Exercise 1.2. Write a program that reads a directed graph from a file in the format of Exercise 0.3 (recall that test data files are available¹) and prints out the graph in METIS graph format:

The first line consists of two integers n and m, separated by a space, where n is the number of vertices, and m is the total number of edges. Each of the following lines specifies the neighbours $n_i^1, n_i^2, \ldots, n_i^{d_i}$ of vertex v_i .

As an example, the directed star S_3 would be encoded as:

Exercise 1.3. A triangle in a directed graph is a simple directed path $v_1 \xrightarrow{e_1} v_2 \xrightarrow{e_2} v_3 \xrightarrow{e_3} v_1$.

Write a program that reads a directed graph G from a file in the format of Exercise 0.3 (cf. the test data files¹) and prints out the number of triangles in G. How does the runtime of your program scale with the size of the input graph?

Exercise 1.4. A *bipartite graph* is a simple graph $G = \langle V, E \rangle$, where V can be partitioned into two sets X, Y (i.e., $X \cup Y = V$, and $X \cap Y = \emptyset$), such that every edge $\{a, b\} \in E$ coincides with both X and Y, i.e., $\{a, b\} \cap X \neq \emptyset$ and $\{a, b\} \cap Y \neq \emptyset$.

Show that the following are equivalent:

- 1. $G = \langle V, E \rangle$ is bipartite.
- 2. *G* is 2-colourable, i.e., there is a map $c: V \to \{0, 1\}$ such that no two adjacent vertices a, b have the same colour, i.e., $c(a) \neq c(b)$ for all $\{a, b\} \in E$.
- 3. *G* does not contain a cycle $v_1 \xrightarrow{e_1} v_2 \xrightarrow{e_2} \cdots \xrightarrow{e_{n-1}} v_n \xrightarrow{e_n} v_1$ of odd length.

¹https://github.com/knowsys/Course-Knowledge-Graphs/tree/master/data/simple-graphs

Exercise 1.5. Write a program that reads a graph in N-Triples format and checks whether the graph is bipartite. Use it to decide whether authorship.nt.gz² and coauthors.nt.gz² are bipartite.

Hint: each of the uncompressed graphs is roughly 4 GiB in size. In Python, you can use gzip.GzipFile³ to process the compressed file without decompressing it first. There is also authorship-snippet.nt.gz², a small part of the graph that you can use during development.

Please note: In order to get the correct data files, please install git-lfs⁴ on your system, and then activate it in your local repository (git lfs install).

Exercise 1.6. From the coauthors.nt.gz graph², extract the *connected component* containing http://dblp.uni-trier.de/pers/s/Studer:Rudi, i.e, extract the induced subgraph that

- contains <http://dblp.uni-trier.de/pers/s/Studer:Rudi>,
- contains all nodes reachable from <http://dblp.uni-trier.de/pers/s/Studer:Rudi> by some path, and
- contains all edges that are present in the full graph between these nodes.

Hint: authorship-snippet.nt.gz¹ contains <http://dblp.uni-trier.de/pers/s/Studer:Rudi> and can be used for testing during development.

²https://github.com/knowsys/Course-Knowledge-Graphs/tree/master/data/dblp

³https://docs.python.org/3/library/gzip.html

⁴https://git-lfs.github.com/