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Course organisation
Registration via Selma
• In case you want to take an exam in this course . . .
• . . .do not forget to register online via the Selma portal!
• (Registration is mandatory for examination.)
• See course web page for links.

Exercise sessions
• Start next week (right after the lecture)
• First sheet published today
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Propositional Logic
We might consider using Propositional Logic
• It is one of the simplest logics
• It can be used to write simple representations of a domain
• There exist reasoning algorithms that exhibit excellent performance in

practice
• (Most of) you are already familiar with it
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Syntax: Propositional Alphabet
1. Propositional variables (PL):

basic statements that can be true or false
2. The symbols ⊤ (“truth”) and ⊥ (“falsehood”)
3. Propositional connectives:

– ¬: negation (not)
– ∧: conjunction (and)
– ∨: disjunction (or)
– →: implication (if . . . then)
– ↔: bi-directional implication (if and only if)

4. Punctuation symbols “(” and “)” can be used to avoid ambiguity (in
linearised representations of formulas).
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Syntax: Formulas
Atomic formulas (atoms): propositional variables

Formulas: Inductively defined from atoms, ⊤, and ⊥ using connectives

Examples of formulas:
• If the tumour is benign then it does not have metastasis

Benign → ¬Metastasis

• A tumour is in Stage 4 if and only if it is not benign

Stage4 ↔ ¬Benign

• If a tumour has a treatment, it is surgery, or chemotherapy, or
radiotherapy

Treatment → Surgery ∨ Chemo∨ Radio
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Semantics: Interpretations
An interpretation I assigns truth values to propositional variables:

I : PL → {true, false}

An interpretation for a (set of) formulas X interprets the propositional
variables occurring in X .

Example: An interpretation I for the formula R → ((Q∨ R) → R):

R
I = true

Q
I = false

A formula with n propositional variables has 2n interpretations.
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Semantics of Formulas
The truth value of the propositional variables in a formula α
determines the truth value of α.

R → ((Q∨ R) → R)

R (Q∨ R) → R

Q∨ R

Q R

R

R
I = true

Q
I = false

(Q∨ R)I = true
((Q∨ R) → R)I = true

(R → ((Q∨ R) → R))I = true
We say that I is a model of α, written I |= α, if Imakes α true.

Given I and α, checking whether I |= α can be done effectively, in polynomial
time.
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Using PL for KR
Propositional Logic provides a simple KR language.

To write down a representation of our domain do the following:
1. Identify the relevant propositions:

Benign The tumour is benign
Metastasis The tumour has metastasis

Stage4 The tumour is in Stage 4
. . .

2. Express our knowledge using a set of formulas (knowledge base):
Benign

Benign ↔ ¬Metastasis
Stage4 → Metastasis

. . .
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Reasoning with a Knowledge Base
Knowledge Base K1:

Benign∧ Stage4
Benign ↔ ¬Metastasis
Stage4 → Metastasis

. . .

Knowledge Base K2:

Benign

Benign ↔ ¬Metastasis
Stage4 → Metastasis

. . .
We would like to answer the following questions:
1. Do our KBs make sense?

K1 seems contradictory
2. What is the implicit knowledge we can derive from our KBs?

K2 seems to imply the formula ¬Stage4
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Satisfiability Problem

Satisfiability: An instance is a formula α.
The answer is true if there exists a model I of α
and false otherwise.

For α the formula R → ((Q∨ R) → R) the answer is true:
I assigning R to true and Q to false is a model of α.

For α the formula (R∧Q) ↔ (¬R∨ ¬Q) the answer is false:
None of the 4 possible interpretations is a model of α.

Satisfiability defined for sets of formulas in the obvious way.

The following knowledge base is unsatisfiable:

K1 = {Benign∧ Stage4, Benign ↔ ¬Metastasis, Stage4 → Metastasis}
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Other Reasoning Problems
Problem
Validity: An instance is a formula α.
The answer is true if every interpretation for α is a model of α
and false otherwise.

Problem
Entailment: An instance is a pair of formulas α,β.
The answer is true if every model of α is also a model of β
and false otherwise.

Problem
Equivalence: An instance is a pair of formulas α,β.
The answer is true if the set of all models of α and β coincide
and false otherwise.
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Reductions Between Problems
Intuitively, these problems are strongly related:
• α is valid if and only if ¬α is unsatisfiable
• α and β are equivalent if and only if α entails β and β entails α
• α entails β if and only if α∧ ¬β is unsatisfiable
Definition
A reduction from problem P1 to P2 is a function f such that
• for each input x to P1, the answer of P1 for input x coincides with the

answer of P2 for input f (x),
• given x, the input f (x) can be efficiently computed.

The aforementioned (and many other) problems can be reduced to
(un)satisfiability
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Expressivity -v- Complexity
Propositional satisfiability is (famously) NP-complete:
Cook-Levin
Propositional satisfiability is an NP-complete problem:
1. It is in NP
2. It is NP-hard: all problems in NP are reducible to it

So should we just give up (as reasoning is intractable)?
NO!
• Algorithms such as DPLL are effective in practice
• Highly optimised SAT solvers can deal with problems containing millions

of propositional variables (www.maxsat.udl.cat)
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Limitations of Propositional Logic
Consider the following statements from a medical domain:
• A juvenile disease affects only children or teenagers
• Children and teenagers are not adults
• Juvenile arthritis is a kind of arthritis and a juvenile disease
• Arthritis affects some adults
Let us try to represent these statements in propositional logic:

JuvDisease → AffectsChild ∨ AffectsTeenager

Child ∨ Teenager → ¬Adult
JuvArthritis → JuvDisease∧ Arthritis

Arthritis → AffectsAdult
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Limitations of Propositional Logic
Some intuitive consequences of our statements:
• Juvenile arthritis does not affect adults
• Arthritis is not a juvenile disease
We expect the following formulas to follow:

JuvArthritis → ¬AffectsAdult
Arthritis → ¬JuvDisease

However, neither of them is entailed.

Even worse, if we add to our initial formulas the following ones, we obtain
an unsatisfiable set of formulas.

JuvArthritis → ¬AffectsAdult
JuvArthritis

Logics for Knowledge Representation (Lecture 2)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 15 of 43 Computational
Logic ∴ Group



Limitations of Propositional Logic
What is going wrong?
• A juvenile disease affects only children or teenagers
• Children and teenagers are not adults
• Juvenile arthritis is a kind of arthritis and a juvenile disease
• Arthritis affects some adults
Intuitively . . .
• Light blue represents sets of objects
• Green represents relationships between objects
• Purple indicates whether a statement holds for “all” or for “some” objects.
We cannot make such distinctions in propositional logic . . .
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Limitations of Propositional Logic
We need a language that allows us to
1. Represent sets of objects
2. Represent relationships between objects
3. Write statements that are true for some or all objects satisfying certain

conditions
4. Express everything we can express in propositional logic (and, or, implies,

not, . . . )
Examples of conditions we want to express:
• For all objects c,

if c belongs to the set of juvenile diseases
and it affects an object d,

then d belongs to the set of children
or to the set of teenagers.

• There exist objects c,d such that c belongs to the set of arthritis and d
belongs to the set of adults and c affects d.
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FOL Syntax: Symbols
A first-order alphabet consists of
• Predicate Symbols, each with a fixed arity

Arthritis Unary Predicate
Affects Binary Predicate

• Function symbols, each with a fixed arity

ssnOf Unary Function Symbol

• Constants: JohnSmith, MaryJones, JRA
• Variables: x, y, z
• Propositional connectives {¬,∨,∧,→,↔}
• Symbols ⊤ and ⊥.
• The universal and existential quantifiers: ∀, ∃
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FOL Syntax: Terms
Terms stand for specific objects:
• Variables are terms
• Constants are terms
• The application of a function symbol to terms leads to a term

JohnSmith stands for the person named John Smith
ssnOf ( JohnSmith) stands for the ssn number of John Smith

x stands for some object (undetermined)
ssnOf (x) stands for some ssn number (undetermined)
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FOL Syntax: Formulas
An atomic formula (atom) is of the form

P(t1, . . . , tn) P is an n-ary predicate, ti are terms

Examples:

Child( JohnSmith) John Smith is a child
JuvenileArthritis( JRA) JRA is a juvenile arthritis

Affects( JRA, JohnSmith) John Smith is affected by JRA

An atom represents a simple statement:
• similar to atoms in propositional logic,
• but first-order atoms have finer-grained structure.
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FOL Syntax: Formulas
Complex formulas:
• Every atom is a formula

Child( JohnSmith), Affects(x, JohnSmith)

• ⊤ and ⊥ are formulas
• If α is a formula, then ¬α is a formula

¬Affects( JRA, JohnSmith),¬Child( y)

• If α, β are formulas, (α ◦ β) is a formula for ◦ ∈ {∧,∨,→,↔}

Affects( JRA, y) → Child( y) ∨ Teenager( y)

• If α is a formula and x is a variable, (∀x.α), (∃x.α) are formulas

∀y.(Affects( JRA, y) → Child( y) ∨ Teenager( y))
¬(∃x.∃y( JuvArthritis(x) ∧ Affects(x, y) ∧ Adult( y)))
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FOL Syntax: Free and Bound Variables
Intuitively, a free variable occurrence in a formula is one that does not
appear in the scope of a quantifier:

Affects( JRA, y) → Child(y) ∨ Teenager(y)
∃x.( JuvArthritis(x) ∧ Affects(x, y) ∧ Adult(y))
∃x.( JuvArthritis(x)) ∧ Affects(x, y) ∧ Adult(y)

A variable occurrence is bound if it is not free.
A formula is rectified if a variable does not appear both free and bound and
each quantifier refers to a different variable.

Affects( JRA, y) → ∃x.( JuvArthritis(x)) ∧ Affects(x, y) ∧ Adult(y) ×

A sentence is a formula with no free variable occurrences.
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Example FOL Sentences
• A juvenile disease affects only children or teenagers
• Children and teenagers are not adults
• Juvenile arthritis is a kind of arthritis and a juvenile disease
• Arthritis affects some adults

∀x.(∀y.( JuvDisease(x) ∧ Affects(x, y) → Child( y) ∨ Teenager( y)))
∀x.(Child(x) ∨ Teenager(x) → ¬Adult(x))

∀x.( JuvArthritis(x) → Arthritis(x) ∧ JuvDisease(x))
∃x.(∃y.(Arthritis(x)∧ Affects(x, y)∧ Adult( y)))
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FOL Interpretations
As in PL, meaning of sentences given by interpretations.

An interpretation is a pair I = ⟨D, ·I⟩ where:
• D is a non-empty set, called the interpretation domain.

D = {u, v,w, s}

• ·I is the interpretation function and it associates:
– With each constant c an object c I ∈ D.

JohnSmith
I = u MaryWilliams

I = v JRA
I = w . . .

– With each n-ary function symbol f , a function f I : Dn → D.

ssnOf
I = {u 7→ s, . . .}

– With each n-ary predicate symbol P, a relation PI ⊆ Dn.

Child
I = {u, v} Adult

I = ∅ Affects
I = {⟨w,u⟩, . . .}
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Evaluation of Terms
Terms are interpreted as elements of the interpretation domain.

We have already seen how to interpret constants

JohnSmith
I = u MaryWilliams

I = v JRA
I = w . . .

To interpret terms, we need to interpret (free) variables by means of a
mapping from variables to domain elements (an assignment)

Given I and assignment a, we can interpret any term. Let I be as before and
amap x to u:

JohnSmith
I,a = u

x
I,a = u

(ssnOf (x))I,a = ssnOf
I(u) =s
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Formula Evaluation
Given I and a, a formula is interpreted as either true or false.

Atomic formulas:

P(ti, . . . , tn)I,a = true iff ⟨tI,a
i
, . . . , tI,an ⟩ ∈ P

I e.g.:
Child( JohnSmith)I,a = true since JohnSmith

I,a = u

and ChildI = {u, v}
Affects( JRA, x)I,a = true since JRA

I,a = w, x
I,a = u

and AffectsI = {⟨w,u⟩}

Propositional connectives are interpreted as usual:

(¬Child( JohnSmith))I,a = false
(Affects( JRA, x) ∧ Child( JohnSmith))I,a = true

(Child( JohnSmith) → ¬Child( JohnSmith))I,a = false
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Formula Evaluation
Given I and a, a formula is interpreted as either true or false

Existential quantifiers:

(∃x.Affects( JRA, x))I,a∅ = true

since there exists an assignment a extending a∅ such that
Affects( JRA, x)I,a = true

Universal quantifiers:

(∀x.Affects( JRA, x))I,a∅ = false

since it is not true that, for any assignment a extending a∅,
Affects( JRA, x)I,a = true.
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Evaluation of Sentences
For interpreting sentences, assignments are irrelevant.
Consider the sentence

∀x.∀y.(( JuvDisease(x) ∧ Affects(x, y)) → (Child( y) ∨ Teenager( y)))
and the interpretation I given as follows:

D = {u, v,w}
JuvDisease

I = {u} Child
I = {w}

Teenager
I = ∅ Affects

I = {⟨u,w⟩}
The formula with no quantifiers must evaluate to true in I for all values
x, y ∈ D. Example for x = u and y = v:

( JuvDisease(u) ∧ Affects(u, v)) → (Child(v) ∨ Teenager(v))
true∧ false → false∨ false

true
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Propositional vs FOL Interpretations
More complicated to give meaning to FOL than to PL formulas:

JuvDisease → AffectsChild ∨ AffectsTeenager (PL)
∀x.(∀y.( JuvDisease(x)∧ Affects(x, y) → Child( y)∨ Teenager( y))) (FOL)

PL Interpretations

• Assigns truth values to atoms
• The truth value of complex

formulas determined by induction
Example formula has 8 possible
interpretations and 7 models

FOL interpretations

• Specify the domain for quantifiers
to quantify over

• Interpret constants, predicates,
functions

• Assign objects to variables
Example formula has ∞ possible
interpretations and ∞ models
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Basic Reasoning Problems in FOL
Exactly the same ones as in Propositional Logic:
Problem
Satisfiability: An instance is a (set of) sentence(s) X .
The answer is true if X has a model and false otherwise.

Problem
Entailment: An instance is a pair of (sets of) sentence(s) X , Y .
The answer is true if every model of X is also a model of Y
and false otherwise.

Problem
Equivalence: An instance is a pair of (sets of) sentence(s) X , Y .
The answer is true if the set of all models of X and Y coincide
and false otherwise.
Again, these problems are reducible to satisfiability.
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The Process of Knowledge Engineering
Starts with a problem/application:

FOL-based KR is being used in several countries to describe electronic pa-
tient records (e.g., by specifying knowledge about human anatomy, drugs,
surgical procedures, and so on).
We have been hired to write a FOL knowledge base about different types
of arthritis (to be used by a medical research company in the annotation
of patient data)

Next, we need to gather requirements
• Find out what kind of data will be in the application

(⇒) Usually, no access to the actual data
• Meet (or work closely with) with the company’s domain experts
• Gather relevant documentation about the domain
Outcome: diagrams and list of textual descriptions

Logics for Knowledge Representation (Lecture 2)
Computational Logic Group // Hannes Strass
Foundations of Knowledge Representation, WS 2024/25

Slide 31 of 43 Computational
Logic ∴ Group



Establishing the Vocabulary
Start from a textual description or diagram:
• A juvenile disease affects only children or teenagers
• Children and teenagers are not adults
• Juvenile arthritis is a kind of arthritis and a juvenile disease
• Arthritis affects some adults
Identify the important types of objects (unary FOL predicates):

juvenile disease, child, teenager, adult, . . .
Identify the important types of relationships (n-ary FOL predicates)

affects, . . .
Identify the important functions (none in this particular case)
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Basic Facts
Now that we have the basic vocabulary, we can acquire the data

Child( JohnSmith) John Smith is a child
JuvenileArthritis( JRA) JRA is a juvenile arthritis

¬Affects( JRA,MaryJones) Mary Jones not affected by JRA

Usually data consist of (possibly negated) atoms.

But data can also reflect more complex information:

Child( JohnSmith)∨ Child(MaryJones) John is a child or Mary is a child

In our case, the medical company will take care of the data
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Terminological Axioms
Sentences describing the general meaning of predicate and function
symbols (independently of the concrete data)
• Sub-type statements: ∀x.( JuvArthritis(x) → Arthritis(x))
• Full definitions: ∀x.( JuvArthritis(x) ↔ Arthritis(x) ∧ JuvDisease(x))
• Disjointness statements: ∀x.(Child(x) → ¬Adult(x))
• Covering statements: ∀x.(Person(x) → Adult(x) ∨ Child(x) ∨ Teenager(x))
• Type restrictions: ∀x.(∀y.(Affects(x, y) → Arthritis(x) ∧ Person( y)))
• Other general statements:

∀x.(∀y.( JuvDisease(x) ∧ Affects(x, y) → Child( y) ∨ Teenager( y)))
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Data vs Terminological Knowledge
• The Data describe specific objects

(⇒) Sentences without variables or quantifiers (usually atoms)
• Terminological axioms describe general properties of the application

domain, independently of the data.
(⇒) Universally quantified sentences with no constants

This separation is not theoretically “clean” in FOL:

∀y.(Affects( JRA, y) → Child( y)∨ Teenager( y))
∀x.(Cont(x) → (x =Eur)∨ (x =Asia)∨ (x =Amer)

∨ (x =Afr)∨ (x =Aus)∨ (x =Antart))

But it is conceptually and practically very useful.

Set of Terminological Axioms often called an Ontology
Ontology + Data often called a Knowledge Base
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Model Selection
Initially, we have no data or terminological axioms

(⇒) We have said nothing about our application
(⇒) Any possible interpretation is a model

We now add to the knowledge base the axiom

∀x.( JuvArthritis(x) → (Arthritis(x)∧ JuvDisease(x)))

Any interpretation I such that

JuvArthritis
I ̸⊆ Arthritis

I ∩ JuvDisease
I

is no longer a model

By writing down a FOL sentence we have:
• Discarded (possibly infinitely many) models
• Selected the models consistent with our statement
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Model Selection

All inter-
pretations

(Added a
sentence)

(Added
another
sentence)

By adding FOL statements to a knowledge base we gain knowledge:
• Reduce the number of models
• Obtain new logical consequences (recall entailment definition)
Two special cases:
• New sentence entailed by previous ones: models stay the same

Redundant knowledge
• Knowledge base becomes unsatisfiable: no models, everything follows

Meaningless knowledge (error in the modeling)
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Ontological Modelling

Situation(s) Conceptualisation C

Ontology	O

Language	L

Tarskian 
interpretation I

All L-models M(L)

Intended models M(C)

Ontology models M(O)
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Ontological Modelling

Good

Bad

Less Good

Worse
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Ontological Modelling

Less Good

Intended models M(C1) Intended models M(C2)

Ontology models M(O1) Ontology models M(O2)

False
Agreement!
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The Role of Reasoning
Why are reasoning problems (satisfiability, entailment) useful?
1. Detect errors

⇒ Knowledge base becomes unsatisfiable
⇒ We get an unintuitive (and “wrong”) entailment
⇒ We don’t get an intuitive (and “right”) entailment

2. Discover new knowledge
⇒ Things we weren’t aware we knew

3. Richer query answers
⇒ Retrieve more (relevant) data

Without reasoning, knowledge engineering becomes unfeasible
1. Knowledge bases grow very large (1,000s of sentences)
2. Errors are difficult to detect manually
3. Query answers do not take knowledge into account
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Expressivity vs Complexity
Theorem
FOL satisfiability is an undecidable problem, i.e. there is no procedure that
given any set S of first order sentences:
1. always terminates,
2. returns true if and only if S is satisfiable.

Proof idea: [proof beyond the scope of this course]
1. Define a computable function f which takes a Turing MachineM to a sentence f (M) in FOL.
2. M does not halt on the empty tape if and only if f (M) has a model
(The Halting problem on the empty tape is undecidable)

So should we just give up (reasoning is intractable)?
Maybe . . .
• Highly optimised FOL theorem provers are effective in practice
• But still can’t cope with realistic KR problems
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Limitations of FOL
FOL is powerful, but still can’t capture
• Transitive closure (Ancestor is the transitive closure of Parent)
• Defaults and exceptions (Birds fly by default; Penguins are an exception)
• Probabilistic knowledge (Children suffer from JRA with probability p)
• Vague knowledge (Ian is tall)
• . . .
We will return to some of these issues later in the course
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