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Abstract
Standpoint logics allow to represent multiple heterogeneous viewpoints in a unifying framework based on modal logic. We propose

to combine standpoint modalities with the single modality of the non-monotonic modal logic S4F, thus defining standpoint S4F. The

resulting language allows to express semantic commitments based on default reasoning. We define syntax and semantics of the

logic, study the computational complexity of reasoning problems in the fragment of simple theories, and showcase standpoint S4F by

exemplifying two concrete instantiations of the general language – standpoint default logic and standpoint argumentation frameworks.
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1. Introduction
Standpoint logic is a modal logic-based formalism for repres-

enting multiple diverse (and potentially conflicting) view-

points within a single framework. Its main appeal derives

from its conceptual simplicity and its attractive properties:

In the presence of conflicting information, standpoint logic

sacrifices neither consistency nor logical conclusions about

the shared understanding of common vocabulary [1]. The

underlying idea is to start from a base logic (originally pro-

positional logic [1]) and to enhance it with two modalities

pertaining to what holds according to certain standpoints.

There, a standpoint is a specific point of view that an agent

or other entity may have, and that may have a bearing on

how the entity understands and employs a given logical

vocabulary (that may at the same time be used by other

entities with a potentially different understanding). The

two modalities are, respectively:

• □s𝜑, expressing:

“it is unequivocal [from the point of view s] that 𝜑”;

• ♢s𝜑, expressing:

“it is conceivable [from the point of view s] that 𝜑”.

Standpoint logic escapes global inconsistency by keeping

conflicting pieces of knowledge separate, yet avoids duplic-

ation of vocabulary and in this way conveniently keeps

portions of common understanding readily available. It

has its history and roots within the philosophical theory

of supervaluationism [2], stating that semantic variability

“can be explained by the fact that natural language can be

interpreted in many different yet equally acceptable ways,

commonly referred to as precisifications” [1].

In our work, such semantic commitments can be made, as

is often done, on the basis of incomplete knowledge using a

form of default reasoning. Consequently, in our work each

precisification embodies a consistent (but possibly partial)

viewpoint on what can be known, potentially using non-

monotonic reasoning (NMR) to arrive there. This entails
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that the overall formalism becomes non-monotonic with

respect to its logical conclusions.

Several non-monotonic formalisms that could be em-

ployed for default reasoning within standpoints come to

mind, and obvious criteria for selection among the can-

didates are not immediate. We choose to employ the non-

monotonic modal logic S4F [3, 4], which is a very general

formalism that subsumes several other NMR languages, de-

cidedly allowing the possibility for later specialisation via

restricting to proper fragments. The usefulness of non-

monotonic S4F for knowledge representation and especially

non-monotonic reasoning has been aptly demonstrated by

Schwarz and Truszczyński [4] (among others), but seems to

be underappreciated in the literature to this day. In our case,

employing S4F as base language for standpoint logic entails,

as easy corollary, for example standpoint default logic, a

standpoint variant of Reiter’s default logic [5], where de-

faults and definite knowledge can be annotated with stand-

point modalities. In Example 1, the annotated defaults are

of the standard form, namely 𝜙 : 𝜓1, . . . , 𝜓𝑛/𝜓, where (as

usual) if the prerequisite 𝜙 is believed to be true and the

justifications 𝜓1, . . . , 𝜓𝑛 are consistent with one’s current

beliefs, the consequence 𝜓 can be concluded.

Example 1. Coffee is consumed differently in different

parts of the world – what is considered to be a “typical

coffee” varies among countries. Usually (*) it is consumed

hot, however in Vietnam ( ) iced coffee is a more common

choice. Apart from the temperature, in Italy ( ), one of

the most popular coffee drinks – espresso – is much higher

in caffeine than the typically filtered coffee popular in the

US ( ). The above considerations could be formalised

using standpoint defaults as follows:

□*
[︁
coffee : hot/hot

]︁
, □

[︁
coffee : iced/iced

]︁
,

□
[︁
coffee : espresso/espresso

]︁
,

□
[︁
coffee : low_caffeine/low_caffeine

]︁
♢

Several monotonic logics have been “standpointified” so far:

Apart from propositional logic in the original work of Gómez

Álvarez and Rudolph [1], also first-order logic and vari-

ous fragments thereof [6] as well as the description logics

𝒮ℛ𝒪ℐ𝒬 [6], ℰℒ+ [7, 8], and 𝒮ℋℐ𝒬 [9], and the temporal

logic LTL [10]. We add the first non-monotonic logic to the

realm of standpoint logics, that is, the first standpoint logic

where the points of view embodied by standpoints can be

obtained by reasoning in a non-monotonic fashion.
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More specifically, in this paper, we introduce the syntax

and semantics of standpoint S4F. We analyse the computa-

tional complexity of its associated reasoning problems and

show that reasoning does not become harder (than in the

base logic) through the addition of standpoint modalities.

Finally, we demonstrate some of the more concrete stand-

point formalisms we obtain as corollaries, more specific-

ally standpoint default logic and standpoint argumentation

frameworks. We conclude with a discussion of future work.

2. Background
All languages we henceforth consider build on propositional

logic, denoted ℒ, and built from a set 𝒜 of atoms according

to 𝜙 ::= 𝑝 | ¬𝜙 | 𝜙 ∧ 𝜙 where 𝑝 ∈ 𝒜. Its model-theoretic

semantics is given by interpretations 𝐼 ⊆ 𝒜 containing

exactly the true atoms, and we denote satisfaction of a for-

mula 𝜙 by an interpretation 𝐼 by 𝐼 ⊩ 𝜙, and entailment of

a formula 𝜙 by a set 𝑇 of formulas by 𝑇 |= 𝜙. The provab-

ility relation for propositional logic is denoted by ⊢ (where

𝑇 ⊢ 𝜙 means that from 𝑇 , we can derive 𝜙) and assumed

to be given by some standard proof system that is sound

and complete (that is, where 𝑇 ⊢ 𝜙 iff 𝑇 |= 𝜙).

2.1. Standpoint Logic
Standpoint Logic was introduced by Gómez Álvarez and

Rudolph [1] as a modal logic-based formalism for repres-

enting multiple (potentially contradictory) perspectives in

a single framework. Building upon propositional logic, in

addition to a set 𝒜 of propositional atoms, it uses a set 𝒮
of standpoint names, where a standpoint represents a point

of view an agent or other entity can take, and * ∈ 𝒮 is

a designated special standpoint, the universal standpoint.

Formally, the syntax of propositional standpoint logic ℒS is

given by

𝜙 ::= 𝑝 | ¬𝜙 | 𝜙 ∧ 𝜙 |□s𝜙

where 𝑝 ∈ 𝒜, and s ∈ 𝒮 is a standpoint name. We allow the

notational shorthands 𝜙 ∨ 𝜓, 𝜙→ 𝜓, and ♢s𝜙 := ¬□s¬𝜙.

The semantics of standpoint logic is given by standpoint

structures 𝒩 = (Π, 𝜎, 𝛾), where Π is a non-empty set of

precisifications, 𝜎 : 𝒮 → 2Π assigns a set of precisifica-

tions to each standpoint name (with 𝜎(*) = Π fixed), and

𝛾 : Π→ 2𝒜 assigns a propositional interpretation to each

precisification. The relation𝒩 , 𝜋 ⊩ 𝜙, indicating that the

structure𝒩 = (Π, 𝜎, 𝛾) satisfies formula 𝜙 (at point 𝜋), is

defined by induction:

𝒩 , 𝜋 ⊩ 𝑝 :⇐⇒ 𝑝 ∈ 𝛾(𝜋)
𝒩 , 𝜋 ⊩ ¬𝜙 :⇐⇒ 𝒩 , 𝜋 ̸⊩ 𝜙
𝒩 , 𝜋 ⊩ 𝜙1 ∧ 𝜙2 :⇐⇒ 𝒩 , 𝜋 ⊩ 𝜙1 and 𝒩 , 𝜋 ⊩ 𝜙2

𝒩 , 𝜋 ⊩ □s𝜙 :⇐⇒ 𝒩 , 𝜋′ ⊩ 𝜙 for all 𝜋′ ∈ 𝜎(s)

As usual, a standpoint structure (Π, 𝜎, 𝛾) is a model for a

formula 𝜙 iff (Π, 𝜎, 𝛾) ⊩ 𝜙; a formula 𝜙 ∈ ℒS is satisfiable

iff there exist (Π, 𝜎, 𝛾) and 𝜋 ∈ Π with (Π, 𝜎, 𝛾) , 𝜋 ⊩ 𝜙.
1

Standpoint structures can be regarded as a restric-

ted form of ordinary (multi-modal) Kripke structures

1
Original standpoint logic [1] also offered sharpening statements, ex-

pressions of the form s ⪯ u indicating that every precisification

subscribing to s must also subscribe to u as realised by their formal

semantics 𝜎(s) ⊆ 𝜎(u). We disregard sharpening statements in this

work for clarity of exposition; they could be added without difficulty.

(𝑊, {𝑅s}s∈𝒮 , 𝑣), where the worlds 𝑊 are given by the

precisifications Π, the evaluation function 𝑣 is given by 𝛾,

and the reachability relation among worlds for a standpoint

name (i.e., modality) s ∈ 𝒮 is simply 𝑅s = Π× 𝜎(s).

2.2. Modal Logic S4F
S4F is a propositional modal logic with a single modality

K, read as “knows”. It was studied in depth by Seger-

berg [3]; we base our study on the works of Schwarz and

Truszczyński [11, 12, 13, 4]. We again start from a proposi-

tional vocabulary 𝒜.

The syntax of the modal logic S4F ℒK is given by

𝜙 ::= 𝑝 | ¬𝜙 | 𝜙 ∧ 𝜙 |K𝜙

with 𝑝 ∈ 𝒜. For formulas 𝜙 ∈ ℒK without occurrences of

K, we write 𝜙 ∈ ℒ and call them objective formulas.

Truszczyński [14] introduced a useful fragment of S4F,

so-called modal defaults. There, the base case of formula

induction is not a propositional atom as above, but of the

form K𝜓 for 𝜓 ∈ ℒ a formula of propositional logic. More

formally, a modal default is built via

𝜙 ::= K𝜓 | ¬𝜙 | 𝜙 ∧ 𝜙 |K𝜙

with 𝜓 ∈ ℒ. The fragment of modal defaults is still ex-

pressive enough for our desired applications in knowledge

representation and reasoning, so we will mostly restrict our

attention to modal defaults later on.

The semantics of S4F is given by S4F structures, tuples

ℳ = (𝑉,𝑊, 𝜉) where 𝑉 and 𝑊 are disjoint sets of worlds

with𝑊 ̸= ∅, and 𝜉 : 𝑉 ∪𝑊 → 2𝒜 assigns to each world𝑤
a propositional interpretation 𝜉(𝑤) ⊆ 𝒜. The satisfaction

relationℳ, 𝑤 ⊩ 𝜙 for 𝑤 ∈ 𝑉 ∪𝑊 is defined by induction:

ℳ, 𝑤 ⊩ 𝑝 :⇐⇒ 𝑝 ∈ 𝜉(𝑤)
ℳ, 𝑤 ⊩ ¬𝜙 :⇐⇒ ℳ, 𝑤 ̸⊩ 𝜙
ℳ, 𝑤 ⊩ 𝜙1 ∧ 𝜙2 :⇐⇒ ℳ, 𝑤 ⊩ 𝜙1 and ℳ, 𝑤 ⊩ 𝜙2

ℳ, 𝑤 ⊩ K𝜙 :⇐⇒®
ℳ, 𝑣 ⊩ 𝜙 for all 𝑣 ∈ 𝑉 ∪𝑊, if 𝑤 ∈ 𝑉,
ℳ, 𝑣 ⊩ 𝜙 for all 𝑣 ∈𝑊, otherwise.

A pointed S4F structureℳ, 𝑤 is a model of a formula 𝜙
iffℳ, 𝑤 ⊩ 𝜙; ℳ, 𝑤 is a model of a theory 𝑇 ⊆ ℒK iff

ℳ, 𝑤 ⊩ 𝜙 for all 𝜙 ∈ 𝑇 . A formula 𝜙 ∈ ℒK is satisfiable

iff there exists an S4F structureℳ = (𝑉,𝑊, 𝜉) and a world

𝑤 ∈ 𝑉 ∪ 𝑊 such that (𝑉,𝑊, 𝜉) , 𝑤 ⊩ 𝜙 (likewise for

theories 𝑇 ). An S4F structure (𝑉,𝑊, 𝜉) is a model of a

formula 𝜙 ∈ ℒK (theory 𝑇 ⊆ ℒK), written (𝑉,𝑊, 𝜉) ⊩ 𝜙
(ℳ ⊩ 𝑇 ) iff for all 𝑤 ∈ 𝑉 ∪𝑊 , we have (𝑉,𝑊, 𝜉) , 𝑤 ⊩ 𝜙
(for each 𝜙 ∈ 𝑇 ). A formula 𝜙 ∈ ℒK is entailed by a theory

𝑇 , written 𝑇 |=S4F 𝜙, iff every model of 𝑇 is a model of 𝜙.

S4F structures can also be seen as a restricted form of

ordinary Kripke structures (𝑉 ∪𝑊,𝑅, 𝜉) with reachabil-

ity relation 𝑅 := (𝑉 × 𝑉 ) ∪ (𝑉 ×𝑊 ) ∪ (𝑊 ×𝑊 ). Intu-

itively, an S4F structure consists of two clusters of fully inter-

connected worlds, the inner worlds 𝑊 and outer worlds 𝑉 .

The outer worlds 𝑉 can reach all (inner and outer) worlds,

while the inner worlds 𝑊 can only reach all inner worlds.

The entailment relation |=S4F has a proof-theoretic char-

acterisation ⊢S4F based on necessitation and axiom schemata

K, T, 4, and F,
2

with 𝐹 being (𝜙∧MK𝜓)→M(K𝜙∨𝜓),
2
This also explains the name S4F, as S4 is characterised by K, T, and 4.



where M𝜑 abbreviates ¬K¬𝜑.

2.3. Non-Monotonic S4F
A non-monotonic logic can be obtained by restricting atten-

tion to models where what is known is minimal. As defined

by Schwarz and Truszczyński [4, Definitions 3.2 and 3.3], an

S4F structureℳ = (𝑉,𝑊, 𝜉) is said to be strictly preferred

over another S4F structure 𝒦 = (𝑉 ′,𝑊, 𝜉′) iff 𝑉 ′ = ∅,
𝜉′ ⊇ 𝜉,

3

and for some 𝜓 ∈ ℒ, we have 𝒦 ⊩ 𝜓 butℳ ̸⊩ 𝜓.

We say that 𝒦 is a minimal model of a theory 𝑇 ⊆ ℒK iff

(1)𝒦 is a model of 𝑇 , and (2) there is no modelℳ of 𝑇 that

is strictly preferred over 𝒦.

So ifℳ is strictly preferred over 𝒦, then there is a pro-

positional formula 𝜓 ∈ ℒ such that (1) 𝒦, 𝑤 ⊩ 𝜓 for all

𝑤 ∈ 𝑊 , and (2) there is a 𝑤′ ∈ 𝑉 such thatℳ, 𝑤′ ̸⊩ 𝜓.

For a minimal model of a theory 𝑇 , all strictly preferred

structures violate some formula of 𝑇 .

Intuitively, 𝒦 having a strictly preferred alternative

means that the knowledge of 𝒦 is not minimal. We note

that a minimal model (𝑉,𝑊, 𝜉) has 𝑉 = ∅ by definition,

and thus is an S5 structure, that is, a set of worlds with a

universal accessibility relation.

2.4. Complexity of Non-Monotonic S4F
Schwarz and Truszczyński [13] provide complexity results

for decision problems associated with non-monotonic S4F.

The problems are defined w.r.t. a finite S4F theory 𝐴 ⊆ ℒK

and a formula 𝜙 ∈ ℒK and can be summarized as follows:

• existenceS4F: Does 𝐴 have a minimal model?

• in-someS4F: Is there a minimal modelℳ of 𝐴, such

thatℳ ⊩ 𝜙?

• not-in-allS4F:
4

Is there a minimal modelℳ of 𝐴,

such thatℳ ̸⊩ 𝜙?

• in-allS4F: Does ℳ ⊩ 𝜙 hold for every minimal

modelℳ of 𝐴?

The above reasoning tasks were found to reside on the

second level of the polynomial hierarchy, with the first three

being ΣP
2-complete and the last one ΠP

2-complete. We re-

call the proof idea by Schwarz and Truszczyński [13] of

existenceS4F given an S4F theory 𝐴 ⊆ ℒK below.

Let 𝐴K = {𝜙 |K𝜙 ∈ Sub(𝐴)}, where Sub(𝐴) denotes

the set of all subformulas of formulas in 𝐴. Note that given

any minimal S4F modelℳ of 𝐴, which necessarily is an

S5 structure, and a formula 𝜙 ∈ ℒK, due to the universal

accessibility relation it is the case that eitherℳ ⊩ K𝜙 or

ℳ ⊩ ¬K𝜙. Then, there has to be a subset Ψ ⊆ 𝐴K
, such

thatℳ ⊩ K𝜓 andℳ ⊩ 𝜓 for all 𝜓 ∈ Ψ. For the remain-

ing elements of 𝐴K
, namely 𝜑 ∈ Φ := 𝐴 ∖ Ψ then it has

to hold thatℳ ⊩ ¬K𝜑. The minimal models of a theory

𝐴 can therefore be compactly represented by partitionings

(Φ,Ψ) of 𝐴K
. Such a sparse representation of a minimal

model is necessary, as the actual minimal model cannot be

3
We consider a function 𝑓 : 𝐴 → 𝐵 to be a relation 𝑓 ⊆ 𝐴 × 𝐵
that is functional, i.e., where for each 𝑎 ∈ 𝐴 there exists at most one

𝑏 ∈ 𝐵 with (𝑎, 𝑏) ∈ 𝑓 . Consequently, then 𝑔 ⊇ 𝑓 for functions 𝑔
and 𝑓 simply means that 𝑔 assigns just as 𝑓 does, while 𝑔 may have a

strictly larger domain.

4
Note that for a general S4F formula 𝜙 (including objective formulas),

this task is not reducible to in-someS4F in a straightforward way by

simply asking whether ¬𝜙 is satisfied in some minimal S4F model of

𝐴, as non-satisfaction does not imply satisfaction of the negation.

efficiently constructed due to potentially containing expo-

nentially many worlds (w.r.t. the input theory). Towards

minimisation of knowledge, note that the set Φ needs to be

maximal, so that the set of known formulas Ψ is restricted

to only what is absolutely necessary.

The procedure for existenceS4F work as follows: Given a

theory𝐴 ⊆ ℒK, we guess a partitioning of𝐴K
into (Φ,Ψ).

Based on this pair, we define the set

Θ = 𝐴 ∪ {¬K𝜙 | 𝜙 ∈ Φ} ∪ {K𝜓 | 𝜓 ∈ Ψ} ∪Ψ

which is interpreted as a theory of propositional logic over

an extended signature𝒜 ∪
{︁
K𝜑

⃓⃓
𝜑 ∈ 𝐴K

}︁
, that is, where

subformulas of the form K𝜑 are treated as propositional

atoms. Then, we verify whether the guessed pair is intro-

spection consistent [13], that is, whether:

(C1) Φ ∪Ψ = 𝐴K
and Φ ∩Ψ = ∅;

(C2) Θ is propositionally consistent;

(C3) for each 𝜑 ∈ Φ, we have Θ ̸⊢ 𝜑 (where ⊢ denotes

the provability relation of propositional logic).

Afterwards we check whether the introspection consistent

pair (Φ,Ψ) corresponds to a minimal S4F model of 𝐴 [13,

condition (2)], by checking if for every 𝜓 ∈ Ψ, we have

𝐴 ∪ {¬K𝜑 | 𝜑 ∈ Φ} ⊢S4F 𝜓.

The containment proof relies on the fact that S4F provabil-

ity (Is a formula 𝜙 S4F-provable from a given finite set of

premises𝐴 ⊆ ℒK?) is in NP [13]. Since the number of calls

to an NP-oracle is polynomial, existenceS4F is in ΣP
2. A

matching lower bound follows from the faithful embedding

of default logic [5] into S4F, which will be covered in the

next subsection.

2.5. S4F in Knowledge Representation

The logic S4F is immensely useful for knowledge repres-

entation purposes [13, 4], as it allows to naturally embed

several non-monotonic logics. Among others, it subsumes

the (bimodal) logic of GK by Lin and Shoham [15] as well as

the (bimodal) logic of MKNF by Lifschitz [16], all while be-

ing unimodal and thus arguably having a simpler semantics.

In the following subsections, we briefly sketch how several

well-known knowledge representation formalisms can be

recovered in S4F, and note especially that all of them stay

within the fragment of modal defaults.

2.5.1. Default Logic

Most importantly, the default logic of Reiter [5] can be faith-

fully and modularly embedded into S4F [11]: For a default

𝜙 : 𝜓1, . . . , 𝜓𝑛/𝜓, the corresponding S4F formula is given

by (K𝜙∧K¬K¬𝜓1∧. . .∧K¬K¬𝜓𝑛)→ K𝜓. Modularly

here means that a default theory can be translated default

by default, without looking at the whole theory, something

that is not possible [17] when translating default logic into

autoepistemic logic [18].
5

Faithfully means that the exten-

sions of the default theory are in one-to-one correspondence

with the minimal models of the resulting S4F translation. (A

5
This is even more notable if we take into account that autoepistemic

logic can be seen as non-monotonic KD45 [4] in the nomenclature of

McDermott and Doyle [19], McDermott [20].



similar translation exists for disjunctive default logic [21].)

Deciding whether a propositional default theory has an ex-

tension is ΣP
2-complete [22], thus providing the matching

lower bound to S4F minimal model existence.

2.5.2. Logic Programs

In a similar vein, normal logic programs can be

translated modularly into S4F [11, 4]: A rule

𝑝0 ← 𝑝1, . . . , 𝑝𝑚, ∼𝑝𝑚+1, . . . , ∼𝑝𝑚+𝑛 becomes

(K𝑝1 ∧ . . .∧K𝑝𝑚 ∧K¬K𝑝𝑚+1 ∧ . . .∧K¬K𝑝𝑚+𝑛)→
K𝑝0. The translation is faithful with respect to the

stable model semantics. (This works similarly for

extended/disjunctive logic programs [23, 4].)

2.5.3. Argumentation Frameworks

Last but not least, also argumentation frameworks [24] (un-

der stable semantics) can be modularly and faithfully trans-

lated into S4F. Given that argumentation frameworks (AFs)

can be modularly translated into normal logic programs

(over an extended vocabulary) using Dung’s translation [24,

Section 5; 25], we have the following straightforward result:

Proposition 1. Given a (finite) argumentation framework

𝐹 = (𝐴,𝑅), we define the following S4F theory: 𝑇𝐹 :=
{K¬K¬𝑎→ K𝑎 | 𝑎 ∈ 𝐴} ∪ {K𝑎→ K¬𝑏 | (𝑎, 𝑏) ∈ 𝑅}.
The stable extensions of 𝐹 and the minimal models of 𝑇𝐹 are

in one-to-one correspondence.

Proof. Stable extension⇝ minimal model: Let 𝑆 ⊆ 𝐴 be

a stable extension of 𝐹 . Define the S4F structure ℳ𝑆 =
(∅, {𝑤} , 𝜉) with 𝜉(𝑤) = 𝑆. We will show that ℳ𝑆 is a

minimal model of 𝑇𝐹 .

1. ℳ𝑆 is a model of 𝑇𝐹 :

• Consider 𝜑 = K¬K¬𝑎 → K𝑎 ∈ 𝑇𝐹 . If 𝑎 ∈ 𝑆, then

ℳ𝑆 ⊩ K𝑎 andℳ𝑆 ⊩ 𝜑. If 𝑎 /∈ 𝑆, thenℳ𝑆 ⊩ K¬𝑎,

whenceℳ𝑆 ̸⊩ K¬K¬𝑎 andℳ𝑆 ⊩ 𝜑.

• Consider 𝜑 = K𝑎 → K¬𝑏 ∈ 𝑇𝐹 . Then (𝑎, 𝑏) ∈ 𝑅
and since 𝑆 is stable, 𝑎 /∈ 𝑆 or 𝑏 /∈ 𝑆. If 𝑎 /∈ 𝑆, then

ℳ𝑆 ̸⊩ K𝑎 andℳ𝑆 ⊩ 𝜑. If 𝑏 /∈ 𝑆, thenℳ𝑆 ⊩ K¬𝑏
andℳ𝑆 ⊩ 𝜑.

2. ℳ𝑆 is minimal: Consider the S4F structure 𝒩 =
(𝑉, {𝑤} , 𝜉′) to be strictly preferred toℳ𝑆 . Then there

exist 𝑣 ∈ 𝑉 and 𝜓 ∈ ℒ such that ℳ ⊩ 𝜓 and

𝒩 , 𝑣 ̸⊩ 𝜓. In particular, 𝜉′(𝑣) ̸= 𝜉′(𝑤) = 𝜉(𝑤), say,

𝜉′(𝑣)(𝑎) ̸= 𝜉(𝑤)(𝑎) for 𝑎 ∈ 𝐴.

• 𝑎 ∈ 𝑆. Then 𝜉(𝑤) ⊩ 𝑎 and 𝜉′(𝑣) ⊩ ¬𝑎 and𝒩 , 𝑣 ̸⊩ K𝑎.

On the other hand, 𝒩 , 𝑤 ⊩ K𝑎 whence 𝒩 , 𝑣 ̸⊩ K¬𝑎
and 𝒩 , 𝑣 ⊩ K¬K¬𝑎. Therefore, 𝒩 , 𝑣 ̸⊩ K¬K¬𝑎 →
K𝑎 and thus𝒩 ⊮ 𝑇𝐹 .

• 𝑎 /∈ 𝑆. Then 𝜉(𝑤) ⊩ ¬𝑎 and 𝜉′(𝑣) ⊩ 𝑎. Since 𝑆
is stable, there exists a 𝑐 ∈ 𝑆 with (𝑐, 𝑎) ∈ 𝑅. Thus

K𝑐→ K¬𝑎 ∈ 𝑇𝐹 . It firstly holds that𝒩 , 𝑣 ̸⊩ K¬𝑎.

– 𝜉′(𝑣) ⊩ 𝑐. Then𝒩 , 𝑣 ⊩ K𝑐 and𝒩 , 𝑣 ̸⊩ K𝑐→ K¬𝑎,

whence𝒩 ⊮ 𝑇𝐹 .

– 𝜉′(𝑣) ⊩ ¬𝑐. Then, since 𝑐 ∈ 𝑆,𝒩 ⊮ 𝑇𝐹 can be shown

as in the case for 𝑎 ∈ 𝑆 above.

Minimal model⇝ stable extension: Letℳ = (∅,𝑊, 𝜉) be

a minimal model of 𝑇𝐹 . Define 𝑆ℳ = {𝑎 ∈ 𝐴 | ℳ ⊩ K𝑎}.
1. 𝑆ℳ is conflict-free: Consider 𝑎 ∈ 𝑆ℳ with (𝑎, 𝑏) ∈ 𝑅. By

definition of 𝑆ℳ we getℳ ⊩ K𝑎. Fromℳ ⊩ 𝑇𝐹 we get

ℳ ⊩ K𝑎→ K¬𝑏. Thus,ℳ ⊩ K¬𝑏, whenceℳ ⊮ K𝑏,
whence 𝑏 /∈ 𝑆ℳ.

2. 𝑆ℳ attacks 𝐴 ∖ 𝑆ℳ: We first show a helpful intermediate

result:

Claim 1. For all 𝑎 ∈ 𝐴, we haveℳ ⊩ K𝑎 orℳ ⊩ K¬𝑎.

Proof of the claim. Assume ℳ ̸⊩ K¬𝑎. Then there ex-

ists a 𝑤 ∈ 𝑊 such that ℳ, 𝑤 ⊩ ¬K¬𝑎. Since ℳ
is an S5 structure, we get ℳ ⊩ K¬K¬𝑎. By defini-

tion, K¬K¬𝑎 → K𝑎 ∈ 𝑇𝐹 , thus byℳ ⊩ 𝑇𝐹 we get

ℳ ⊩ K𝑎. ♢

Let 𝑎 ∈ 𝐴 ∖ 𝑆ℳ. Thenℳ ⊮ K𝑎, which by the claim

means thatℳ ⊩ K¬𝑎. Assume to the contrary of what

we want to show that for all 𝑐 ∈ 𝐴 with (𝑐, 𝑎) ∈ 𝑅, we

have 𝑐 /∈ 𝑆ℳ, and consider any such 𝑐 ∈ 𝐴. Then, by

definition of 𝑆ℳ we get ℳ ⊮ K𝑐. We now construct

𝒩 = (𝑉,𝑊, 𝜉 ∪ 𝜁) with 𝑉 = {𝑣} (w.l.o.g. 𝑣 /∈ 𝑊 ) and

𝜁(𝑣) = 𝑆ℳ ∪ {𝑎}. 𝒩 is strictly preferred toℳ because

𝒩 , 𝑣 ̸⊩ ¬𝑎 whileℳ ⊩ ¬𝑎, therefore it remains to show

𝒩 ⊩ 𝑇𝐹 to obtain the desired contradiction. To show this,

we only need consider formulas involving 𝑎, for which there

are three possibilities:

a) 𝒩 ⊩ K¬K¬𝑎 → K𝑎: We have 𝒩 , 𝑤 ⊩ K¬𝑎 for

any 𝑤 ∈ 𝑊 , whence 𝒩 , 𝑤 ̸⊩ ¬K¬𝑎 for all 𝑤 ∈ 𝑊
and𝒩 , 𝑥 ̸⊩ K¬K¬𝑎 for all 𝑥 ∈ 𝑉 ∪𝑊 .

b) 𝒩 ⊩ K𝑎 → K¬𝑏: For any 𝑤 ∈ 𝑊 ̸= ∅, due to

𝒩 , 𝑤 ⊩ ¬𝑎 we have 𝒩 , 𝑤 ̸⊩ K𝑎; we thus also get

𝒩 , 𝑣 ̸⊩ K𝑎.

c) 𝒩 ⊩ K𝑐→ K¬𝑎: For all 𝑤 ∈𝑊 , we haveℳ, 𝑤 ̸⊩
K𝑐 by assumption above, whence𝒩 , 𝑤 ̸⊩ K𝑐 directly.

By 𝑐 /∈ 𝑆ℳ, we also get𝒩 , 𝑣 ̸⊩ K𝑐. □

Intuitively, the first part of the theory asserts that argu-

ments are accepted unless they are defeated, and the second

part expresses that an argument is defeated whenever one

of its attackers is accepted.

3. Standpoint S4F
Standpoint S4F is the nesting of S4F into standpoint logic.

More technically, in the nomenclature of many-dimensional

modal logics [26], it is the product of the two logics above.

This means that in each precisification, we have an “ordin-

ary” S4F structure with two sets of worlds, which altogether

come from a common pool of globally “available” possible

worlds.

3.1. Syntax
As before, we start out from a set 𝒮 of standpoint names

and a set𝒜 of propositional atoms. We intend the language

to be used to express what is known according to certain

standpoints. This entails that nothing is known about the

standpoints, but that they are an outer layer that is intu-

itively not accessible to the K modality. Accordingly, we

restrict the ways the modalities can be nested already in the

syntax: while S4F modality K can be used in the scope of a

standpoint modality □s, we disallow the reverse.
6
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While it would pose no technical obstacles to allow the reverse nest-

ing in syntax and semantics, we choose this restriction to clarify the

intended use of SS4F.



Definition 1. The language ℒSK of SS4F is built via:

𝜙 ::= 𝜓 | ¬𝜙 | 𝜙 ∧ 𝜙 |□s𝜙

where 𝜓 ∈ ℒK is a modal default, that is,

𝜓 ::= K𝜑 | ¬𝜓 | 𝜓 ∧ 𝜓 |K𝜓

with 𝜑 ∈ ℒ being a formula of propositional logic. ♢

We sometimes call formulas fromℒK∖ℒ subjective (because

they depend on what is known), and those from ℒ objective

formulas. For Boolean combinations, we allow the usual

abbreviations 𝜑∨𝜓 := ¬(¬𝜑∧¬𝜓) and 𝜑→ 𝜓 := ¬𝜑∨𝜓,

and for the (standpoint and S4F) modalities we sometimes

use their duals M𝜑 := ¬K¬𝜑 and ♢s𝜑 := ¬□s¬𝜑.

Given an SS4F formula 𝜙 ∈ ℒSK, as before (for S4F) we

denote the set of its subformulas by Sub(𝜙). The size of

a formula 𝜙 is defined as the number of its subformulas,

that is, ‖𝜙‖ := |Sub(𝜙)|. Both notions generalise in a

straightforward way to theories 𝑇 ⊆ ℒSK.

An SS4F theory 𝑇 ⊆ ℒSK is simple iff every formula

𝜙 ∈ 𝑇 is of the form □s𝜓 or ♢s𝜓 for some 𝜓 ∈ ℒK.

3.2. Semantics
Definition 2. Consider a set 𝒜 of atoms and a set 𝒮 of

standpoint names. A standpoint S4F structure is a tuple

S = (Π,Ω, 𝜎, 𝜁, 𝛾) where

• Π is a non-empty set of precisifications,

• Ω is a non-empty set of worlds,

• 𝜎 : 𝒮 → 2Π assigns to each standpoint name a set

of precisifications,

• 𝜁 : Π→ 2Ω × 2Ω assigns to each precisification a

pair of disjoint sets of worlds, where we denote

𝜁(𝜋) = (𝜁𝑜(𝜋), 𝜁𝑖(𝜋)) and require 𝜁𝑖(𝜋) ̸= ∅,

• 𝛾 : Ω→ 2𝒜 assigns to each world a propositional

evaluation. ♢

The set Π of precisifications is as before in standpoint logic,

in that each precisification represents one possible point of

view an entity could have, and where each precisification

can belong to one or more standpoints (via 𝜎). The function

𝜁 assigns an S4F structure (𝜁𝑜(𝜋), 𝜁𝑖(𝜋), 𝛾) to each preci-

sification, with outer worlds 𝜁𝑜(𝜋) and inner worlds 𝜁𝑖(𝜋),
where worlds 𝑤 ∈ Ω can (but need not) be reused across

precisifications. As usual, by a propositional evaluation

𝛾(𝑤) ⊆ 𝒜 we mean that all and only the elements of 𝛾(𝑤)
are those atoms that are evaluated as true.

As is generally the case for Kripke structures, the eval-

uation of a formula in a structure might depend on the

“point” in the structure at which we evaluate the formula.

Since we now have a two-dimensional modal logic with S4F

structures nested into standpoint structures, we use doubly

pointed structures to clarify where in the nested structure

we evaluate formulas.

Definition 3. Let S = (Π,Ω, 𝜎, 𝜁, 𝛾) be an SS4F struc-

ture, 𝜋 ∈ Π, and 𝑤 ∈ Ω. The satisfaction relation ⊩ for

pointed standpoint S4F structures is defined as follows:

S, 𝜋, 𝑤 ⊩ 𝑝 :⇐⇒ 𝑝 ∈ 𝛾(𝑤)
S, 𝜋, 𝑤 ⊩ ¬𝜙 :⇐⇒ S, 𝜋, 𝑤 ̸⊩ 𝜙

S, 𝜋, 𝑤 ⊩ 𝜙1 ∧ 𝜙2 :⇐⇒ S, 𝜋, 𝑤 ⊩ 𝜙1 and S, 𝜋, 𝑤 ⊩ 𝜙2

S, 𝜋, 𝑤 ⊩ K𝜙 :⇐⇒®
S, 𝜋, 𝑤′ ⊩ 𝜙 for all 𝑤′ ∈ 𝜁𝑜(𝜋) ∪ 𝜁𝑖(𝜋), if 𝑤 ∈ 𝜁𝑜(𝜋),
S, 𝜋, 𝑤′ ⊩ 𝜙 for all 𝑤′ ∈ 𝜁𝑖(𝜋), otherwise.

S, 𝜋, 𝑤 ⊩ □s𝜙 :⇐⇒ S, 𝜋′, 𝑤′ ⊩ 𝜙 for all 𝜋′ ∈ 𝜎(s)
and 𝑤′ ∈ 𝜁𝑜(𝜋′) ∪ 𝜁𝑖(𝜋′) ♢

So while objective formulas (those without any modal-

ities) are evaluated in the world, subjective formulas are

evaluated with respect to a specific precisification, where

standpoint modalities are evaluated with respect to a set of

precisifications according to the used standpoint symbol.

We say that:

• S, 𝜋, 𝑤 is a model for 𝜙 iff S, 𝜋, 𝑤 ⊩ 𝜙,

• S, 𝜋 is a model for 𝜙, written S, 𝜋 ⊩ 𝜙, iff

(Π,Ω, 𝜎, 𝜁, 𝛾) , 𝜋, 𝑤 ⊩ 𝜙 for all 𝑤 ∈ 𝜁𝑜(𝜋) ∪ 𝜁𝑖(𝜋),

• S is a model for 𝜙, written S ⊩ 𝜙, iff

(Π,Ω, 𝜎, 𝜁, 𝛾) , 𝜋 ⊩ 𝜙 for all 𝜋 ∈ Π.

As usual, a standpoint S4F structure (Π,Ω, 𝜎, 𝜁, 𝛾) is a

model for a theory 𝑇 , written (Π,Ω, 𝜎, 𝜁, 𝛾) ⊩ 𝑇 , iff

(Π,Ω, 𝜎, 𝜁, 𝛾) ⊩ 𝜙 for all 𝜙 ∈ 𝑇 . Likewise, a theory 𝑇 en-

tails a formula 𝜙, written 𝑇 |=SS4F 𝜙, iff every model of 𝑇 is

a model of𝜙. We say that a formula𝜙 ∈ ℒSK is satisfiable iff

there exists a standpoint S4F structure S = (Π,Ω, 𝜎, 𝜁, 𝛾),
a precisification 𝜋 ∈ Π, and a world 𝑤 ∈ 𝜁𝑜(𝜋) ∪ 𝜁𝑖(𝜋)
such that (Π,Ω, 𝜎, 𝜁, 𝛾) , 𝜋, 𝑤 ⊩ 𝜙.

3.3. Non-Monotonic Semantics
As usual, a non-monotonic semantics can be obtained by re-

stricting attention to models that are in some sense minimal.

Here, we require what we call local minimality, where know-

ledge has to be minimal in each precisification (according

to the requirements of minimal S4F models), but the over-

all structure of precisifications and extents of standpoint

names is allowed to freely vary. Before the minimisation of

knowledge at each precisification can be carried out, one

first has to determine which of the (sub)formulas of the ori-

ginal theory are relevant at that precisification. The formal

definitions follow.

Definition 4 (Potentially relevant subformulas).
Given a set Π of precisifications, a set 𝒮 of standpoint

names, a standpoint assignment function 𝜎 : 𝒮 → 2Π, and

a simple theory 𝑇 , we define the set of potentially relevant

subformulas for a particular precisification 𝜋 ∈ Π as

𝑇□
𝜋 = {𝜙 ∈ Sub(𝑇 ) | ∃s ∈ 𝒮 : 𝜋 ∈ 𝜎(s) and

(□s𝜙 ∈ 𝑇 or ♢s𝜙 ∈ 𝑇 )} ♢

The potentially relevant formulas will then be used for de-

termining the non-monotonic semantics of simple theories,

in that they provide an upper bound on what can possibly

be known in a precisification.

Definition 5 (Locally minimal model). For a simple

standpoint S4F theory 𝑇 , we say that S = (Π,Ω, 𝜎, 𝜁, 𝛾)
is a locally minimal model of 𝑇 iff (1) S ⊩ 𝑇 and (2) for

each 𝜋 ∈ Π there exists an S4F theory Ξ𝜋 ⊆ 𝑇□
𝜋 such that(︁

𝜁𝑜(𝜋), 𝜁𝑖(𝜋), 𝛾|𝜁(𝜋)
)︁

is a minimal S4F model for Ξ𝜋 .
7 ♢
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Intuitively, for a precisification 𝜋 ∈ Π, the theory Ξ𝜋
contains all standpoint-free formulas that are relevant at 𝜋.

Local (S4F) minimality then guarantees that in each pre-

cisification of the overall structure, there is no unjusti-

fied knowledge (w.r.t. the theory Ξ𝜋). Accordingly, non-

monotonic entailment can then be defined as usual, that is,

with respect to locally minimal models only.

Definition 6. Given a standpoint S4F theory 𝑇 ⊆ ℒSK
that is simple, we say that a formula 𝜙 ∈ ℒSK is:

1. sceptically entailed by 𝑇 , written 𝑇 |≈
scep

𝜙, iff

S ⊩ 𝜙 for all locally minimal models S of 𝑇 ;

2. credulously entailed by 𝑇 , written 𝑇 |≈
cred

𝜙, iff

S ⊩ 𝜙 for some locally minimal model S of 𝑇 . ♢

Other, intermediate, notions of non-monotonic entail-

ment are possible to define, but not our main interest here.

4. Complexity
In this section we will show that the SS4F reasoning tasks

we defined are not harder than their S4F counterparts. We

start out with showing that standpoint S4F possesses, much

like other standpoint logics [6], the small model property,

where satisfiable theories are guaranteed to have models of

linear size.

Lemma 2 (Small model property). An SS4F formula 𝜙
is satisfiable if and only if 𝜙 has a model with at most

|Sub(𝜙) ∩ ℒSK| ≤ ‖𝜙‖ precisifications.

Proof. The “if” direction holds trivially. For the “only if” direc-

tion, consider an arbitrary SS4F structure S = (Π,Ω, 𝜎, 𝜁, 𝛾)
such that S ⊩ 𝜙. We will show that it can be “pruned”

to obtain a small model S′ = (Π′,Ω′, 𝜎′, 𝜁′, 𝛾′) with

|Π′| ≤ |Sub(𝜙) ∩ ℒSK|.
We will consider a set of precisifications that will serve as

witnesses for the satisfaction of subformulas preceded by a

diamond modality (i.e. some □s in negative polarity.)

To this end, let Π′
be a subset of Π with the following

property: for each subformula □s𝜓 ∈ Sub(𝜙) not satisfied

in S, Π′
contains one precisification 𝜋𝜓 ∈ Π, for which

S, 𝜋𝜓 ̸⊩ 𝜓 holds (note that the existence of such a 𝜋𝜓 follows

directly from the definition of ⊩.) Otherwise, assuming all

□s𝜓 are satisfied in S, we set Π′ = {𝜋} for an arbitrary

𝜋 ∈ Π. The definition of the remaining components of S′
is

restricted to Π′
, i.e.,

• Ω′ = Ω ∩
⋃︀

𝜋∈Π′
𝜁′(𝜋),

• 𝜎′(s) = 𝜎(s) ∩Π′
for each s ∈ 𝒮 ,

• 𝜁′ = 𝜁|Π′ and 𝛾′ = 𝛾|Ω′ .

To show that S′ ⊩ 𝜙, we fill first prove an interme-

diate result by induction on the structure of each subfor-

mula 𝜓 ∈ Sub(𝜙): for every 𝜋 ∈ Π′
it holds that

S, 𝜋 ⊩ 𝜓 ⇐⇒ S′, 𝜋 ⊩ 𝜓. The only interesting case is

when 𝜓 = □s𝜓
′
. Assuming that S, 𝜋 ⊩ □s𝜓

′
, by the se-

mantics we get that S, 𝜋′ ⊩ 𝜓′
for every 𝜋′ ∈ 𝜎(s). Be-

cause 𝜎′(s) ⊆ 𝜎(s) and 𝜎′(s) ⊆ Π′
by induction hypothesis

we get that S′, 𝜋′′ ⊩ 𝜓′
for every 𝜋′′ ∈ 𝜎′(s) and con-

sequently (by semantics) S′ ⊩ □s𝜓
′
. Conversely, assume

that S, 𝜋 ̸⊩ □s𝜓
′
. Then there is 𝜋′ ∈ Π such that 𝜋′ ∈ 𝜎(s)

and S, 𝜋′ ̸⊩ 𝜓′
. Since by construction of S′

we required that

for each formula of the form□u𝛼 not satisfied inS a “witness”

precisification 𝜋𝛼 ∈ 𝜎(u) such that S, 𝜋𝛼 ̸⊩ 𝛼 is contained

in Π′
, w.l.o.g. we can assume that 𝜋′ = 𝜋𝛼 and therefore

𝜋′ ∈ Π′
. Then also 𝜋′ ∈ 𝜎′(s) and by induction hypothesis

we have that S′, 𝜋′ ̸⊩ 𝜓′
and consequently S′ ̸⊩ □s𝜓

′
,

which concludes the proof of the intermediate result.

Since 𝜙 ∈ Sub(𝜙) and S ⊩ 𝜙 we get S, 𝜋 ⊩ 𝜙 for

every 𝜋 ∈ Π. Naturally, since Π′ ⊆ Π also S, 𝜋′ ⊩ 𝜙 for

every 𝜋′ ∈ Π′
. Then by our intermediate result we get that

S′, 𝜋′ ⊩ 𝜙 for every 𝜋′ ∈ Π′
and consequently S′ ⊩ 𝜙. □

4.1. Complexity of SS4F reasoning tasks
We extend the reasoning tasks for S4F to the SS4F case in a

straightforward manner, e.g. existenceSS4F decides whether

a simple theory 𝑇 ⊆ ℒSK has a locally minimal SS4F model.

(Since locally minimal models are only defined for simple

theories, all subsequent results are necessarily restricted

to this fragment; we will not always explicitly state the

requirement that theories be strict.) In what follows we

show that for locally minimal models, the complexities of

SS4F reasoning tasks match those of S4F.

We say that an SS4F structure (Π,Ω, 𝜎, 𝜁, 𝛾) is pointwise

S5 iff for every 𝜋 ∈ Π, we find 𝜁𝑜(𝜋) = ∅. Obviously, by

definition of S4F minimal models, every locally minimal

model (of some simple theory 𝑇 ) is pointwise S5.

We start out with some preparatory observations on SS4F

structures. The first result looks trivial, it however is not,

and crucially hinges on the fact that (1) modal defaults allow

atoms only within the scope of K;
8

and (2) that we restrict

attention to structures that are pointwise S5, and thus offer

negative introspection.

Lemma 3. Let S = (Π,Ω, 𝜎, 𝜁, 𝛾) be an SS4F structure

that is pointwise S5. Then for all 𝜋 ∈ Π and all 𝜙 ∈ ℒSK:

S, 𝜋 ⊩ 𝜙 or S, 𝜋 ⊩ ¬𝜙

Proof. We use induction on the structure of 𝜙. Note that in

any case, we have

S, 𝜋 ⊩ 𝜙 or S, 𝜋 ̸⊩ 𝜙

so to show the claim it suffices to show that

S, 𝜋 ̸⊩ 𝜙 implies S, 𝜋 ⊩ ¬𝜙

• 𝜙 = K𝜑. (Note that this case covers the induction

base with 𝜑 ∈ ℒ as well as the case of 𝜑 ∈ ℒK.)

Assume S, 𝜋 ̸⊩ K𝜑. Then there exists a 𝑤′ ∈ 𝜁𝑖(𝜋)
such that S, 𝜋, 𝑤′ ̸⊩ K𝜑. Since (∅, 𝜁𝑖(𝜋), 𝛾|𝜁𝑖(𝜋)) is

an S5 structure with a universal accessibility relation,

we get that for all𝑤 ∈ 𝜁𝑖(𝜋) we have S, 𝜋, 𝑤 ̸⊩ K𝜑.

That is, for all 𝑤 ∈ 𝜁𝑖(𝜋), we have S, 𝜋, 𝑤 ⊩ ¬K𝜑.

By definition, then, S, 𝜋 ⊩ ¬K𝜑.

• 𝜙 = ¬𝜑. LetS, 𝜋 ̸⊩ ¬𝜑. By the induction hypothesis,

we get that S, 𝜋 ⊩ 𝜑 or S, 𝜋 ⊩ ¬𝜑. The latter is

impossible, whence S, 𝜋 ⊩ 𝜑 and thus S, 𝜋 ⊩ ¬¬𝜑.

• 𝜙 = 𝜑 ∧ 𝜓. Let S, 𝜋 ̸⊩ 𝜑 ∧ 𝜓. By the induction

hypothesis, we have (1) S, 𝜋 ⊩ 𝜑 or S, 𝜋 ⊩ ¬𝜑,

and (2) S, 𝜋 ⊩ 𝜓 or S, 𝜋 ⊩ ¬𝜓. If S, 𝜋 ⊩ 𝜑 and

S, 𝜋 ⊩ 𝜓, then S, 𝜋 ⊩ 𝜑 ∧ 𝜓, which is impossible

8
For example for the atomic formula 𝑝 ∈ 𝒜, it is the case that in a

precisification 𝜋 where nothing is known (i.e. 𝛾(𝜁𝑖(𝜋)) covers 2𝒜
),

we have both S, 𝜋 ̸⊩ 𝑝 and S, 𝜋 ̸⊩ ¬𝑝.



by assumption. Thus S, 𝜋 ⊩ ¬𝜑 or S, 𝜋 ⊩ ¬𝜓. In

either case, we get S, 𝜋 ⊩ ¬(𝜑 ∧ 𝜓).

• 𝜙 = □s𝜑. Let S, 𝜋 ̸⊩ □s𝜑. Then there exists a

𝑤 ∈ 𝜁𝑖(𝜋) with S, 𝜋, 𝑤 ̸⊩ □s𝜑. In turn, there

exists a 𝜋′ ∈ 𝜎(s) and a 𝑤′ ∈ 𝜁𝑖(𝜋
′) such that

S, 𝜋′, 𝑤′ ̸⊩ 𝜑. Since 𝜋′
is independent of 𝑤, this

𝜋′ ∈ 𝜎(s) exists for every 𝑤 ∈ 𝜁𝑖(𝜋), and we obtain

that for all𝑤 ∈ 𝜁𝑖(𝜋), we have S, 𝜋, 𝑤 ̸⊩ □s𝜑. Thus

for all 𝑤 ∈ 𝜁𝑖(𝜋), we get S, 𝜋, 𝑤 ⊩ ¬□s𝜑, that is,

S, 𝜋 ⊩ ¬□s𝜑. □

The following variant is equivalent, but due to its form

more useful in proofs.

Corollary 4. Let S = (Π,Ω, 𝜎, 𝜁, 𝛾) be an SS4F structure

that is pointwise S5. Then for all 𝜋 ∈ Π and all 𝜙 ∈ ℒSK:

S, 𝜋 ̸⊩ 𝜙 if and only if S, 𝜋 ⊩ ¬𝜙

Proof. The “only if” direction is clear from the proof of

Lemma 3. For the “if” direction, it suffices to note that

S, 𝜋 ⊩ 𝜙 implies S, 𝜋 ̸⊩ ¬𝜙. □

Theorem 5. existenceSS4F is in ΣP
2.

Proof. Let 𝑇 be an SS4F theory. By Lemma 2 on the small

model property of SS4F, we can deterministically construct Π
(by considering all subformulas of the form □s𝜑 occurring in

negative polarity) and 𝜎.

Now, we guess a triple (Φ𝜋,Ψ𝜋,Ξ𝜋) for each 𝜋 ∈ Π,

with Ξ𝜋 ⊆ 𝑇□
𝜋 and Φ𝜋,Ψ𝜋 ⊆ (Sub(𝑇 ) ∩ ℒK)K.

(We guess |Π| such triples without any oracle calls in

between.) For each precisification 𝜋, we check whether

their respective Φ𝜋,Ψ𝜋 are introspection consistent,

i.e. the following (for brevity we use the abbreviation

Θ𝜋 = Ξ𝜋 ∪ {¬K𝜙 | 𝜙 ∈ Φ𝜋} ∪ {K𝜓 | 𝜓 ∈ Ψ𝜋} ∪Ψ𝜋):

(C1) Φ𝜋 ∪Ψ𝜋 = (Sub(𝑇 ) ∩ ℒK)K and Φ𝜋 ∩Ψ𝜋 = ∅,

(C2) Θ𝜋 is propositionally consistent,

(C3) for each 𝜑 ∈ Φ𝜋 , we have Θ𝜋 ̸⊢ 𝜑 (where ⊢ denotes

the provability relation of propositional logic).

Afterwards, we check whether an introspection consistent pair

(Φ𝜋,Ψ𝜋) corresponds to a minimal S4F model of Ξ𝜋 ,by check-

ing if for every 𝜓 ∈ Ψ𝜋 ,

Ξ𝜋 ∪ {¬K𝜑 | 𝜑 ∈ Φ𝜋} ⊢S4F 𝜓

The above requires at most polynomially many calls to an NP
oracle (the number of calls is polynomially bounded by the

cardinality of the set Ψ𝜋 ; the oracle decides ⊢ and ⊢S4F).

At this step, it is proven that at each precisification 𝜋, the

pair (Φ𝜋,Ψ𝜋) represents a minimal S4F model for the relevant

theory Ξ𝜋 . What remains to be proven is whether the entire

construction, namely

(︁
Π, 𝜎, (Φ,Ψ,Ξ)𝜋∈Π

)︁
, is a model for

the initial SS4F theory 𝑇 (condition (1) of Definition 5).

It is clear that for all 𝜋 ∈ Π, we have Sub(Ξ𝜋) ⊆ Sub(𝑇 )
and the local theory Ξ𝜋 is satisfied at 𝜋; what remains to be

detected is whether there is a modal default 𝜙 ∈ 𝑇□
𝜋 ∖ Ξ𝜋

that has wrongly been excluded from being relevant at 𝜋.

This can be checked locally using the NP oracle again, mak-

ing use of Θ𝜋 at each precisification 𝜋. The procedure will be

given inductively on the structure of an SS4F formula 𝜙.

To this end we define the following relations⊪+
and⊪−

,

where we abbreviate T𝜋 := (Φ𝜋,Ψ𝜋,Ξ𝜋) for brevity.

T𝜋 ⊪
+
□s𝜑 :⇐⇒ T𝜋′ ⊪+ 𝜑 for every 𝜋′ ∈ 𝜎(s)

T𝜋 ⊪
−
□s𝜑 :⇐⇒ T𝜋′ ⊪− 𝜑 for some 𝜋′ ∈ 𝜎(s)

T𝜋 ⊪
+ K𝜑 :⇐⇒ Θ𝜋 ⊢ 𝜑

T𝜋 ⊪
− K𝜑 :⇐⇒ Θ𝜋 ̸⊢ 𝜑

T𝜋 ⊪
+ ¬𝜑 :⇐⇒ T𝜋 ⊪

− 𝜑

T𝜋 ⊪
− ¬𝜑 :⇐⇒ T𝜋 ⊪

+ 𝜑

T𝜋 ⊪
+ 𝜑 ∧ 𝜓 :⇐⇒ T𝜋 ⊪

+ 𝜑 and T𝜋 ⊪
+ 𝜓

T𝜋 ⊪
− 𝜑 ∧ 𝜓 :⇐⇒ T𝜋 ⊪

− 𝜑 or T𝜋 ⊪
− 𝜓

Our approach then is to verify that T𝜋 ⊪+ 𝜙 for all 𝜙 ∈ 𝑇
and 𝜋 ∈ Π (which can be done in deterministic polynomial

time with an NP oracle for deciding ⊢ in the cases with

K𝜑), and we claim that this establishes overall modelhood

of the guessed structure for 𝑇 . To show this correspondence,

we define (slightly abusing notation S) the SS4F structure

S(Π, 𝜎, (T𝜋)𝜋∈Π) = (Π,Ω, 𝜎, 𝜁, 𝛾) based on the partition-

ings (T𝜋)𝜋∈Π as follows:

• Ω =
⋃︀
𝜋∈Π

Ω𝜋 where for every 𝜋 ∈ Π, we set

Ω𝜋 =
¶
(𝜋, 𝜈)

⃓⃓⃓
𝜈 ⊆ 𝒜+

with 𝜈 ⊩ Θ𝜋
©

denoting 𝒜+ = 𝒜 ∪ {K𝜑 |K𝜑 ∈ Sub(𝑇 )};

• 𝜁𝑜(𝜋) = ∅ and 𝜁𝑖(𝜋) = Ω𝜋 for every 𝜋 ∈ Π;

• 𝛾((𝜋, 𝜈)) = 𝜈 for every (𝜋, 𝜈) ∈ Ω𝜋 .

Note that we allow all formulas K𝜑 ∈ Sub(𝑇 ) to be evalu-

ated as “virtual atoms” in every world in every precisification.

This leads us to our first technical observation: The defini-

tion of the S5 structures at each precisification 𝜋 ∈ Π along

with the conditions (C1)–(C3) verified earlier exactly provides

the desired correspondence between the “propositional” read-

ing (via the propositional theory Θ𝜋) and the “S4F” reading

(via the S5 structure Ω𝜋) of S4F formulas:

Claim 2. For every precisification 𝜋 ∈ Π and potentially

relevant formula 𝜓 ∈ Sub(𝑇 ) ∩ (ℒK ∪ ℒ):

(∀𝑤 ∈ Ω𝜋 : 𝛾(𝑤) ⊩ 𝜓) ⇐⇒(︁
∀𝑤 ∈ Ω𝜋 : S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋, 𝑤 ⊩ 𝜓

)︁
Proof of the claim. We use induction on the structure of 𝜓;

since we also cover ℒ, the base case is for 𝜓 = 𝑝 ∈ 𝒜. Most of

the cases are trivial, the only interesting case is for 𝜓 = K𝜑,

which in turn covers all 𝜑 ∈ ℒK ∪ ℒ.

We first use 𝜑 ∈ (Sub(𝑇 ) ∩ ℒK)K = Ψ𝜋 ∪ Φ𝜋 to show:

Θ𝜋 |= K𝜑 ⇐⇒ Θ𝜋 |= 𝜑 (†)

If Θ𝜋 |= K𝜑, then, since Θ𝜋 is propositionally consistent

– condition (C2) –, we have Θ𝜋 ̸|= ¬K𝜑. Thus ¬K𝜑 /∈ Θ𝜋
and in particular, 𝜑 /∈ Φ𝜋 , whence by (C1) we get 𝜑 ∈ Ψ𝜋 .

Then also 𝜑 ∈ Θ𝜋 and Θ𝜋 |= 𝜑.

On the other hand, if Θ𝜋 |= 𝜑, then Θ𝜋 ⊢ 𝜑, whence by

(C3) we obtain 𝜑 /∈ Φ𝜋 . Thus, by (C1), 𝜑 ∈ Ψ𝜋 , which in

turn means K𝜑 ∈ Θ𝜋 and Θ𝜋 |= K𝜑.



We now obtain:

∀𝑤 ∈ Ω𝜋 : 𝛾(𝑤) ⊩ K𝜑

⇐⇒ Θ𝜋 |= K𝜑

(†)⇐⇒ Θ𝜋 |= 𝜑

⇐⇒ ∀𝑤 ∈ Ω𝜋 : 𝛾(𝑤) ⊩ 𝜑

(IH)⇐⇒ ∀𝑤 ∈ Ω𝜋 : S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋, 𝑤 ⊩ 𝜑

⇐⇒ ∀𝑤 ∈ 𝜁𝑖(𝜋) : S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋, 𝑤 ⊩ 𝜑

⇐⇒ ∀𝑤 ∈ 𝜁𝑖(𝜋) : S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋, 𝑤 ⊩ K𝜑

⇐⇒ ∀𝑤 ∈ Ω𝜋 : S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋, 𝑤 ⊩ K𝜑

This concludes the proof of Claim 2. ♢

To obtain the desired result, we will prove (making use of

Claim 2 in the base case) that given the SS4F theory 𝑇 and the

guessed structure

(︁
Π, 𝜎, (Φ,Ψ,Ξ)𝜋∈Π

)︁
of partitions, we can

verify modelhood by checking⊪+
and⊪−

, more formally,

for all precisifications 𝜋 ∈ Π and for all 𝜙 ∈ Sub(𝑇 ):

T𝜋 ⊪
+ 𝜙 ⇐⇒ S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋 ⊩ 𝜙 (1)

T𝜋 ⊪
− 𝜙 ⇐⇒ S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋 ⊩ ¬𝜙 (2)

The proof works by structural induction on 𝜙.

• 𝜙 = K𝜓. Then 𝜓 ∈ Sub(𝑇 ) ∩ (ℒK ∪ ℒ), and regarding

(1) we obtain:

T𝜋 ⊪
+ K𝜓

⇐⇒ Θ𝜋 ⊢ 𝜓
⇐⇒ Θ𝜋 |= 𝜓

⇐⇒ ∀𝑤 ∈ Ω𝜋 : 𝛾(𝑤) ⊩ 𝜓

(Claim 2)⇐⇒ ∀𝑤 ∈ Ω𝜋 : S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋, 𝑤 ⊩ 𝜓

⇐⇒ ∀𝑤 ∈ 𝜁𝑖(𝜋) : S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋, 𝑤 ⊩ 𝜓

⇐⇒ S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋 ⊩ K𝜓

Regarding (2) we get:

T𝜋 ⊪
− K𝜓

⇐⇒ Θ𝜋 ̸⊢ 𝜓
⇐⇒ Θ𝜋 ̸|= 𝜓

⇐⇒ ∃𝑤 ∈ Ω𝜋 : 𝛾(𝑤) ̸⊩ 𝜓
(Claim 2)⇐⇒ ∃𝑤 ∈ Ω𝜋 : S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋, 𝑤 ̸⊩ 𝜓
⇐⇒ ∃𝑤 ∈ 𝜁𝑖(𝜋) : S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋, 𝑤 ̸⊩ 𝜓
⇐⇒ ∃𝑤 ∈ 𝜁𝑖(𝜋) : S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋, 𝑤 ̸⊩ K𝜓

(S5)⇐⇒ ∀𝑤 ∈ 𝜁𝑖(𝜋) : S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋, 𝑤 ̸⊩ K𝜓

⇐⇒ ∀𝑤 ∈ 𝜁𝑖(𝜋) : S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋, 𝑤 ⊩ ¬K𝜓
⇐⇒ S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋 ⊩ ¬K𝜓

• 𝜙 = ¬𝜓. We have, with regard to (1),

T𝜋 ⊪
+ ¬𝜓 ⇐⇒ T𝜋 ⊪

− 𝜓

(IH)⇐⇒ S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋 ⊩ ¬𝜓

Similarly, for (2),

T𝜋 ⊪
− ¬𝜓 ⇐⇒ T𝜋 ⊪

+ 𝜓

(IH)⇐⇒ S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋 ⊩ 𝜓

(Corollary 4)⇐⇒ S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋 ⊩ ¬¬𝜓

• 𝜙 = 𝜑 ∧ 𝜓. We have

T𝜋 ⊪
+ 𝜑 ∧ 𝜓

⇐⇒ T𝜋 ⊪
+ 𝜑 and T𝜋 ⊪

+ 𝜓

(IH)⇐⇒ S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋 ⊩ 𝜑

and S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋 ⊩ 𝜓

⇐⇒ S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋 ⊩ 𝜑 ∧ 𝜓

and

T𝜋 ⊪
− 𝜑 ∧ 𝜓

⇐⇒ T𝜋 ⊪
− 𝜑 or T𝜋 ⊪

− 𝜓

(IH)⇐⇒ S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋 ⊩ ¬𝜑
or S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋 ⊩ ¬𝜓

(Corollary 4)⇐⇒ S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋 ̸⊩ 𝜑
or S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋 ̸⊩ 𝜓

(Definition 3)⇐⇒ S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋 ̸⊩ 𝜑 ∧ 𝜓
(Corollary 4)⇐⇒ S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋 ⊩ ¬(𝜑 ∧ 𝜓)

• 𝜙 = □s𝜓. Then

T𝜋 ⊪
+
□s𝜓

⇐⇒ T𝜋′ ⊪+ 𝜓 for every 𝜋′ ∈ 𝜎(s)
(IH)⇐⇒ S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋

′ ⊩ 𝜓 for every 𝜋′ ∈ 𝜎(s)
⇐⇒ S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋 ⊩ □s𝜓

and likewise

T𝜋 ⊪
−
□s𝜓

⇐⇒ T𝜋′ ⊪− 𝜓 for some 𝜋′ ∈ 𝜎(s)
(IH)⇐⇒ S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋

′ ⊩ ¬𝜓 for some 𝜋′ ∈ 𝜎(s)
(Corollary 4)⇐⇒ S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋

′ ̸⊩ 𝜓 for some 𝜋′ ∈ 𝜎(s)
⇐⇒ S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋 ̸⊩ □s𝜓

(Corollary 4)⇐⇒ S(Π, 𝜎, (T𝜋)𝜋∈Π), 𝜋 ⊩ ¬□s𝜓

Thus by verifying T𝜋 ⊪+ 𝜙 for all 𝜙 ∈ 𝑇 and 𝜋 ∈ Π, we

have checked that the structure

(︁
Π, 𝜎, (Φ,Ψ,Ξ)𝜋∈Π

)︁
(which

we do not explicitly construct) constitutes a model of 𝑇 . To-

gether with the checks done earlier, this establishes that T𝜋
constitutes a locally minimal model of 𝑇 . □

Example 2. Consider the following simple SS4F theory:

𝑇 = {□sK𝑝,□sK(𝑝→ 𝑞),□tK𝑞,□tK¬𝑝}

A witnessing model representing the locally minimal

SS4F model of 𝑇 could be ({𝜋1, 𝜋2}, 𝜎, (T𝜋1 ,T𝜋2)) with

𝜎(s) = {𝜋1}, 𝜎(t) = {𝜋2} and:

T𝜋1 =({¬𝑝} , {𝑝, 𝑝→ 𝑞, 𝑞} , {K𝑝,K(𝑝→ 𝑞)})
T𝜋2 =({𝑝, 𝑝→ 𝑞} , {𝑞,¬𝑝} , {K𝑞,K¬𝑝}) . ♢



The construction of a witnessing model can also be

used for credulous reasoning, where we additionally verify

that (Φ𝜋,Ψ𝜋,Ξ𝜋) ⊪+ 𝜙 for all 𝜋 ∈ Π to demonstrate

that 𝑇 |≈
cred

𝜙. In a similar vein, for sceptical reasoning,

we guess a locally minimal model for 𝑇 and verify that

(Φ𝜋,Ψ𝜋,Ξ𝜋) ⊪− 𝜙 for some 𝜋 ∈ Π to show that 𝑇 |̸≈
scep
𝜙.

Proposition 6. in-someSS4F and not-in-allSS4F are ΣP
2-

complete, in-allSS4F is ΠP
2-complete.

5. Instantiations
Intuitively, each precisification of a locally minimal SS4F

model encodes an S4F minimal model for the locally-

relevant S4F theory. Given that S4F theories are capable

of encoding multiple non-monotonic reasoning formalisms

(as described in Section 2.5), we find that SS4F provides

standpoint-enhanced variants of those formalisms. As such,

each precisification of a locally minimal model encodes an

extension of a default theory in case of standpoint default

logic, stable extension in case of standpoint argumentation

framework or an answer set in case of standpoint logic pro-

gram. Below we provide examples of the first two SS4F

instantiations.

5.1. Standpoint Default Logic
Utilising the S4F encoding of defaults we obtain standpoint

defaults of the form

□s[(K𝜙 ∧K¬K¬𝜓1 ∧ . . . ∧K¬K¬𝜓𝑛)→ K𝜓]

which we conveniently denote as□s[𝜙 : 𝜓1, . . . , 𝜓𝑛/𝜓]. Be-

low we assume the standpoint default theory 𝑇 to be a set of

standpoint defaults. To facilitate the reading of background

knowledge, by formulas □sK𝜙 we denote modal defaults

of the form □s[⊤ : /𝜙] (i.e. where 𝑛 = 0).

Example 3 (Example 1 continued). The following S4F

formulas of a theory 𝑇* express common knowledge, such

as that we are indeed dealing with a coffee, that an espresso

cannot be low in caffeine and that a drink cannot be hot and

iced at the same time, i.e.

𝑇* = {Kcoffee,K¬(iced ∧ hot),

K¬(espresso ∧ low_caffeine)}

We use 𝑇□* to denote the set 𝑇□* = {□*𝜙 | 𝜙 ∈ 𝑇*}. Ad-

ditionally, we provide the set of standpoint defaults 𝑇𝐷
presented in the introduction, expressing that coffee is usu-

ally consumed hot, unless served in Vietnam, where iced

variants are more common and that a typical coffee in Italy is

a highly-caffeinated espresso, contrary to the typical, filtered

coffee in the US.

𝑇𝐷 =

ß
□*

[︁
coffee : hot/hot

]︁
,□

[︁
coffee : iced/iced

]︁
,

□
[︁
coffee : espresso/espresso

]︁
,

□
[︁
coffee : low_caffeine/low_caffeine

]︁™
We obtain the standpoint default theory 𝑇 = 𝑇𝐷 ∪ 𝑇□* .♢

Since extensions of a default theory can be characterised by

finite sets of defaults’ consequences [5, 22], there is a locally

minimal SS4F model S = (Π,Ω, 𝜎, 𝜁, 𝛾) of the theory 𝑇
from Example 3, in which 𝜎( ) = {𝜋1, 𝜋2}, 𝜎( ) =
{𝜋3}, 𝜎( ) = {𝜋4} and in which the extensions at each

precisification can be represented by the following sets of

consequences:

𝜋1 : 𝑇* ∪ {hot} 𝜋2 : 𝑇* ∪ {iced}
𝜋3 : 𝑇* ∪ {hot , espresso} 𝜋4 : 𝑇* ∪ {hot , low_caffeine} .

Therefore, we get the following conclusions:

𝑇 |≈
cred
□

[︁
Kespresso

]︁
𝑇 |≈

cred
□*Khot

𝑇 |≈
cred
□

[︁
Klow_caffeine

]︁
𝑇 |≈

cred
□

[︁
Kiced

]︁
To emphasise the non-monotonic nature of our framework,

we note that the two bottom conclusions would be retracted

if we added additional background knowledge to 𝑇 stating

e.g. that coffee is necessarily a hot, highly caffeinated drink:

□*K(coffee → (hot ∧ ¬low_caffeine)).

5.2. Standpoint (Abstract) Argumentation
Similarly, employing the S4F encodings of abstract argu-

mentation frameworks with standpoint modalities gives

rise to standpoint argumentation frameworks. A profile

𝒫 = (𝐹1, . . . , 𝐹𝑛) of 𝑛 argumentation frameworks (with

𝐹𝑖 = (𝐴𝑖, 𝑅𝑖) for all 1 ≤ 𝑖 ≤ 𝑛) can be encoded as a single

SS4F theory 𝑇𝐹 over 𝒮 = {1, . . . , n, *} as follows:

𝑇𝐹 :=

𝑛⋃︁
𝑖=1

{□i[K¬K¬𝑎→ K𝑎] | 𝑎 ∈ 𝐴𝑖}∪

{□i[K𝑎→ K¬𝑏] | (𝑎, 𝑏) ∈ 𝑅𝑖}

Example 4 presents individual frameworks in their usual

graphical representation, i.e. with nodes denoting argu-

ments and edges attacks between them. For such a rep-

resentation being within the scope of a standpoint modality

means that each node and attack is encoded for this stand-

point using the formula above.

Example 4 ([27]). The following argumentation frame-

works correspond to individual views 𝐴𝐹1, 𝐴𝐹2 and 𝐴𝐹3,

provided by Baumeister et al. [27, Figure 4.]. Arguments

model discussion about public access to information and

medical supplies in the context of a potential epidemic [27,

Table 1.]. Generally, in each view arguments draw from a

common pool of arguments, whereas attacks between them

are up for individual judgement of a respective agent. Here,

the entire theory 𝑇𝐹 is defined as:

□V1

⎡⎢⎣ 𝑏 𝑔 𝑑

𝑐 𝑓 𝑒

⎤⎥⎦

□V2

⎡⎢⎣ 𝑏 𝑔 𝑑

𝑐 𝑒

𝑎
⎤⎥⎦

□V3

⎡⎢⎣ 𝑏 𝑔 𝑑

𝑐 𝑓 𝑒

𝑎
⎤⎥⎦

where standpoint argumentation frameworks are used to

express each of the distinct viewpoints, 𝑉1, 𝑉2 and 𝑉3. ♢



Viewpoints from Example 4 have the following stable ex-

tensions – 𝑉1: {𝑐, 𝑒, 𝑔}, 𝑉2: {𝑎, 𝑐, 𝑒, 𝑔}, 𝑉3: {𝑎, 𝑐, 𝑒, 𝑔} and

{𝑎, 𝑑, 𝑓}. Since in a locally minimal SS4F model of 𝑇𝐹 each

precisification must encode precisely one stable extension

of a related framework, we find e.g. 𝑇𝐹 |≈
cred
□V2K𝑎 or

𝑇𝐹 |≈
cred
□*K𝑐, but 𝑇𝐹 |̸≈

scep
□*K𝑐.

We consider how standpoint argumentation relates to

approaches for collective acceptability in abstract argument-

ation discussed in the literature [28, 27]. In the so-called

argument-wise approaches, acceptability of the individual

views (frameworks) is determined using standard methods

(argumentation semantics) followed by semantic aggrega-

tion, where arguments deemed acceptable individually are

aggregated into a single set of jointly accepted arguments.

Other techniques, referred to as framework-wise, first ag-

gregate individual views into a collective representation, e.g.

single argumentation framework and then employ standard

(or dedicated) methods to obtain the joint set of accepted

arguments from that representation.

Semantics of standpoint argumentation, in which pre-

cisifications encode single stable extensions and where

moreover standpoint modalities are employed to aggreg-

ate the extensions, follows the argument-wise approach.

Interestingly, general (i.e. non-simple) SS4F theories are cap-

able of capturing the framework-wise techniques e.g. the

nomination rule [27], in which an attack between a pair of

arguments in the resulting framework is established if it

occurs in at least one of the input frameworks. For a set of all

arguments of a profile 𝒫 , defined as 𝐴𝒫 = 𝐴1 ∪ . . . ∪𝐴𝑛,

necessitation can be obtained by instantiating the below

schema for every pair of arguments 𝑎, 𝑏 ∈ 𝐴𝒫 :

♢*[K𝑎→ K¬𝑏]→ □*[K𝑎
′ → K¬𝑏′].

In particular, instantiating the schema for 𝑇𝐹 would effect-

ively amount to supplying 𝑇𝐹 with:

□*

⎡⎢⎣ 𝑏′ 𝑔′ 𝑑′

𝑐′ 𝑓 ′
𝑒′

𝑎′
⎤⎥⎦

In a similar vein, also the majority (resp. the unanimity)

rule [27] – adding the attack if it is present in the majority

(resp. all) of the individual frameworks – could be captured

in SS4F. However, as mentioned above, enabling framework-

wise aggregation techniques requires non-simple SS4F the-

ories, which is beyond the scope of this paper and is con-

sidered as future work.

6. Conclusion
In this paper we introduced standpoint S4F, a two-

dimensional modal logic for describing heterogeneous view-

points that can incorporate default reasoning to make se-

mantic commitments. We defined syntax and semantics and

analysed the complexity of the most pertinent reasoning

problems associated to our logic. The pleasant result was

that incorporating standpoint modalities comes at no addi-

tional computational cost, as the complexity of the underly-

ing logic, non-monotonic S4F, is preserved. We exemplified

the new formalism by showcasing two instantiations with

concrete NMR formalisms, namely Reiter’s default logic [5]

and Dung’s argumentation frameworks [24].

A drawback of our current preliminary results is that we

restricted our attention to simple theories, where standpoint

modalities are essentially used only in an atomic form. The

reason is that the definition of the set 𝑇□
𝜋 is hard to general-

ise without enabling to potentially guess unjustified know-

ledge into the locally relevant theory. For example, with

𝑇 = {□sK𝑝 ∨ ¬□sK𝑝} we expect, as the theory is tauto-

logical, a unique minimal model where nothing is known;

alas, guessing Ξ𝜋 = {K𝑝} is not straightforward to avoid

and leads to knowing 𝑝 without justification.

A potential fix via considering globally minimal models

that do not require syntax-based guessing is the objective

of current and future work. Furthermore, while we have

mostly ignored sharpening statements s ⪯ u herein, they

could be easily added, but would increase the amount of

constructs to treat in checks and proofs.

In further future work, we intend to come up with a

(disjunctive) ASP encoding for relevant fragments of SS4F

with the intent of providing a prototypical implementation.

We also want to study strong equivalence for SS4F; the case

of plain S4F has been studied by Truszczyński [14]. Finally,

it is also worthwhile to develop a proof system for our new

logic. S4F has a proof system via the axioms (K), (T), (4),

and (F); propositional standpoint logic has proof systems as

well [1, 29]. It will be challenging to combine these proof

systems to obtain one for SS4F.
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