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Abstract

Abstract argumentation is a prominent reasoning framework.
It comes with a variety of semantics, and has lately been en-
hanced by probabilities to enable a quantitative treatment of
argumentation. While admissibility is a fundamental notion in
the classical setting, it has been merely reflected so far in the
probabilistic setting. In this paper, we address the quantitative
treatment of argumentation based on probabilistic notions of
admissibility in a way that they form fully conservative exten-
sions of classical notions. In particular, our building blocks
are not the beliefs regarding single arguments. Instead we
start from the fairly natural idea that whatever argumentation
semantics is to be considered, semantics systematically in-
duces constraints on the joint probability distribution on the
sets of arguments. In some cases there might be many such
distributions, even infinitely many ones, in other cases there
may be one or none. Standard semantic notions are shown to
induce such sets of constraints, and so do their probabilistic
extensions. This allows them to be tackled by SMT solvers,
as we demonstrate by a proof-of-concept implementation. We
present a taxonomy of semantic notions, also in relation to
published work, together with a running example illustrating
our achievements.

1 Introduction
In its basic form, an abstract argumentation framework (AF)
(Dung 1995) consists of a set of abstract arguments together
with a binary relation that represent conflicts between ar-
guments, the so-called attack relation. AFs are popular to
describe contentious information and draw conclusions from
it using formalized arguments. The popularity of the AF con-
cept has led to a variety of extensions like notions to handle
preferences and values on arguments (Amgoud and Cay-
rol 2002; Bench-Capon 2003), weights (Dunne et al. 2011),
probabilities (Li, Oren, and Norman 2011; Thimm 2012;
Hunter 2013) or introducing a positive influence relation be-
tween arguments, so-called supports (Amgoud et al. 2008;
Nouioua and Risch 2011). Furthermore, abstract dialectical
frameworks (ADFs) as a powerful generalization of Dung’s
framework have been introduced (Brewka and Woltran 2010;
Brewka et al. 2013; Straß and Wallner 2015; Gaggl, Rudolph,
and Straß 2021), which also allow to handle probabilities (Pol-
berg and Doder 2014).

In this paper, we focus on the emerging field of AFs in
the probabilistic setting. As a concrete example to ground
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Figure 1: Exemplary sensor layout of a semi-autonomous vehicle

our discussion, we consider an argumentation-based decision
framework for a semi-autonomous vehicle as depicted in Fig-
ure 1. Here, a central decision entity (the “supervisor” (Faqeh
et al. 2020)) has access to possibly conflicting information
from several sensors (left/right camera, lidar sensor) with
overlapping sensing areas in front of the vehicle. The sen-
sor values are assumed to be of a Boolean nature indicating
whether or not an obstacle is detected. They together induce
reasons to assume that there is – or is not – an obstacle in
some specific area in front of the vehicle. The supervisor
aggregates this information in order to decide whether to
continue moving forward.

We translate this scenario into a structured argumentation
setting as follows. We use literals cl and cl to denote argu-
ments expressing that the left camera has detected an obstacle
or not, and similar for the right camera (cr and cr) and for the
lidar sensor (ld and ld). Slightly more complex arguments
represent reasons for and against an obstacle being either
on the left (l and l), the right (r and r), or in the middle (m
and m) of the area ahead of the vehicle. For example, the
argument cl⇒l expresses that a “silent” left camera sensor
backs the conclusion that there is no obstacle on the left. If
there is no reason to assume that there is an obstacle in the
middle, the vehicle will continue driving (ct). Otherwise, it
will need to stop (st). To model the interplay of arguments,
we use possibly non-symmetric negation, defeasible rules,
and the obvious dualities (Modgil and Prakken 2018). In
particular, sensor values might be attacked, reflecting that
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Figure 2: Argument graph for the vehicle example

sensor readings might be erroneous in practice.
The resulting argument graph is depicted in Figure 2, with

nodes representing arguments and directed edges represent-
ing attacks. In particular, we see that arguments about sensors
can “undermine” arguments about the location of obstacles
(e.g., cl undermines cl⇒l) while arguments about the loca-
tion can “rebut” each other when they make contradictory
claims (e.g., cl⇒m and ld⇒m rebut each other).

In this paper, we are interested in the situation where the
degree of acceptance of arguments lies on a continuum. For
instance, object detection by the right camera might fail with
some probability (false negatives), spurious detections may
be possible (false positives), and the spatial layout of the
overlapping camera views may give quantitative information
where to expect an object, albeit the information provided
may not be clear-cut. This implies that there will be different
degrees of uncertainty as to whether to continue moving
forward or not.

This motivation helps to understand why there is a grow-
ing body of inspiring research on probabilistic abstract ar-
gumentation frameworks (PrAFs). The present paper aims at
adding to this research spectrum a probability-theoretic per-
spective, based on the epistemic approach (see Section 4 for
an overview). We start off from the idea that a PrAF induces
probability distributions over various arguments holding or
not. Just like classical AFs can induce potentially multiple
valid interpretations (called extensions1), a PrAF can induce
multiple such distributions. We embark on extending the
basic notions of classical argumentation theory to the prob-
abilistic setting in a conservative manner. In this, we take
the fairly natural view that no argument and its attackers my
hold at the same time. This does not mean that both views
on an argument and its attacker cannot have non-zero prob-
ability, but simply that the probability of an argument and
its attacker holding at the same time is zero by construction.

1We avoid using “extension” in this sense, and instead reserve
the word for discussing conservative extensions of AF semantics.

Similarly, we would like to ensure that arguments that hold
are defended, meaning that each of its attackers is attacked
with probability 1. This is indeed needed for making sense
of scenarios like the vehicle example above, but is in contrast
to earlier work on PrAFs (Hunter and Thimm 2017) where
the belief in single arguments was put in focus.

When lifting the classical concepts from AFs to PrAFs,
especially the notion of admissibility gives rise to a hierarchy
of different interpretations and lead to an entire taxonomy of
semantics. Along this discussion, it becomes apparent that
each lifted semantics concept imposes a set of constraints
on the joint probability distributions of arguments to hold
and not to hold. We will show in this paper that, with one
exception, all these sets of constraints we consider are linear,
i.e., they belong to the linear arithmetic theory of the reals.
Among others, this gives us decidability and bridges to the
world of SMT solvers, which are nowadays well capable of
handling large sets of linear and even non-linear constraints.
Indeed, we present a prototypical tool for studying a variety
of questions arising in a PrAF. Specifically, we apply the tool
to the above vehicle example to pinpoint some fine details
that help to understand our contribution as well as getting an
impression of practical relevance. For example, the tool can
compute a distribution maximizing the value of ct assuming
that cl and ld hold almost surely with additional constraints
on the rate of false positives for the sensors, while satisfying
a particular semantics (or even sets thereof). The tool and all
experimental data are publicly available at

https://www.perspicuous-computing.science/cpraa/.
In summary, our contribution is fourfold: We (i) provide

a profound study of admissibility and completeness in a
probability-theoretic approach to abstract argumentation, (ii)
discuss a hierarchy of resulting semantics in the context of
earlier work, (iii) present prototypical tool support for ex-
perimenting with these notions and further context-specific
constraints, and (iv) explicate our contributions by means of
the vehicle example introduced above.

2 Preliminaries
In this section, we introduce the basics of abstract argumenta-
tion along with classical argumentation semantics on which
we will base our investigations in the probabilistic setting.
We start with a definition of abstract argumentation frame-
works following (Dung 1995). For a detailed discussion on
argumentation semantics we refer to (Baroni, Caminada, and
Giacomin 2011).
Definition 1. An abstract argumentation framework (AF) is
a pair F = 〈Arg ,Att〉 where Arg is a finite set of arguments
and Att ⊆ Arg ×Arg an attack relation.

A pair (A,B) ∈ Att means that argument A attacks argu-
ment B. We denote by →A := {B ∈ Arg : (B,A) ∈ Att}
the set of attackers ofA and byA→ := {B ∈ Arg : (A,B) ∈
Att} the set of A’s attackees. A is called initial if it has no
attackers, i.e., if →A is empty. These notions naturally ex-
tend to sets of arguments S ⊆ Arg by →S :=

⋃
A∈S

→A and
S→ :=

⋃
A∈S A

→. Two arguments A and B are in conflict
if (A,B) ∈ Att or (B,A) ∈ Att , i.e., either one is attacking
the other. S defeats an argument B if B ∈ S→, i.e., at least

https://www.perspicuous-computing.science/cpraa/


one argument in S attacks B. An argument C is defended by
S if S defeats all attackers B ∈ →C. The set of all arguments
defended by S is thus given by

Defend(S) := {C ∈ Arg : B ∈ S→ for each B ∈ →C}.

Classical Argumentation Semantics. Semantics for AFs
are given by collections of argument sets that do not exhibit
conflicts.
Definition 2. For an AF F = 〈Arg ,Att〉, a set S ⊆ Arg is
said to be conflict-free (CF) if (A,B) /∈ Att for allA,B ∈ S .
A conflict-free argument set S is

(ST) stable if S ∪ S→ = Arg ,
(ADM) admissible if S ⊆ Defend(S),
(CMP) complete if S = Defend(S),
(GR) grounded if there is no complete T ⊆ Arg with T ⊂ S ,
(PRF) preferred if there is no complete T ⊆ Arg with T ⊃ S .

The classical argumentation semantics σ for F with σ ∈
{CF, ST,ADM,CMP,GR, PRF} is the set [F ]σ of all argu-
ment sets S ⊆ Arg where condition σ as above holds.

Assignments. In the probabilistic setting, each argument
A of a given AF F = 〈Arg ,Att〉 is treated as a Boolean
random variable with the same name. An assignment is a
function β : Arg → {T, F} that determines for each vari-
able, and thus each argument, whether it holds (T) or not (F).
The set of all assignments for Arg is denoted by Asg(Arg).
An event φ is a set of assignments, i.e., φ ⊆ Asg(Arg).
There exists a straight-forward one-to-one correspondence
between argument sets and assignments: Given an argument
set S ⊆ Arg , the corresponding assignment is given by its
characteristic function idS defined by idS(A) := T if A ∈ S
and idS(A) := F otherwise. Conversely, each assignment β
for Arg naturally induces an argument set Argβ := {A ∈
Arg : β(A) = T}. The switch between argument sets and
assignments is thus merely of syntactic nature and we may
see, e.g., any classical semantics σ as a subset of Asg(Arg).
Further, we use propositional logic formulas over arguments
to specify sets of assignments, e.g., we write A ∧ ¬B with
A,B ∈ Arg for the set of assignments φ ⊆ Asg(Arg) where
φ = {β ∈ Asg(Arg) : β(A)=T, β(B)=F}. To this end, we
denote by

∆(C) :=
∧

B∈→C

∨
A∈→B

A

the set of assignments whose corresponding argument sets
defend an argument C ∈ Arg . Note that as usual, empty
conjunctions stand for T and empty disjunctions for F.

Distributions. A probability distribution over a set X is a
function µ : X → [0, 1] where

∑
β∈X µ(β) = 1. The set of

all distributions over X is denoted by Distr(X). The support
of a distribution µ is defined by Supp(µ) := {β : µ(β) > 0}.
µ is a Dirac distribution if Supp(µ) is a singleton. For a
fixed β ∈ X , we write Diracβ for the uniquely defined Dirac
distribution where Diracβ(β) = 1.

In the following, we are only concerned with distributions
over the set of assignments Asg(Arg). For brevity, we write
Distr(F) for Distr(Asg(Arg)). Each µ ∈ Distr(F) induces a

probability measure over events, denoted by µ as well, i.e., a
function µ : 2Asg(Arg) → [0, 1] with µ(φ) :=

∑
β∈φ µ(β) for

events φ ⊆ Asg(Arg). Note that ∆(C) is an event for any
argument C ∈ Arg . As usual, we say that µ has outcome φ
almost surely in case µ(φ) = 1. For argument sets S ⊆ Arg ,
we use DiracS as a short form for DiracidS . Finally, for two
events φ, ψ ⊆ Asg(Arg) with µ(ψ) > 0, the conditional
probability of φ given ψ is defined as

µ(φ | ψ) :=
µ(φ ∧ ψ)

µ(ψ)
.

3 Probabilistic Argumentation Semantics
A probabilistic argumentation semantics ρ assigns to each
AF F = 〈Arg ,Att〉 a subset JFKρ of Distr(F). While in
classical argumentation the argument sets in [F ]σ only clas-
sify the arguments that hold or not hold, distributions in JFKρ
give rise to a probabilistic interpretation of the arguments,
e.g., to specify the belief in or acceptance of arguments.
Definition 3 (Likelihood of arguments). For an AF F =
〈Arg ,Att〉, a distribution µ ∈ Distr(F), and an argument
A ∈ Arg , we refer to µ(A) as the µ-likelihood of A.

We denote by Argµ := {A ∈ Arg : µ(A) = 1} the set of
arguments that hold almost surely. Note that here, A stands
for a (basic) propositional logic formula over arguments that
specifies the set of all events β where β(A)=T.

Classical semantics for AFs can be naturally lifted to the
probabilistic setting by Dirac distributions corresponding to
argument sets. A probabilistic semantics where all induced
Dirac distributions agree with the Dirac distributions of a
classical semantics is called a conservative extension:
Definition 4 (Conservative extension). A probabilistic ar-
gumentation semantics ρ is said to be a conservative exten-
sion of a classical argumentation semantics σ if for all AFs
F = 〈Arg ,Att〉 and argument sets S ⊆ Arg:

S ∈ [F ]σ iff DiracS ∈ JFKρ.

As a basic instance of a conservative extension, we present
the element-wise lifting of classical argumentation semantics
which was first introduced by (Thimm et al. 2017).
Definition 5 (Element-wise lifting). Let F = 〈Arg ,Att〉 be
an AF, and µ ∈ Distr(F). For a classical argumentation
semantics σ, the element-wise-σ semantics ELM-σ is defined
as follows:

JFKELM-σ := {µ : Argβ ∈ [F ]σ for all β ∈ Supp(µ)}.

So, ELM-σ semantics enforces µ(βS) = 0 for all argument
sets S ∈ 2Arg\[F ]σ that are not part of the classical argu-
mentation semantics σ. For instance, JFKELM-ADM comprises
exactly those distributions where the assignments correspond-
ing to the admissible sets of F have positive probability.
Lemma 6. Element-wise lifting of classical semantics yields
conservative extensions.

The converse does not hold, i.e., the notion of conservative
extension is more liberal.



3.1 Assignment Distribution Properties
Before we discuss probabilistic extensions of admissibility
and completeness, we define the notions of conflict-freeness
and defense for assignments in the probabilistic setting.

Almost-sure Conflict-freeness. Recall that a set of argu-
ments S is said to be conflict-free if there is no attack
(A,B) ∈ Att for all A,B ∈ S. By the one-to-one corre-
spondence to assignments, an assignment β ∈ Asg(Arg)
is thus conflict-free iff there is no pair (A,B) ∈ Att with
β(A) = β(B) = T. This notion of conflict-freeness naturally
transfers to distributions over assignments.
Definition 7 (Almost-sure conflict-freeness). For an AF
F = 〈Arg ,Att〉, a distribution µ ∈ Distr(F) is almost-sure
conflict-free if

µ(A ∧B) = 0 for all (A,B) ∈ Att . (ASCF)

Notably, ASCF does by no means imply that attacker and at-
tackee cannot both have nonzero µ-likelihood. However, the
probability of both holding together (constituting a classical
conflict) is zero.

Almost-sure conflict-freeness coincides with element-wise
lifting of conflict-free argument sets:
Lemma 8 (ELM-CF↔ ASCF). For an AF F = 〈Arg ,Att〉
a distribution µ ∈ Distr(F) is almost-sure conflict-free iff
Argβ is conflict-free for each assignment β ∈ Supp(µ).
By Lemma 6 and 8, the set of almost-sure conflict-free distri-
butions conservatively extends the set of conflict-free argu-
ment sets.

Almost-sure Defense. In the classical setting, an argument
is defended by defeating each of its attackers. Likewise, we
say that a distribution almost surely defends an argument if
all attackers are in turn attacked with probability one:
Definition 9 (Almost-sure defense). For F = 〈Arg ,Att〉 an
AF, a distribution µ ∈ Distr(F) almost surely defends an
argument C ∈ Arg if

µ
( ∨
A∈→B

A
)

= 1 for all B ∈ →C.

That is, µ almost surely defends the argument C provided
each attacker B of C is attacked with probability 1 under
µ. We let the set asDefend(µ) collect all arguments that are
almost surely defended by distribution µ. For an argument
set Argβ we write Defend(β) instead of Defend(Argβ) for
the set of arguments defended by β.
Lemma 10. Let F be an AF and µ ∈ Distr(F). Then:

asDefend(µ) =
⋂

β∈Supp(µ)

Defend(β).

Corollary 11. For any AF F = 〈Arg ,Att〉 and distribution
µ ∈ Distr(F):
(a) asDefend(µ) is conflict-free if µ is almost-sure conflict-

free
(b) asDefend(DiracS) = Defend(S) for each S ⊆ Arg .
In other words, for each argumentC and each argument set S ,
S defends C iff DiracS almost surely defends C.

Relative Defense Constraint. For a comparison relation
∼ ∈ {≤,=,≥}, we define the relative defense constraint

µ(C) ∼ µ
(
∆(C)

)
for all C ∈ Arg . (∼µ∆)

For example, the constraint (≤µ∆) is satisfied if for all argu-
ments the probability that the argument is defended is at least
as high as the probability for the argument itself.

3.2 Admissibility
Recall that for any AF F = 〈Arg ,Att〉 a set of arguments
S ⊆ Arg is called admissible if S is conflict-free and defends
all its elements. We say that an assignment β is admissible if
Argβ is admissible. Based on almost-sure conflict-freeness
and defense as defined in the last section, we now provide
several notions of admissibility in the probabilistic setting.
Definition 12. Let F = 〈Arg ,Att〉 be an AF and µ ∈
Distr(F) be almost-sure conflict-free. Then µ is called

(ELM-ADM) element-wise admissible iff µ ∈ JFKELM-ADM,
(PRADM) probabilistically admissible iff for all B ∈ Arg

µ
( ∨
C∈B→

C
)
≤ µ

( ∨
A∈→B

A
)
,

(JNTADM) joint-attack admissible iff (≤µ∆) holds,
(MINADM) min-admissible iff for all C ∈ Arg

µ(C) ≤ min
B∈→C

µ
( ∨
A∈→B

A
)
,

(WADM) weakly admissible iff Argµ ⊆ asDefend(µ).

Let us explain the definition of these five notions of admis-
sibility in greater detail. Element-wise admissibility of µ
requires admissibility of all assignments in the support of µ.
This can be rephrased by requiring for each argument C with
positive µ-likelihood that the conditional probability of as-
signments defending C equals one when conditioned on the
event where C holds.
Lemma 13. Let F = 〈Arg ,Att〉 and µ ∈ Distr(F). Then µ
is element-wise admissible iff µ is almost-sure conflict-free
and for each argument C ∈ Arg with µ(C) > 0, it holds

µ
(

∆(C)
∣∣ C )

= 1.

For probabilistic admissibility, recall that an argument
set S is admissible if for all arguments B attacking S, B is
attacked by some argument in S . Likewise, PRADM requires
that for each argument B, the probability for attacks by B on
arguments with assigned value T is bounded by the probabil-
ity for B being attacked by arguments with assigned value
T. Note that this is a tautology for the arguments B ∈ Argµ,
because then

µ
( ∨
C∈B→

C
)

= µ
( ∨
A∈→B

A
)

= 0.

Joint-attack and min-admissibility impose upper bounds
on the likelihood of arguments. MINADM requires µ(C) to
be bounded by the probabilities for attacks on C’s attackers.
Conditions MINADM and JNTADM are tautologic for each



C where µ(C) = 0. Finally, µ is weakly admissible2 iff µ
almost surely defends all arguments A with µ(A) = 1.

All five admissibility notions of Definition 12 yield con-
servative extensions of the non-probabilistic notion of admis-
sibility, as stated in the following lemma:
Lemma 14 (Conservative extension). Let F = 〈Arg ,Att〉
be an AF and S ⊆ Arg be conflict-free. Then, S is ad-
missible iff DiracS is κ admissible for κ ∈ {element-wise,
probabilistically, joint-attack, min-, weakly}.
Relationships. We now investigate how our notions of ad-
missibility relate to each other. First, we provide implications
that hold between the different semantics and then give con-
crete examples that show these implications to be strict.

Element-wise admissibility is the most restricted variant,
i.e., each distribution that satisfies ELM-ADM also satisfies
the other notions of admissibility. Exemplarily, for an attack
(B,C) ∈ Att , whenever β(C) = T for some admissible
assignment β, there must be some attacker A of B with
β(A) = T as well. Thus, all admissible assignments that con-
tribute to the probability on the left-hand side of the PRADM
constraint also appear on the right, so all element-wise ad-
missible distributions are also probabilistically admissible.
Lemma 15 (ELM-ADM→PRADM, ELM-ADM→JNTADM).
Let F be an AF and µ ∈ Distr(F). If µ is element-wise
admissible, then µ is probabilistically and joint-attack admis-
sible.

JNTADM is slightly stronger than MINADM since for any
argument C, we have

µ
(
∆(C)

)
≤ min

B∈→C
µ
( ∨
A∈→B

A
)
.

Thus the probability for joint attacks on C’s attackers is an
upper bound for the likelihood of C.
Lemma 16 (PRADM → MINADM, JNTADM → MINADM).
Let F be an AF and µ ∈ Distr(F). If µ is probabilistically
or joint-attack admissible, then µ is min-admissible.
Note that the notions joint-attack and min-admissibility col-
lapse in AFs where each argument has at most one attacker.

As weak admissibility only imposes constraints on the like-
lihood of arguments belonging to Argµ, it is strictly weaker
than min-admissibility, and hence the most liberal admissi-
bility notion from the ones of Definition 12.
Lemma 17 (MINADM → WADM). Let F = 〈Arg ,Att〉 be
an AF and µ ∈ Distr(F). If µ is min-admissible, then µ
almost surely defends all arguments in Argµ.

These results so far show that the five notions of admissi-
bility for distributions constitute a hierarchy as illustrated in
the bottom part of Figure 3. The inclusions indicated by the
arrows are strict, as shown by the following examples.
Example 18 (MINADM 6→ PRADM,MINADM 6→ JNTADM).
As an example for a min-admissible distribution that is
not element-wise admissible and neither joint-attack nor

2Not to be confused with the recent notion of weak admissibility
in the non-probabilistic setting by (Baumann, Brewka, and Ulbricht
2020).

probabilistically admissible, let µ be the distribution for the
AF on the right where its support is given through

µ(¬A ∧ ¬B ∧ C ∧ D) = 1
3

µ( A ∧ ¬B ∧ ¬C ∧ ¬D) = 1
4

µ(¬A ∧ B ∧ ¬C ∧ ¬D) = 1
6

µ(¬A ∧ ¬B ∧ C ∧ ¬D) = 1
4

A

BC

DA

BC

D

That is, µ(β) = 0 for all other assignments β. Then µ is
almost-sure conflict-free (since all assignments in its support
are conflict-free, cf. Definition 7) and satisfies MINADM:

• Argument C has likelihood µ(C) = 1
3 + 1

4 = 7
12 and

a single attacker B, which is attacked by A and D with
probability 1

4 + 1
3 = 7

12 .

• Argument B has likelihood µ(B) = 1
6 . Its attackers A and

D are attacked with probability 1
3 resp. 1

4 .

• Argument D has likelihood µ(D) = 1
3 , and so is the

probability for its attackerA to be attacked. The analogous
statement holds for A.

So, µ is min-admissible, but µ is not element-wise admissible
as ¬A ∧ ¬B ∧ C ∧ ¬D and ¬A ∧ B ∧ ¬C ∧ ¬D induce
the non-admissible argument sets {C} and {B}, respectively,
that do not defend their arguments.

Further, µ is not joint-attack admissible, since the argu-
ment B has no joint attack of its attackers A and D:

µ(B) =
1

6
6≤ 0 = µ(A ∧D) = µ

(
∆(B)

)
.

Indeed, in this example there is no admissible argument set
containing B, since B’s attackers A and D attack each other.

To see why µ is not probabilistically admissible, regard
argument D. We have D→ = {A,B} and →D = {A}. But
then

µ
( ∨
C′∈D→

C ′) = µ(A ∨B) =
1

4
+

1

6

6≤ 1

4
= µ(A) = µ

( ∨
A∈→D

A
)
.

So, the constraint PRADM is violated for argument D.
Analogously, PRADM does not hold for A.

The following two examples illustrate that probabilistic
admissibility and joint-attack admissibility are incomparable.

Example 19 (JNTADM 6→ PRADM). Consider the AF on
the right below and distribution µ with the following support:

µ( A ∧ ¬B ∧ C ∧ ¬D) = 1
3

µ(¬A ∧ B ∧ ¬C ∧ ¬D) = 1
3

µ(¬A ∧ ¬B ∧ ¬C ∧ D) = 1
3

A

BC

DA

BC

D

µ obviously is almost-sure conflict-free and the µ-likelihood
of all four arguments is 1

3 . As each argument has exactly
one attacker, µ is joint-attack admissible: For example,
the JNTADM constraint is satisfied for argument C since



→C = {B}, →B = {A}, and

µ(C) =
1

3
≤ 1

3
= µ(A) = µ(

∨
A′∈→B

A′) = µ
(
∆(C)

)
.

However, µ does not satisfy the constraint PRADM for argu-
ment B: B→ = {C,D}, →B = {A}, but

µ
( ∨
C′∈B→

C ′) = µ(C ∨D) =
1

3
+

1

3
6≤ 1

3
= µ

( ∨
A′∈→B

A′).
Hence, µ is not probabilistically admissible.

Example 20 (PRADM 6→ JNTADM). Consider the following
almost-sure conflict-free distribution for the AF on the right:

µ( A ∧ ¬B ∧ ¬C ∧ ¬D) = 1
4

µ(¬A ∧ B ∧ ¬C ∧ ¬D) = 1
4

µ(¬A ∧ ¬B ∧ C ∧ D) = 1
4

µ(¬A ∧ ¬B ∧ C ∧ ¬D) = 1
4

A

BC

DA

BC

D

We have µ(A) = µ(B) = µ(D) = 1
4 , and µ(C) = 1

2 . This
implies that Argµ is empty, such we can immediately infer
that µ is weakly admissible. To see why µ is probabilistically
admissible, we have to check that µ satisfies PRADM for all
arguments:

• For argument A, we have A→ = {B,D} and →A = {C},
such that µ(B ∨D) ≤ µ(C) has to hold. This is in fact
the case due to µ(B ∨D) = µ(C) = 1

2 .
• For argument B, we have B→ = {C,D}, →B = {A,D},

and µ(C ∨D) = 1
2 ≤

1
2 = µ(A ∨D).

• For argument C, we have C→ = {A}, →C = {B}, and
µ(A) = 1

4 ≤
1
4 = µ(B).

• For argument D, we have D→ = {B}, →D = {A,B},
and µ(B) = 1

4 ≤
1
2 = µ(A ∨B).

Thus, µ is probabilistically admissible.
To see why µ is not joint-attack admissible, we observe

that the µ-likelihood of argument B is positive, but there is
no joint attack on B’s attackers A and D. More precisely:

µ(B) =
1

4
6≤ 0 = µ

(
C ∧ (A ∨B)

)
= µ

(
∆(B)

)
.

Here, C stands for the attacks onA, andA∨B for the attacks
on D. This shows that µ violates the constraint JNTADM for
argument B.

3.3 Completeness
In the non-probabilistic setting, completeness is stronger than
admissibility, as it additionally requires that all arguments
defended by a set S ⊆ Arg are contained in S. An assign-
ment β ∈ Asg(Arg) is said to be complete if the induced
argument set Argβ is complete. Based on the notions of
admissibility for distributions from Definition 12, we now
extend completeness towards five notions in the probabilistic
setting.

Definition 21. Let F = 〈Arg ,Att〉 be an AF and µ ∈
Distr(F) be almost-sure conflict-free. Then µ is called

(ELM-CMP) element-wise complete iff µ ∈ JFKELM-CMP,
(PRCMP) probabilistically complete iff µ satisfies PRADM

and (≥µ∆),
(JNTCMP) joint-attack complete iff µ satisfies (=µ∆),
(MINCMP) min-complete iff µ satisfies MINADM and

(≥µ∆), and
(WCMP) weakly complete iff Argµ = asDefend(µ).
Lemma 22. Let F = 〈Arg ,Att〉 and µ ∈ Distr(F). Then µ
is element-wise complete iff µ is element-wise admissible and
for all arguments C ∈ Arg where event ∆(C) has positive
probability under µ, it holds:

µ
(
C
∣∣ ∆(C)

)
= 1.

All five completeness notions as of Definition 21 are con-
servative extensions of the non-probabilistic notion of com-
pleteness for argument sets, as stated in the following lemma.
Lemma 23 (Conservative extension). Let F = 〈Arg ,Att〉
be an AF and S ⊆ Arg . Then, S is complete iff DiracS is
κ complete for κ ∈ {element-wise, weakly, probabilistically,
min-, joint-attack}.
Relationships. Similar as for the notions of admissibility,
we draw relationships between notions of completeness in-
troduced in Definition 21. This yields connections between
them analogously to the case of admissibility (cf. Figure 3).
Lemma 24 (ELM-CMP → PRCMP,ELM-CMP → JNTCMP).
Let F be an AF and µ ∈ Distr(F). If µ is element-wise com-
plete, then µ is probabilistically and joint-attack complete.
Lemma 25 (PRCMP → MINCMP, JNTCMP → MINCMP).
Let F be an AF and µ ∈ Distr(F). If µ is probabilistically
or joint-attack complete, then µ is min-complete.
Lemma 26 (MINCMP → WCMP). Let F be an AF and µ ∈
Distr(F). If µ is min-complete, then µ is weakly complete.

We now provide examples illustrating that the implications
between the different notions of completeness are strict.
Example 27. An example for a distribution that is both
joint-attack and probabilistically complete, but without be-
ing element-wise complete, is a distribution µ that assigns
probability 1

3 to the assignments id{A}, id{B}, and id{C} for
the simple odd-length cycle AF on the right below: Neither
{A}, {B}, nor {C} are complete sets, so µ is not element-
wise complete. Because A, B, and C are isomorphic in
the AF under µ, for all constraints imposed by PRCMP and
JNTCMP the left-hand side equals the right-hand side, so µ
is probabilistically and joint-attack complete.

For an example of a weakly complete distribution that is
not complete w.r.t. any of the other four completeness notions,
consider the distribution ν with the following support:

ν( A ∧ ¬B ∧ ¬C) = 1
2

ν(¬A ∧ B ∧ ¬C) = 1
3

ν(¬A ∧ ¬B ∧ C) = 1
6

A

B

CA

B

C

Then Argν = ∅ = asDefend(ν), so ν is weakly complete.
However,

ν(A) =
1

2
6≤ 1

6
= ν(B) = min

C′∈→A
ν
( ∨
B′∈→C′

B′)



and thus, for argument A the MINADM constraint is vio-
lated. To this end, ν is not min-complete and thereby not
probabilistically, joint-attack, or element-wise complete.

The distribution of Example 19 is joint-attack complete,
but not probabilistically admissible, and therefore not prob-
abilistically complete. Vice versa, the distribution µ of Ex-
ample 20 is probabilistically complete, but not joint-attack
admissible, and therefore not joint-attack complete. Note
that µ satisfies the JNTCMP constraint for the arguments A,
C, and D but not for B, since JNTADM is violated due to
µ(B) = 1

4 > 0 = µ
(
∆(B)

)
. However, the latter inequation

also implies that µ satisfies PRCMP for B and together with
PRADM holding for A, C, and D, µ satisfies PRCMP for all
arguments.

Complexity. With the exception of weak admissibility and
weak completeness, the semantics introduced in this section
share the characteristics that each of them imposes a certain
set of linear constraints on the joint probability distributions
over assignments. Checking the existence of a distribution
satisfying these constraints is tractable in exponential time
(as the feasibility of linear constraint systems can be checked
in polynomial time and the number of variables grows expo-
nentially in the number of arguments). An exponential time
bound for semantics with the weak admissibility/complete-
ness constraints can be obtained by encountering all subsets
of Arg as candidates for the arguments with a likelihood
of one and checking the feasibility of the resulting linear
constraint system for each of them.

4 Taxonomy and Related Work
There is a large body of work on probabilistic extensions
of argumentation frameworks. In general, one distinguishes
between the constellations approach (Dung and Thang 2010;
Li, Oren, and Norman 2011; Hunter 2012; Fazzinga, Flesca,
and Parisi 2015) where uncertainty pertains the topology
of the framework, and the epistemic approach (Hunter and
Thimm 2017; Potyka 2019) where the framework is fixed
and uncertainty revolves around the acceptance of arguments.
This paper falls into the latter category.

In (Baroni, Giacomin, and Vicig 2014), epistemic proba-
bilities are approached from the angle of de Finetti’s theory
of subjective probabilities (de Finetti 1974). They consider
rationality conditions based on the notions of defense and
reinstatement, which are closely related to admissibility and
completeness.

An investigation of variants of semantics giving uniform
distributions over the complete, preferred, and semi-stable
labelings of an AF is given in (Rienstra et al. 2018). They
show that the schemes investigated produce semantics which
are founded, rational, and coherent (see Definition 28). The
authors introduce new principles for probabilistic semantics
based on SCC-decomposability and SCC-factorability.

In (Thimm et al. 2017), the authors consider probability
distributions over argument sets that satisfy classical seman-
tics. This approach is equivalent to our notion of element-
wise lifting (see Definition 5).

Most closely related to our approach is the work by Hunter
and Thimm (Hunter and Thimm 2017) which in turn is based

on earlier works (Thimm 2012; Hunter 2013), and in which
the authors extend AFs towards a probabilistic setting by
attributing a degree of belief to arguments. Besides others,
the authors consider the case where only for some arguments
the degree of belief is a priori known and present probabilistic
reasoning techniques to determine possible degrees of belief
for the remaining arguments. They further introduce several
probabilistic semantics that can be compared to our semantics.
Adapted to our notation, we recall these notions below for
the sake of self-containedness.
Definition 28. Let F = 〈Arg ,Att〉 be an AF and µ ∈
Distr(F). Then µ is called
(FOU) founded iff µ(A) = 1 for all initial A ∈ Arg ,
(SFOU) semi-founded iff µ(A) ≥ 1

2 for all initial A ∈ Arg ,
(OPT) optimistic iff µ(¬A) ≤

∑
B∈→A µ(B) holds for all

A ∈ Arg ,
(SOPT) semi-optimistic iff (OPT) holds for all non-initial
A ∈ Arg ,

(COH) coherent iff µ(A) ≤ µ(¬B) for all (A,B) ∈ Att ,
(INV) involutary iff µ(A) = µ(¬B) for all (A,B) ∈ Att ,
(JUS) justifiable iff µ is coherent and optimistic,
(RAT) rational iff µ(A) > 1

2 implies µ(B) ≤ 1
2 for all

(A,B) ∈ Att ,
(MIN) minimal iff µ(A) = 0 for all A ∈ Arg ,
(NEU) neutral iff µ(A) = 1

2 for all A ∈ Arg , and
(MAX) maximal iff µ(A) = 1 for all A ∈ Arg .

Figure 3 gives an overview of all semantics introduced in
this paper in perspective to the semantic notions by (Hunter
and Thimm 2017). An arrow from one semantics to another,
e.g., WCMP → JUS, indicates that JFKWCMP ⊆ JFKJUS for
all arbitrary AFs F . Further, there is at least one AF for
each arrow such that the set inclusion is strict, and no other
arrows (except for the transitive closure) exist. Proofs for
ELM-CF → COH and ELM-ST → JUS are given in (Thimm
et al. 2017). All other probabilistic semantics introduced in
this paper entail or require almost-sure conflict-freeness of
distributions as well, so they all imply coherency. However,
apart from ELM-ST, no other semantics entails JUS as shown
in the following example.
Example 29. Consider again the odd cycle AF F appearing
in Example 27 and the assignment β = {A=F, B=F, C=F}.
The distribution Diracβ is element-wise preferred and
grounded as the corresponding empty argument set is the
only element in both [F ]ST and [F ]GR. However, Diracβ is
not optimistic (and thus not justifiable) as, e.g., Diracβ(A) =
1 6≤ Diracβ(B) = 0.
In turn, all our notions of complete semantics are founded:
They all imply weak completeness, and initial arguments
have maximal likelihood in weakly complete distributions as
initial arguments are always almost surely defended.

In the setting of (Hunter and Thimm 2017), COH and JUS
are generalizations of conflict-free argument sets and the
complete semantics, respectively. By our definition (cf. Defi-
nition 4), coherence is a conservative extension of CF, though
this is not the case for JUS and CMP: The assignment β from
Example 29 is complete but Diracβ is not justifiable.
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Figure 3: Hierarchy of probabilistic argumentation semantics. Gray boxes indicate trivial semantics, blue boxes stand for element-
wise lifted classical semantics, yellow boxes refer to probabilistic semantics introduced by (Hunter and Thimm 2017), and green
boxes to the notions of admissibility (Definition 12), respectively completeness (Definition 21).

Example 30. To illustrate some of the differences between
our semantics and, in particular, justifiability semantics, we
return to our motivating example from Section 1. Consider
the following distribution µ given below as the probabilities
of all events in its support, where µ(S) abbreviates µ(idS).

µ({st, cl, cl⇒l, cl⇒m, cr, cr⇒m, cr⇒r, ld}) = 0.2

µ({st, ld, cl, cl⇒l, cl⇒m, cr, cr⇒m, cr⇒r}) = 0.1

µ({st, cr, cr⇒r, ld, cl, cl⇒l, cl⇒m}) = 0.3

µ({st, cr, cr⇒m, cr⇒r, ld, ld⇒m, cl, cl⇒l}) = 0.1

µ({st, cl, cl⇒m, cr, cr⇒m, cr⇒r, ld}) = 0.1

µ({st, cl, cl⇒m, cr, cr⇒m, cr⇒r, ld, ld⇒m}) = 0.2

Based on Figure 2, we depict the resulting µ-likelihood of
each argument in the figure below:
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Though not visible when looking only at the likelihoods, argu-
ment st (bottom center, red) with µ(st) = 1 is only defended
by the three (underlined) attackers of ct (center, green) with
a total probability of

µ(cl⇒m ∨ ld⇒m ∨ cr⇒m) = 0.4.

That is, st is not almost surely defended. However, this is
required by weak admissibility (and thus by all of our notions
of admissibility and completeness) for arguments like st that
hold almost surely.

Justifiability, instead, considers solely the likelihoods of
the immediate attackers. For the arguments in question, the
optimism constraints for argument st and argument ct hold:

µ(¬st) = 0 ≤ 0 = µ(ct)

µ(¬ct) = 1 ≤ 0.3 + 0.3 + 0.4

= µ(cl⇒m) + µ(ld⇒m) + µ(cr⇒m)

In fact, OPT holds for all arguments, so µ is justifiable as
coherency is given as well.
Example 31. In the figure below, we show the argument
likelihoods induced by a distribution µ that is joint-attack
complete but not justifiable.
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We see µ is not justifiable as, e.g., for argument st, the OPT
constraint is violated: µ(¬st) = 0.6 6≤ 0 = µ(ct). Note
that JNTCMP cannot be verified from the likelihoods alone.
We refer to Example 33 for details how µ was constructed.

The Bigger Picture. Apart from the technical relations
between these notions, there is a foundational difference be-
tween the semantical notions from (Hunter and Thimm 2017)
and the notions we propose. The former only impose con-
straints on the likelihood of single arguments (which arise as
marginal distributions µ(A) in our setting) and therefore tend
to be more coarse than our semantics from Section 3. The
latter crucially exploit the possibility to impose constraints



across the joint probability distributions, and this makes it
possible to express dependencies as needed already to spell
out admissibility in an adequate manner.

Specifically, when restricting to constraints over the
marginal probabilities, dependencies between the truth val-
ues of arguments cannot be expressed: Whenever a system
of constraints for µ(A) can be satisfied by at least one dis-
tribution, then the solution space contains at least (i) one
distribution µ where the arguments are pairwise independent
and (ii) one distribution µ such that for all arguments A,B
where µ(A) > µ(B), it is implied that B → A holds for
every assignment in the support of µ. If B attacks A and
the likelihood of B is positive then both (i) and (ii) are in
contrast to standard argumentation semantics. In particular,
linear constraints for µ(A) cannot express that arguments
are complements of each other and thus mutually exclusive,
which is needed in our vehicle example. This observation
should not be read as a critique at the earlier work by Hunter
and Thimm as their focus is on modeling the belief of argu-
ments and the induced three-values labelings, rather than a
conservative extension of standard concepts (such as conflict-
freeness or admissibility) on the level of distributions.

Epistemic Approach to Abstract Argumentation. In
(Hunter, Polberg, and Thimm 2020) the authors extended
the approach by (Hunter and Thimm 2017) and proposed
epistemic graphs. Besides the notion of support of argu-
ments that complements attacks (Boella et al. 2010), they
augment argument graphs by constraints that restrict the de-
gree of beliefs in arguments as well as how these beliefs
influence each other. These constraints can be formulated
as Boolean combinations of polynomial inequalities over
terms denoting the probability of acceptance of argument
sets (represented with propositional atoms). The semantics
considered in (Hunter, Polberg, and Thimm 2020) associates
sets of distributions over the powerset of arguments with each
epistemic graph. The authors consider three forms of seman-
tics or types of constraints on the distributions, the simplest
being the satisfaction semantics, which simply returns the
distributions consistent with the constraints of an argument
graph. A central impulse for the development of epistemic
graphs appears to be work on using argumentation for persua-
sion (Hadoux, Hunter, and Polberg 2021), which was already
partly addressed also in (Hunter, Polberg, and Thimm 2020).
Epistemic graphs are a very general framework. As a matter
of fact, all constraints appearing in our work can be cast into
the setting of epistemic graphs and its satisfaction semantics.

5 Implementation and Evaluation
To support the understanding and evaluation of probabilistic
abstract argumentation frameworks, we have developed a
prototypical implementation that is capable of answering a
variety of questions arising naturally in this context.

Tool Architecture. Each semantics is implemented as a
function taking a representation of an AF as input and re-
turning a set of constraints on the induced joint distribu-
tion. Further, context specific constraints can be added right
away. This approach enables the combination of seman-
tics as needed, including the option to consider complement

semantics, and supports easy addition of new probabilistic
semantics. The tool is implemented in Python, but provides
integrated support for constraint analysis via a number of
external solvers for the purpose of identifying satisfying dis-
tributions. Two kinds of solver back-ends are available to
tackle different tasks: SMT solvers like Z3 are able to handle
arbitrary polynomial constraints in the existential theory of
the reals that may arise when checking for the existence of
a distribution contained in one or more semantics. On the
other hand, linear-optimization solvers can be used for tasks
like synthesis of a distribution with maximal likelihood of a
certain argument or to enumerate the distributions at the cor-
ners of the convex polytope which forms the solution space.
The latter class of solvers is only applicable to semantics that
are induced by linear constraints, so all of our notions except
weak admissibility and weak completeness.

Supported Functionality. The tool provides support for
• synthesizing distributions satisfying the probabilistic argu-

mentation semantics presented in this paper and (Hunter
and Thimm 2017),

• maximizing or minimizing the marginal probability of
certain user-defined arguments,

• exporting the corner distributions of the convex solution
polytope,

• checking for credulous or skeptical acceptance of argu-
ments with respect to thresholds,

• incorporating context-specific constraints in SMT-LIB for-
mat (Barrett, Fontaine, and Tinelli 2016),

• utilizing several state-of-the-art SMT solvers as back-end
via the pySMT interface (Gario and Micheli 2015) and
linear solvers via CVXOPT (Andersen, Dahl, and Vanden-
berghe 2014), and

• generating labelings according to a variety of labeling
schemes.

The tasks involving acceptance checking and labeling
schemes are described in more detail in (Käfer 2020).

Practical Applicability. The exponentiality of the number
of constraints induced by admissibility and completeness
might put doubts on the applicability of a tool on examples
with growing sizes of argument sets. Our tool relies on
state-of-the-art SMT solvers and linear constraint solvers
that are designed to cope with this challenge. We give some
impression on the applicability of our tool regarding several
instances of the vehicle example.
Example 32. Example 30 was produced by sythesizing a
distribution that satisfies all constraints of the semantics
JUS and ELM-CF, as well as the complement semantics of
WCMP. Additionally, we imposed the following constraints
on the likelihoods of some of the arguments: µ(cl) = 0.7,
µ(ld) = 0.7, µ(cr⇒r) ∈ [0.7, 1], and µ(cr⇒m) ∈ [0.4, 1].
Intuitively, e.g., the latter means that the probability of cam-
era right truly detecting an object in the middle in front of
the car is between 0.4 and 1. Such constraints on marginal
probabilities are introduced by annotating the specification
of the AF’s nodes and edges.



instance #nodes distribution synthesis maximizing probability of ct all corners of solution polytope

cl-ld-cr 6 0.017 (0.004) 0.006 (0.003) 0.022 (0.003)
cl-ld-cr 8 0.055 (0.018) 0.030 (0.018) 1.076 (0.018)
cl-ld-cr 12 1.286 (0.651) 2.736 (0.762) > 600 timeout
cl-ld-cr 14 7.423 (3.913) 43.093 (15.887) > 600 timeout
cl-ld-cr 18 361.033 (119.800) > 600 timeout > 600 timeout

Table 1: Running times (in seconds) on subgraphs of the vehicle example with increasing size for different tasks. cl-ld-cr is the full
example, otherwise the arguments in grey stand for missing sensors and are dropped including related edges. The time to generate
the constraints is given in parenthesis.

Example 33. For Example 31, the semantics JNTCMP and
the complement of JUS were enforced, along with the same
constraints on marginals as above. Furthermore, some
context-specific constraints were imposed in an additional
file in SMT-LIB format:

Complementation In the example, the arguments for the
three sensors come with a complement, e.g., ld and ld. We
added constraints such that these arguments are in fact
their respective inverse, i.e., µ(ld) = 1− µ(ld).

Conditional probability A maximum 2% risk of a false pos-
itive detection was enforced via the conditional probability
constraint µ(cr⇒r ∨ cr⇒m | cr) ≥ 0.98.

Dependency In line with the sensor arrangement visualized
in Section 1, we enforced µ(cr⇒r) = 2 · µ(cr⇒m). This
means that one third of the right camera view angle is
monitoring the (overlapping) middle.

Running Times. All experiments were run on an Intel
i9-10900K machine with 64GB of RAM, running Ubuntu
20.10 and Python 3.8.6. Computing solutions according to
Example 32 took seventy minutes, and less than five min-
utes for Example 33. Table 1 provides further statistics for
typical tasks applied to the vehicle example under PRCMP
semantics. In a nutshell, the results are very encouraging.
The tool and all experimental data are publicly available at

https://www.perspicuous-computing.science/cpraa/.

6 Conclusion
In this paper we contributed to the quest for quantitative ab-
stract argumentation frameworks from a probability-theoretic
perspective. We have provided a profound study of admis-
sibility and completeness and have discussed a hierarchy
of resulting semantics, also in relation to earlier work. At
the core of our approach, we are viewing each semantics
as inducing sets of constraints on the joint distribution over
argument sets.

We experimented with these semantic notions on a prob-
abilistic abstract argumentation framework inspired by an
autonomous driving scenario. For this, we implemented a
tool based on SMT solvers to harvest present and future
advances. In particular, by providing generic support for
including additional constraints, it is capable of addressing a
variety of adapted semantic notions well beyond the notions
of admissibility and completeness spelled out in this paper,
as well as adapting them towards context-specific needs. Our

tool is a research prototype, built for the ease of experimen-
tation with semantic notions across the wider spectrum of
probabilistic abstract argumentation frameworks. Indeed it
turned out very helpful for the authors of this paper to sharpen
their intuition.

Future Work. The tool already offers some elementary
optimization tasks like maximizing the likelihood of selected
arguments. Expanding on this functionality, we plan to in-
vestigate quantifications of how close distributions are to
satisfy a certain semantics. This could allow to find, e.g.,
the “most” min-admissible distribution even if no distribu-
tion exists that completely satisfies the MINADM constraints.
Likewise, basic support for labeling schemes is already avail-
able, connecting probabilistic argumentation semantics back
to classical semantics by discretizing distributions. Differ-
ent schemes exist and more are imaginable, calling for a
thorough investigation of their properties and relationships.

While we gave membership results for the complexity
of several tasks in probabilistic argumentation, establishing
hardness (if possible) remains to be done.

Finally, we identified two further directions that might
be worthwhile to explore under the lens of our probabilistic
approach. In dynamic abstract argumentation, nodes and
edges can be added or removed from an initial AF, giving
rise to the question how these dynamic interventions affect,
e.g., the accepted argument sets (see, e.g., (Diller et al. 2018)
or (Doutre and Mailly 2018) for a survey). In the proba-
bilistic setting, changes to the resulting distributions could be
quantified. Secondly, several logical languages for abstract ar-
gumentation have been developed (see, e.g., YALLA (Dupin
de Saint-Cyr et al. 2016)). Such languages allow to encode
and subsequently reason about the basic notions of abstract
argumentation and extensions in the probabilistic domain
could prove useful.
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