Review
Are NP Problems Hard?
The Structure of NP

Idea: polynomial many-one reductions define an order on problems
The Structure of NP

Idea: polynomial many-one reductions define an order on problems
The Structure of NP

Idea: polynomial many-one reductions define an order on problems
The Structure of NP

Idea: polynomial many-one reductions define an order on problems
The Structure of NP

Idea: polynomial many-one reductions define an order on problems
NP-Hardness and NP-Completeness

Definition 7.1:
(1) A language H is **NP-hard**, if $L \leq_p H$ for every language $L \in \text{NP}$.
(2) A language C is **NP-complete**, if C is NP-hard and $C \in \text{NP}$.

NP-Completeness

- NP-complete problems are the **hardest** problems in NP.
- They constitute the maximal class (wrt. \leq_p) of problems within NP.
- They are all equally difficult – an efficient solution to one would solve them all.

Theorem 7.2: If L is NP-hard and $L \leq_p L'$, then L' is NP-hard as well.
Proving NP-Completeness

How to show NP-completeness

To show that L is NP-complete, we must show that every language in NP can be reduced to L in polynomial time.

Alternative approach

Given an NP-complete language C, we can show that another language L is NP-complete just by showing that

• $C \leq_p L$
• $L \in$ NP

However: Is there any NP-complete problem at all?

Markus Krötzsch, 5th Nov 2018 Complexity Theory slide 6 of 26
Proving NP-Completeness

How to show NP-completeness
To show that L is NP-complete, we must show that every language in NP can be reduced to L in polynomial time.

Alternative approach
Given an NP-complete language C, we can show that another language L is NP-complete just by showing that

- $C \leq_p L$
- $L \in NP$
Proving NP-Completeness

How to show NP-completeness
To show that \(L \) is NP-complete, we must show that every language in NP can be reduced to \(L \) in polynomial time.

Alternative approach
Given an NP-complete language \(C \), we can show that another language \(L \) is NP-complete just by showing that

- \(C \leq_p L \)
- \(L \in \text{NP} \)

However: Is there any NP-complete problem at all?
Is there any NP-complete problem at all?

Of course there is: the word problem for polynomial time NTMs!

Polytime NTM

Input: A polynomial p, a p-time bounded NTM M, and an input word w.

Problem: Does M accept w (in time $p(|w|)$)?

Theorem 7.3: Polytime NTM is NP-complete.

Proof: See exercise.
The First NP-Complete Problems

Is there any NP-complete problem at all?

Of course there is: the word problem for polynomial time NTMs!

Polytime NTM

Input: A polynomial p, a p-time bounded NTM M, and an input word w.

Problem: Does M accept w (in time $p(|w|)$)?

Theorem 7.3: **Polytime NTM** is NP-complete.

Proof: See exercise.
Further NP-Complete Problem?

Polytime NTM is NP-complete, but not very interesting:

- not most convenient to work with
- not of much interest outside of complexity theory

Are there more natural NP-complete problems?
Further NP-Complete Problem?

Polytime NTM is NP-complete, but not very interesting:
- not most convenient to work with
- not of much interest outside of complexity theory

Are there more natural NP-complete problems?

Yes, thousands of them!
The Cook-Levin Theorem
Theorem 7.4 (Cook 1970, Levin 1973): \textsc{Sat} is NP-complete.
The Cook-Levin Theorem

Theorem 7.4 (Cook 1970, Levin 1973): Sat is NP-complete.

Proof:

1. $\text{Sat} \in \text{NP}$

 Take satisfying assignments as polynomial certificates for the satisfiability of a formula.
The Cook-Levin Theorem

Theorem 7.4 (Cook 1970, Levin 1973): Sat is NP-complete.

Proof:

1. $\text{Sat} \in \text{NP}$

 Take satisfying assignments as polynomial certificates for the satisfiability of a formula.

2. Sat is hard for NP

 Proof by reduction from the word problem for NTMs.
Proving the Cook-Levin Theorem

Given:
- a polynomial \(p \)
- a \(p \)-time bounded 1-tape NTM \(M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}) \)
- a word \(w \)

Intended reduction
Define a propositional logic formula \(\varphi_{p,M,w} \) such that
\(\varphi_{p,M,w} \) is satisfiable if and only if \(M \) accepts \(w \) in time \(p(|w|) \).
Proving the Cook-Levin Theorem

Given:
- a polynomial p
- a p-time bounded 1-tape NTM $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}})$
- a word w

Intended reduction
Define a propositional logic formula $\varphi_{p,M,w}$ such that $\varphi_{p,M,w}$ is satisfiable if and only if M accepts w in time $p(|w|)$.

Note
On input w of length $n := |w|$, every computation path of M is of length $\leq p(n)$ and uses $\leq p(n)$ tape cells.

Idea
Use logic to describe a run of M on input w by a formula.
Use propositional variables for describing configurations:

- \(Q_q \) for each \(q \in Q \) means “\(M \) is in state \(q \in Q \)”
- \(P_i \) for each \(0 \leq i < p(n) \) means “the head is at Position \(i \)”
- \(S_{a,i} \) for each \(a \in \Gamma \) and \(0 \leq i < p(n) \) means “tape cell \(i \) contains Symbol \(a \)”
Use propositional variables for describing configurations:

- \(Q_q \) for each \(q \in Q \) means “\(M \) is in state \(q \in Q \)”
- \(P_i \) for each \(0 \leq i < p(n) \) means “the head is at Position \(i \)”
- \(S_{a,i} \) for each \(a \in \Gamma \) and \(0 \leq i < p(n) \) means “tape cell \(i \) contains Symbol \(a \)”

Represent configuration \((q, p, a_0 \ldots a_p(n))\) by assigning truth values to variables from the set

\[
\overline{C} := \{Q_q, P_i, S_{a,i} \mid q \in Q, \ a \in \Gamma, \ 0 \leq i < p(n)\}
\]

using the truth assignment \(\beta \) defined as

\[
\begin{align*}
\beta(Q_s) &:= \begin{cases}
1 & s = q \\
0 & s \neq q
\end{cases} \\
\beta(P_i) &:= \begin{cases}
1 & i = p \\
0 & i \neq p
\end{cases} \\
\beta(S_{a,i}) &:= \begin{cases}
1 & a = a_i \\
0 & a \neq a_i
\end{cases}
\end{align*}
\]
Proving Cook-Levin: Validating Configurations

We define a formula $\text{Conf}(\overline{C})$ for a set of configuration variables

$$\overline{C} = \{Q_q, P_i, S_{a,i} \mid q \in Q, \ a \in \Gamma, \ 0 \leq i < p(n)\}$$

as follows:

$$\text{Conf}(\overline{C}) := \quad \text{“the assignment is a valid configuration”:}$$

$$\bigvee_{q \in Q} \big(Q_q \land \bigwedge_{q' \neq q} \neg Q_{q'} \big)$$

$$\land \bigvee_{p < p(n)} \big(P_p \land \bigwedge_{p' \neq p} \neg P_{p'} \big)$$

$$\land \bigwedge_{0 \leq i < p(n)} \bigwedge_{a \in \Gamma} \big(S_{a,i} \land \bigwedge_{b \neq a \in \Gamma} \neg S_{b,i} \big)$$

“TM in exactly one state $q \in Q$”

“head in exactly one position $p \leq p(n)$”

“exactly one $a \in \Gamma$ in each cell”
For an assignment β defined on variables in \overline{C} define

$$\text{conf}(\overline{C}, \beta) := \left\{ (q, p, w_0 \ldots w_{p(n)}) \mid \begin{array}{l}
\beta(Q_q) = 1, \\
\beta(P_p) = 1, \\
\beta(S_{w_i,i}) = 1 \text{ for all } 0 \leq i < p(n)
\end{array} \right\}$$

Note: β may be defined on other variables besides those in \overline{C}.
Proving Cook-Levin: Validating Configurations

For an assignment β defined on variables in \overline{C} define

$$
\text{conf}(\overline{C}, \beta) := \left\{ \begin{array}{l}
(q, p, w_0 \ldots w_{p(n)}) | \\
\beta(Q_q) = 1, \\
\beta(P_p) = 1, \\
\beta(S_{w_i, i}) = 1 \text{ for all } 0 \leq i < p(n)
\end{array} \right.
$$

Note: β may be defined on other variables besides those in \overline{C}.

Lemma 7.5: If β satisfies $\text{Conf}(\overline{C})$ then $|\text{conf}(\overline{C}, \beta)| = 1$.

We can therefore write $\text{conf}(\overline{C}, \beta) = (q, p, w)$ to simplify notation.
For an assignment β defined on variables in C define

$$
\text{conf}(C, \beta) := \begin{cases}
\beta(Q_q) = 1, \\
(q, p, w_0 \ldots w_{p(n)}) & \beta(P_p) = 1, \\
\beta(S_{w_i,i}) = 1 \text{ for all } 0 \leq i < p(n)
\end{cases}
$$

Note: β may be defined on other variables besides those in C.

Lemma 7.5: If β satisfies $\text{Conf}(C)$ then $|\text{conf}(C, \beta)| = 1$.
We can therefore write $\text{conf}(C, \beta) = (q, p, w)$ to simplify notation.

Observations:

- $\text{conf}(C, \beta)$ is a potential configuration of M, but it may not be reachable from the start configuration of M on input w.
- Conversely, every configuration $(q, p, w_1 \ldots w_{p(n)})$ induces a satisfying assignment β or which $\text{conf}(C, \beta) = (q, p, w_1 \ldots w_{p(n)})$.
Consider the following formula $\text{Next}(\overline{C}, \overline{C}')$ defined as

$$\text{Conf}(\overline{C}) \land \text{Conf}(\overline{C}') \land \text{NoChange}(\overline{C}, \overline{C}') \land \text{Change}(\overline{C}, \overline{C}')$$

NoChange := $\bigvee_{0 \leq p < p(n)} (P_p \land \bigwedge_{i \neq p, a \in \Gamma} (S_{a,i} \rightarrow S'_{a,i}))$

Change := $\bigvee_{0 \leq p < p(n)} (P_p \land \bigvee_{q \in Q} (Q_q \land S_{a,p} \land \bigvee_{(q', b, D) \in \delta(q, a)} (Q'_{q'} \land S'_{b,p} \land P'_{D(p)})))$

where $D(p)$ is the position reached by moving in direction D from p.
Consider the following formula \(\text{Next}(\bar{C}, \bar{C}') \) defined as

\[
\text{Conf}(\overline{C}) \land \text{Conf}(\overline{C}') \land \text{NoChange}(\overline{C}, \overline{C}') \land \text{Change}(\overline{C}, \overline{C}').
\]

\[
\text{NoChange} := \bigvee_{0 \leq p < p(n)} \left(P_p \land \bigwedge_{i \neq p, a \in \Gamma} (S_{a,i} \rightarrow S'_{a,i}) \right)
\]

\[
\text{Change} := \bigvee_{0 \leq p < p(n)} \left(P_p \land \bigvee_{q \in Q} (Q_q \land S_{a,p} \land \bigvee_{(q',b,D) \in \delta(q,a)} (Q'_{q'} \land S'_{b,p} \land P'_{D(p)})) \right)
\]

where \(D(p) \) is the position reached by moving in direction \(D \) from \(p \).

Lemma 7.6: For any assignment \(\beta \) defined on \(\overline{C} \cup \overline{C}' \):

\(\beta \) satisfies \(\text{Next}(\overline{C}, \overline{C}') \) if and only if \(\text{conf}(\overline{C}, \beta) \vdash_M \text{conf}(\overline{C}', \beta) \)
Defined so far:

- \(\text{Conf}(\overline{C}) \): \(\overline{C} \) describes a potential configuration
- \(\text{Next}(\overline{C}, \overline{C}') \): \(\text{conf}(\overline{C}, \beta) \vdash_M \text{conf}(\overline{C}', \beta) \)
Proving Cook-Levin: Start and End

Defined so far:

- \text{Conf}(\overline{C}) : \overline{C} describes a potential configuration
- \text{Next}(\overline{C}, \overline{C}') : \text{conf}(\overline{C}, \beta) \vdash_M \text{conf}(\overline{C}', \beta)

Start configuration:

For an input word \(w = w_0 \cdots w_{n-1} \in \Sigma^* \), we define:

\[
\text{Start}_{M,w}(\overline{C}) := \text{Conf}(\overline{C}) \land Q_{q_0} \land P_0 \land \bigwedge_{i=0}^{n-1} S_{w,i} \land \bigwedge_{i=n}^{p(n)-1} S_{\omega,i}
\]

Then an assignment \(\beta \) satisfies \(\text{Start}_{M,w}(\overline{C}) \) if and only if \(\overline{C} \) represents the start configuration of \(M \) on input \(w \).
Proving Cook-Levin: Start and End

Defined so far:
- \(\text{Conf}(\overline{C}) \): \(\overline{C} \) describes a potential configuration
- \(\text{Next}(\overline{C}, \overline{C}') \): \(\text{conf}(\overline{C}, \beta) \vdash_M \text{conf}(\overline{C}', \beta) \)

Start configuration:
For an input word \(w = w_0 \cdots w_{n-1} \in \Sigma^* \), we define:

\[
\text{Start}_{M,w}(\overline{C}) := \text{Conf}(\overline{C}) \land Q_{q_0} \land P_0 \land \bigwedge_{i=0}^{n-1} S_{w_i,i} \land \bigwedge_{i=n}^{p(n)-1} S_{w,i}
\]

Then an assignment \(\beta \) satisfies \(\text{Start}_{M,w}(\overline{C}) \) if and only if \(\overline{C} \) represents the start configuration of \(M \) on input \(w \).

Accepting stop configuration:

\[
\text{Acc-Conf}(\overline{C}) := \text{Conf}(\overline{C}) \land Q_{q_{\text{accept}}}
\]

Then an assignment \(\beta \) satisfies \(\text{Acc-Conf}(\overline{C}) \) if and only if \(\overline{C} \) represents an accepting configuration of \(M \).
Since \mathcal{M} is p-time bounded, each run may contain up to $p(n)$ steps
\leadsto we need one set of configuration variables for each

Propositional variables

$Q_{q,t}$ for all $q \in Q$, $0 \leq t \leq p(n)$ means “at time t, \mathcal{M} is in state $q \in Q$”

$P_{i,t}$ for all $0 \leq i, t \leq p(n)$ means “at time t, the head is at position i”

$S_{a,i,t}$ for all $a \in \Gamma$ and $0 \leq i, t \leq p(n)$ means “at time t, tape cell i contains symbol a”

Notation

$\overline{C}_t := \{Q_{q,t}, P_{i,t}, S_{a,i,t} \mid q \in Q, 0 \leq i \leq p(n), a \in \Gamma\}$
Proving Cook-Levin: The Formula

Given:
- a polynomial p
- a p-time bounded 1-tape NTM $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}})$
- a word w

We define the formula $\varphi_{p,M,w}$ as follows:

\[
\varphi_{p,M,w} := \text{Start}_{M,w} (\overline{C}_0) \land \bigvee_{0 \leq t \leq p(n)} \left(\text{Acc-Conf}(\overline{C}_t) \land \bigwedge_{0 \leq i < t} \text{Next}(\overline{C}_i, \overline{C}_{i+1}) \right)
\]

“C_0 encodes the start configuration” and for some polynomial time t:
- “M accepts after t steps” and “$\overline{C}_0, \ldots, \overline{C}_t$ encode a computation path”

Lemma 7.7: $\varphi_{p,M,w}$ is satisfiable if and only if M accepts w in time $p(|w|)$.

Note that an accepting or rejecting stop configuration has no successor.
The Cook-Levin Theorem

Theorem 7.4 (Cook 1970, Levin 1973): Sat is NP-complete.

Proof:

1. **$\text{Sat} \in \text{NP}**

 Take satisfying assignments as polynomial certificates for the satisfiability of a formula.

2. **Sat is hard for NP**

 Proof by reduction from the word problem for NTMs.
Further NP-complete Problems
Towards More NP-Complete Problems

Starting with **Sat**, one can readily show more problems P to be NP-complete, each time performing two steps:

1. Show that $P \in \text{NP}$
2. Find a known NP-complete problem P' and reduce $P' \leq_p P$

Thousands of problems have now been shown to be NP-complete. (See Garey and Johnson for an early survey)
Towards More NP-Complete Problems

Starting with SAT, one can readily show more problems P to be NP-complete, each time performing two steps:

1. Show that $P \in \text{NP}$
2. Find a known NP-complete problem P' and reduce $P' \leq_p P$

Thousands of problems have now been shown to be NP-complete. (See Garey and Johnson for an early survey)

In this course:

- $\leq_p \text{CLIQUE}$
- $\leq_p \text{INDEPENDENT SET}$
- $\text{SAT} \leq_p \text{3-SAT}$
- $\leq_p \text{DIR. HAMILTONIAN PATH}$
- $\leq_p \text{SUBSET SUM}$
- $\leq_p \text{KNAPSACK}$
NP-Completeness of \textbf{Clique}

\textbf{Theorem 7.8: Clique} is NP-complete.

\textbf{Clique}: Given G,k, does G contain a clique of order $\geq k$?

\textbf{Proof}:

(1) \textbf{Clique} \in NP

Take the vertex set of a clique of order k as a certificate.

(2) \textbf{Clique} is NP-hard

We show $\text{Sat} \leq_p \text{Clique}$

To every CNF-formula φ assign a graph G_φ and a number k_φ such that

\[\varphi \text{ satisfiable } \iff G_\varphi \text{ contains clique of order } k_\varphi \]
SAT \leq_p CLIQUE

To every CNF-formula φ assign a graph G_{φ} and a number k_{φ} such that

φ satisfiable if and only if G_{φ} contains clique of order k_{φ}

Given $\varphi = C_1 \land \cdots \land C_k$:

- Set $k_{\varphi} := k$
- For each clause C_j and literal $L \in C_j$ add a vertex $v_{L,j}$
- Add edge $\{v_{L,j}, v_{K,i}\}$ if $i \neq j$ and $L \land K$ is satisfiable (that is: if $L \neq \neg K$ and $\neg L \neq K$)

Example 7.9:

\[
\begin{align*}
C_1 & : (X \lor Y \lor \neg Z) \\
C_2 & : (X \lor \neg Y) \\
C_3 & : (\neg X \lor Z)
\end{align*}
\]
To every CNF-formula φ assign a graph G_φ and a number k_φ such that

φ satisfiable if and only if G_φ contains clique of order k_φ

Given $\varphi = C_1 \land \cdots \land C_k$:

- Set $k_\varphi := k$
- For each clause C_j and literal $L \in C_j$ add a vertex $v_{L,j}$
- Add edge $\{v_{L,j}, v_{K,i}\}$ if $i \neq j$ and $L \land K$ is satisfiable (that is: if $L \neq \neg K$ and $\neg L \neq K$)

Example 7.9:

\[
\left(X \lor Y \lor \neg Z \right) \land \left(X \lor \neg Y \right) \land \left(\neg X \lor Z \right)
\]

\[
C_1 \land C_2 \land C_3
\]
To every CNF-formula φ assign a graph G_φ and a number k_φ such that

φ satisfiable if and only if G_φ contains clique of order k_φ

Given $\varphi = C_1 \land \cdots \land C_k$:

- Set $k_\varphi := k$
- For each clause C_j and literal $L \in C_j$ add a vertex $v_{L,j}$
- Add edge $\{v_{L,j}, v_{K,i}\}$ if $i \neq j$ and $L \land K$ is satisfiable (that is: if $L \neq \neg K$ and $\neg L \neq K$)

Example 7.9:

$\begin{align*}
(C_1 &\equiv (X \lor Y \lor \neg Z) \land (X \lor \neg Y) \land (\neg X \lor Z)) \\
C_2 &\equiv (X \lor Y) \\
C_3 &\equiv (\neg X \lor Z)
\end{align*}$
SAT \leq_p CLIQUE

To every CNF-formula φ assign a graph G_φ and a number k_φ such that

φ satisfiable if and only if G_φ contains clique of order k_φ

Given $\varphi = C_1 \land \cdots \land C_k$:

- Set $k_\varphi := k$
- For each clause C_j and literal $L \in C_j$ add a vertex $v_{L,j}$
- Add edge $\{v_{L,j}, v_{K,i}\}$ if $i \neq j$ and $L \land K$ is satisfiable (that is: if $L \neq \neg K$ and $\neg L \neq K$)

Example 7.9:

$(X \lor Y \lor \neg Z) \land (X \lor \neg Y) \land (\neg X \lor Z)$

Given $\varphi = C_1 \land C_2 \land C_3$:

- Set $k_\varphi := 3$
- For each clause C_j and literal $L \in C_j$ add a vertex $v_{L,j}$
- Add edge $\{v_{L,j}, v_{K,i}\}$ if $i \neq j$ and $L \land K$ is satisfiable (that is: if $L \neq \neg K$ and $\neg L \neq K$)
SAT \leq_p CLIQUE

To every CNF-formula φ assign a graph G_{φ} and a number k_{φ} such that

φ satisfiable if and only if G_{φ} contains clique of order k_{φ}

Given $\varphi = C_1 \land \cdots \land C_k$:

- Set $k_{\varphi} := k$
- For each clause C_j and literal $L \in C_j$ add a vertex $v_{L,j}$
- Add edge $\{u_{L,j}, v_{K,i}\}$ if $i \neq j$ and $L \land K$ is satisfiable
 (that is: if $L \neq \neg K$ and $\neg L \neq K$

Correctness:

G_{φ} has clique of order k iff φ is satisfiable.

Complexity:

The reduction is clearly computable in polynomial time.
NP-Completeness of **Independent Set**

Input: An undirected graph G and a natural number k

Problem: Does G contain k vertices that share no edges (independent set)?

Theorem 7.10: Independent Set is NP-complete.
NP-Completeness of **INDEPENDENT SET**

INDEPENDENT SET

Input: An undirected graph G and a natural number k

Problem: Does G contain k vertices that share no edges (independent set)?

Theorem 7.10: **INDEPENDENT SET** is NP-complete.

Proof: Hardness by reduction $\text{CLIQUE} \leq_p \text{INDEPENDENT SET}$:

- Given $G := (V, E)$ construct $\overline{G} := (V, \{\{u, v\} \mid \{u, v\} \notin E \text{ and } u \neq v\})$
NP-Completeness of **INDEPENDENT SET**

INDEPENDENT SET

Input: An undirected graph G and a natural number k

Problem: Does G contain k vertices that share no edges (independent set)?

Theorem 7.10: **INDEPENDENT SET** is NP-complete.

Proof: Hardness by reduction $\textbf{CLIQUE} \leq_p \textbf{INDEPENDENT SET}$:

- Given $G := (V, E)$ construct $\overline{G} := (V, \{\{u, v\} \mid \{u, v\} \notin E \text{ and } u \neq v\})$

- A set $X \subseteq V$ induces a clique in G iff X induces an independent set in \overline{G}.

- Reduction: G has a clique of order k iff \overline{G} has an independent set of order k.

\[\square\]
Summary and Outlook

NP-complete problems are the hardest in NP

Polynomial runs of NTMs can be described in propositional logic (Cook-Levin)

\textbf{CLIQUE} and \textbf{INDEPENDENT SET} are also NP-complete

What’s next?

- More examples of problems
- The limits of NP
- Space complexities