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DÖRTHE ARNDT
Computational Logic Group, TU Dresden, Germany

STEPHAN MENNICKE
Knowledge-Based Systems Group, TU Dresden, Germany

submitted xx xx xxxx; revised xx xx xxxx; accepted xx xx xxxx

Abstract

In this paper, we delve into Notation3 Logic (N3), an extension of RDF, which empowers users
to craft rules introducing fresh blank nodes to RDF graphs. This capability is pivotal in various
applications such as ontology mapping, given the ubiquitous presence of blank nodes directly
or in auxiliary constructs across the Web. However, the availability of fast N3 reasoners fully
supporting blank node introduction remains limited. Conversely, engines like VLog or Nemo,
though not explicitly designed for Semantic Web rule formats, cater to analogous constructs,
namely existential rules.

We investigate the correlation between N3 rules featuring blank nodes in their heads and
existential rules. We pinpoint a subset of N3 that seamlessly translates to existential rules and
establish a mapping preserving the equivalence of N3 formulae. To showcase the potential bene-
fits of this translation in N3 reasoning, we implement this mapping and compare the performance
of N3 reasoners like EYE and cwm against VLog and Nemo, both on native N3 rules and their
translated counterparts. Our findings reveal that existential rule reasoners excel in scenarios
with abundant facts, while the EYE reasoner demonstrates exceptional speed in managing a
high volume of dependent rules.

Additionally to the original conference version of this paper, we include all proofs of the
theorems and introduce a new section dedicated to N3 lists featuring built-in functions and
how they are implemented in existential rules. Adding lists to our translation/framework gives
interesting insights on related design decisions influencing the standardization of N3.

1 Introduction

Notation3 Logic (N3) (cf. Woensel et al. (2023); Berners-Lee et al. (2008)) is an extension

of the Resource Description Framework (RDF) which allows the user to quote graphs, to

express rules, and to apply built-in functions on the components of RDF triples. Facil-

itated by reasoners like cwm (Berners-Lee (2009)), Data-Fu (Harth and Käfer (2018)),

or EYE (Verborgh and De Roo (2015)), N3 rules directly consume and produce RDF

graphs. This makes N3 well-suited for rule exchange on the Web. N3 supports the intro-

duction of new blank nodes through rules, that is, if a blank node appears in the head1

of a rule, each new match for the rule body produces a new instance of the rule’s head

containing fresh blank nodes. This feature is interesting for many use cases – mappings

1 To stay consistent across frameworks, we use the terms head and body throughout the whole paper.
The head is the part of the rule occurring at the end of the implication arrow, the body the part at
its beginning (backward rules: “head← body”, forward rules: “body→ head”).

https://doi.org/10.1017/xxxxx
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between different vocabularies include blank nodes, workflow composition deals with un-

known existing instances (Verborgh et al. (2017)) – but it also impedes reasoning tasks:

from a logical point of view these rules contain existentially quantified variables in their

heads. Reasoning with such rules is known to be undecidable in general and very complex

on decidable cases (Baget et al. (2011); Krötzsch et al. (2019)).

Even though recent projects like jen32 or RoXi (Bonte and Ongenae (2023)) aim at

improving the situation, the number of fast N3 reasoners fully supporting blank node

introduction is low. This is different for reasoners acting on existential rules, a concept

very similar to blank-node-producing rules in N3, but developed for databases. Sometimes

it is necessary to uniquely identify data by a value that is not already part of the target

database. One tool to achieve that are labeled nulls which – just as blank nodes – indicate

the existence of a value. This problem from databases and the observation that rules

may provide a powerful, yet declarative, means of computing has led to more extensive

studies of existential rules (Baget et al. (2011); Cal̀ı et al. (2010)). Many reasoners like

for example VLog (Carral et al. (2019)) or Nemo (Ivliev et al. (2023)) apply dedicated

strategies to optimize reasoning with existential rules.

This paper aims to make existing and future optimizations on existential rules usable in

the Semantic Web. We introduce a subset of N3 supporting existential quantification but

ignoring features of the language not covered in existential rules, like for example built-in

functions or lists. We provide a mapping between this logic and existential rules: The

mapping and its inverse both preserve equivalences of formulae, enabling N3 reasoning

via existential rule technologies. We discuss how the framework can be extended to

also support lists – a feature of N3 used in many practical applications, for example to

support n-ary predicates. We implement the defined mapping in python and compare

the reasoning performance of the existential rule reasoners Vlog and Nemo, and the N3
reasoners EYE and cwm for two benchmarks: one applying a fixed set of rules on a

varying size of facts, and one applying a varying set of highly dependent rules to a fixed

set of facts. In our tests VLog and Nemo together with our mapping outperform the

traditional N3 reasoners EYE and cwm when dealing with a high number of facts while

EYE is the fastest on large dependent rule sets. This is a strong indication that our

implementation will be of practical use when extended by further features.

We motivate our approach by providing examples of N3 and existential rule formulae,

and discuss how these are connected, in Sect. 2. In Sect. 3 we provide a more formal

definition of Existential N3 (N3∃), introduce its semantics and discuss its properties. We

then formally introduce existential rules, provide the mapping from N3∃ into this logic,

and prove its truth-preserving properties in Sect. 4. N3 lists and the built-ins associated

with them are introduced as N3 primitives as well as their existential rule translations are

subject to Sect. 5. In Sect. 6 we discuss our implementation and provide an evaluation of

the different reasoners. Related work is presented in Sect. 7. We conclude our discussion

in Sect. 8. Furthermore, the code needed for reproducing our experiments is available on

GitHub (https://github.com/smennicke/n32rules).

This article is an extended and revised version of our work (cf. Arndt and Men-

nicke (2023)) presented at Rules and Reasoning – 7th International Joint Conference

2 https://github.com/william-vw/jen3

https://github.com/smennicke/n32rules
https://github.com/smennicke/n32rules
https://github.com/william-vw/jen3


Existential Notation3 Logic 3

(RuleML+RR) 2023. Compared to the original paper, we include full proofs to all theo-

rems and lemmas. Furthermore, we extend our considerations by N3 lists and respective

built-ins (cf. Sect. 5).

2 Motivation

N3 has been inroduced as a rule-based extension of RDF. As in RDF, N3 knowledge is

stated in triples consisting of subject, predicate, and object. In ground triples these can

either be Internationalized Resource Identifiers (IRIs) or literals. The expression

:lucy :knows :tom. (1)

means3 that “lucy knows tom”. Sets of triples are interpreted as their conjunction. Like

RDF, N3 supports blank nodes, usually starting with :, which stand for (implicitly)

existentially quantified variables. The statement

:lucy :knows :x. (2)

means “there exists someone who is known by lucy”. N3 furthermore supports implicitly

universally quantified variables, indicated by a leading question mark (?), and implica-

tions which are stated using graphs, i.e., sets of triples, surrounded by curly braces ({})
as body and head connected via an arrow (=>). The formula

{:lucy :knows ?x}=>{?x :knows :lucy}. (3)

means that “everyone known by Lucy also knows her”. Furthermore, N3 allows the use

of blank nodes in rules. These blank nodes are not quantified outside the rule like the

universal variables, but in the rule part they occur in, that is either in its body or its

head.

{?x :knows :tom}=>{?x :knows :y. :y :name "Tom"}. (4)

means “everyone knowing Tom knows someone whose name is Tom”.

This last example shows, that N3 supports rules concluding the existence of certain

terms which makes it easy to express them as existential rules. An existential rule is a

first-order sentence of the form

∀x,y. φ[x,y] → ∃z. ψ[y, z] (5)

where x,y, z are mutually disjoint lists of variables, φ and ψ are conjunctions of atoms

using only variables from the given lists, and φ is referred to as the body of the rule while

ψ is called the head. Using the basic syntactic shape of (5) we go through all the example

N3 formulae (1)–(4) again and represent them as existential rules. To allow for the full

flexibility of N3 and RDF triples, we translate each RDF triple, just like the one in (1)

into a first-order atom tr(:lucy, :knows, :tom). Here, tr is a ternary predicate holding

subject, predicate, and object of a given RDF triple. This standard translation makes

triple predicates (e.g., :knows) accessible as terms. First-order atoms are also known as

facts, finite sets of facts are called databases, and (possibly infinite) sets of facts are called

instances. Existential rules are evaluated over instances (cf. Sect. 4).

Compared to other rule languages, the distinguishing feature of existential rules is the

use of existentially quantified variables in the head of rules (cf. z in (5)). The N3 formula

3 We omit name spaces for brevity.
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in (2) contains an existentially quantified variable and can, thus, be encoded as

→ ∃x. tr(:lucy, :knows, x) (6)

Rule (6) has an empty body, which means the head is unconditionally true. Rule (6) is sat-

isfied on instances containing any fact tr(:lucy, :knows, ) (e.g., tr(:lucy, :knows, :tim)

so that variable x can be bound to :tim).

The implication of (3) has

∀x. tr(:lucy, :knows, x) → tr(x, :knows, :lucy) (7)

as its (existential) rule counterpart, which does not contain any existentially quantified

variables. Rule (7) is satisfied in the instance

I1 = {tr(:lucy, :knows, :tom), tr(:tom, :knows, :lucy)}
but not in K1 = {tr(:lucy, :knows, :tom)}
since the only fact in K1 matches the body of the rule, but there is no fact reflecting

on its (instantiated) head (i.e., the required fact tr(:tom, :knows, :lucy) is missing).

Ultimately, the implication (4) with blank nodes in its head may be transferred to a

rule with an existential quantifier in the head:

∀x. tr(x, :knows, :tom) → ∃y. tr(x, :knows, y) ∧ tr(y, :name, "Tom"). (8)

It is clear that rule (8) is satisfied in instance

I2 = {tr(:lucy, :knows, :tom), tr(:tom, :name, "Tom")}.
However, instance K1 does not satisfy rule (8) because although the only fact satisfies

the rule’s body, there are no facts jointly satisfying the rule’s head.

Note, for query answering over databases and rules, it is usually not required to decide

for a concrete value of y (in rule (8)). Many implementations, therefore, use some form of

abstraction: for instance, Skolem terms. VLog and Nemo implement the standard chase

which uses another set of terms, so-called labeled nulls. Instead of injecting arbitrary

constants for existentially quantified variables, (globally) fresh nulls are inserted in the

positions existentially quantified variables occur. Such a labeled null embodies the exis-

tence of a constant on the level of instances (just like blank nodes in RDF graphs). Let

n be such a labeled null. Then I2 can be generalized to

I3 = {tr(:lucy, :knows, :tom), tr(:lucy, :knows, n), tr(n, :name, "Tom")},
on which rule (8) is satisfied, binding null n to variable y. I3 is, in fact, more general than

I2 by the following observation: There is a mapping from I3 to I2 that is a homomor-

phism (see Sect. 4.1 for a formal introduction) but not vice versa. The homomorphism

here maps the null n (from I3) to the constant :tom (in I2). Intuitively, the existence of

a query answer (for a conjunctive query) on I3 implies the existence of a query answer

on I2. Existential rule reasoners implementing some form of the chase aim at finding the

most general instances (universal models) in this respect (Deutsch et al. (2008)).

In the remainder of this paper, we further analyze the relation between N3 and exis-

tential rules. First, we give a brief formal account of the two languages and then provide

a correct translation function from N3 to existential rules.
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f ::= formulae: t ::= terms:
t t t. atomic formula ex existential variables
{e}=>{e}. implication c constants
f f conjunction

n ::= N3 terms: e ::= expressions:
uv universal variables n n n. triple expression
t terms e e conjunction expression

Fig. 1. Syntax of N3∃

3 Existential N3

In the previous section we introduced essential elements of N3, namely triples and rules.

N3 also supports more complex constructs like lists, nesting of rules, and quotation. As

these features are not covered by existential rules, we define a subset of N3 excluding

them, called existential N3 (N3∃).4 We base our definitions on so-called simple N3 for-

mulae (Arndt, Dörthe 2019, Chapter 7), these are N3 formulae which do not allow for

nesting.

3.1 Syntax

N3∃ relies on the RDF alphabet. As the distinction is not relevant in our context, we

consider IRIs and literals together as constants. Let C be a set of such constants, U

a set of universal variables (starting with ?), and E a set of existential variables (i.e.,

blank nodes). If the sets C, U , E, and {{, }, =>, .} are mutually disjoint, we call A :=

C ∪ U ∪ E ∪ {{, }, =>, .} an N3 alphabet. Fig. 1 provides the syntax of N3∃ over A.

N3∃ fully covers RDF – RDF formulae are conjunctions of atomic formulae – but

allows literals and blank nodes to occur in subject, predicate, and object position. On

top of the triples, it supports rules containing existential and universal variables. Note,

that the syntax allows rules having new universal variables in their head like for example

{:lucy :knows :tom}=>{?x :is :happy}. (9)

which results in a rule expressing ”if lucy knows tom, everyone is happy”. This impli-

cation is problematic: Applied on triple (1), it yields ?x :is :happy. which is a triple

containing a universal variable. Such triples are not covered by our syntax, the rule thus

introduces a fact we cannot express. Therefore, we restrict N3∃ rules to well-formed im-

plications which rely on components. A component of a formula or an expression is an

N3 term which does not occur nested in a rule. More formally, let f be a formula or an

expression over an alphabet A. The set comp(f) of components of f is defined as:

• If f is an atomic formula or a triple expression of the form t1 t2 t3., comp(f) =

{t1, t2, t3}.

4 This fragment is expressive enough to support basic use cases like user-defined ontology mapping.
Here it is important to note that RDF lists can be expressed using first-rest pairs.
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• If f is an implication of the form {e1}=>{e2}., then comp(f) = {{e1}, {e2}}.
• If f is a conjunction of the form f1f2, then comp(f) = comp(f1) ∪ comp(f2).

A rule {e1}=>{e2}. is called well-formed if (comp(e2) \ comp(e1)) ∩ U = ∅. For the

remainder of this paper we assume all implications to be well-formed.

3.2 Semantics

In order to define the semantics of N3∃ we first note, that in our fragment of N3 all

quantification of variables is only defined implicitly. The blank node in triple (2) is un-

derstood as an existentially quantified variable, the universal in formula (3) as universally

quantified. Universal quantification spans over the whole formula – variable ?x occurring

in body and head of rule (3) is universally quantified for the whole implication – while

existential quantification is local – the conjunction in the head of rule (4) is existentially

quantified there. Adding new triples as conjuncts to formula (4) like

:lucy :knows :y. :y :likes :cake. (10)

leads to the new statement that ”lucy knows someone who likes cake” but even though

we are using the same blank node identifier :y in both formulae, the quantification of

the variables in this formula is totally seperated and the person named “Tom” is not

necessarily related to the cake-liker. With the goal to deal with this locality of blank

node scoping, we define substitutions which are only applied on components of formulae

and leave nested elements like for example the body and head of rule (3) untouched.

A substitution σ is a mapping from a set of variables X ⊂ U ∪ E to the set of N3
terms. We apply σ to a term, formula or expression x as follows:

• xσ = σ(x) if x ∈ X,

• (s p o)σ = (sσ)(pσ)(oσ) if x = s p o is an atomic formula or a triple expression,

• (f1f2)σ = (f1σ)(f2σ) if x = f1f2 is a conjunction,

• xσ = x else.

For formula f = :x :p :o. { :x :b :c}=>{ :x :d :e}., substitution σ and :x ∈
dom(σ), we get: fσ = σ( :x):p :o. { :x :b :c}=>{ :x :d :e}.5 We use the substitu-

tion to define the semantics of N3∃ which additionally makes use of N3 interpretations

I = (D, a, p) consisting of (1) the domain of I, D; (2) a : C → D called the object

function; (3) p : D → 2D×D called the predicate function.

Just as the function IEXT in RDF’s simple interpretations, see Hayes (2004), N3’s
predicate function maps elements from the domain of discourse to a set of pairs of do-

main elements and is not applied on relation symbols directly. This makes quantification

over predicates possible while not exceeding first-order logic in terms of complexity. To

introduce the semantics of N3∃, let I = (D, a, p) be an N3 interpretation. For an N3∃

formula f :

1. If W = comp(f)∩E ̸= ∅, then I |= f iff I |= fµ for some substitution µ :W → C.

2. If comp(f) ∩ E = ∅:

5 Note that the semantics of simple formulae on which N3∃’s semantics is based, relies on two ways to
apply a substitution which is necessary to handle nested rules, since such constructs are excluded in
N3∃, we simplified here.
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(a) If f is an atomic formula t1 t2 t3, then I |= t1 t2 t3. iff (a(t1), a(t3)) ∈ p(a(t2)).

(b) If f is a conjunction f1f2, then I |= f1f2 iff I |= f1 and I |= f2.

(c) If f is an implication, then I |= {e1}=>{e2} iff I |= e2σ if I |= e1σ for all

substitutions σ on the universal variables comp(e1) ∩ U by constants.

The semantics as defined above uses a substitution into the set of constants instead

of a direct assignment to the domain of discourse to interpret quantified variables. This

design choice inherited from N3 ensures referential opacity of quoted graphs and means,

in essence, that quantification always refers to named domain elements.

With that semantics, we call an interpretation M model of a dataset Φ, written as

M |= Φ, if M |= f for each formula f ∈ Φ. We say that two sets of N3∃ formulae Φ and

Ψ are equivalent, written as Φ ≡ Ψ, if for all interpretations M: M |= Φ iff M |= Ψ. If

Φ = {ϕ} and Ψ = {ψ} are singleton sets, we write ϕ ≡ ψ omitting the brackets.

Piece Normal Form N3∃ formulae consist of conjunctions of triples and implications.

For our goal of translating such formulae to existential rules, it is convenient to consider

sub-formulae seperately. Below, we therefore define the so-called Piece Normal Form

(PNF) for N3∃ formulae and show that each such formula f is equivalent to a set of

sub-formulae Φ (i.e., Φ ≡ f) in PNF. We proceed in two steps.

First, we separate formulae based on their blank node components. If two parts of

a conjunction share a blank node component, as in formula (10), we cannot split the

formula into two since the information about the co-reference would get lost. However, if

conjuncts either do not contain blank nodes or only contain disjoint sets of these, we can

split them into so-called pieces: Two formulae f1 and f2 are called pieces of a formula f

if f = f1f2 and comp(f1) ∩ comp(f2) ∩ E = ∅. For such formulae we know:

Lemma 1 (Pieces) Let f = f1f2 be an N3∃ conjunction and let comp(f1)∩comp(f2)∩
E = ∅, then for each interpretation I, I |= f iff I |= f1 and I |= f2.

Proof: 1. If comp(f) ∩ E = ∅ the claim follows immediately by point 2b in the

semantics definition.

2. If W = comp(f) ∩ E ̸= ∅:
(⇒) If I |= f then there exists a substitution µ : comp(f) ∩ E → C such that

I |= fµ, that is I |= (f1µ) (f2µ). According to the previous point that implies

I |= f1µ and I |= f2µ and thus I |= f1 and I |= f2.

(⇐) If I |= f1 and I |= f2, then there exist two substitutions µ1 : comp(f1)∩E → C

and µ2 : comp(f2) ∩ E → C such that I |= f1µ1 and I |= f2µ2. As the domains of

the two substitutions are disjoint (by assumption), we can define the substitution

µ : comp(f) ∩ E → C as follows:

µ(v) =

{
µ1(v) if v ∈ comp(f1)

µ2(v) else
□

Then I |= fµ and therefore I |= f .

If we recursively divide all pieces into sub-pieces, we get a maximal set F =

{f1, f2, . . . , fn} for each formula f such that F ≡ {f} and for all 1 ≤ i, j ≤ n,

comp(fi) ∩ comp(fj) ∩ E ̸= ∅ implies i = j.
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Second, we replace all blank nodes occurring in rule bodies by fresh

universals. The rule { :x :likes :cake}=>{:cake :is :good}. becomes

{?y :likes :cake}=>{:cake :is :good}. Note that both rules have the same

meaning, namely ”if someone likes cake, then cake is good.”. We generalize that:

Lemma 2 (Eliminating Existentials) Let f = {e1}=>{e2} and g = {e′1}=>{e2} be

N3∃ implications such that e′1 = e1σ for some injective substitution σ : comp(e1) ∩E →
U \ comp(e1) of the existential variables of e1 by universals. Then: f ≡ g

Proof: We first note that comp(f) ∩ E = ∅ and comp(g) ∩ E = ∅ since both formulae

are implications.

(⇒) We assume that M ̸|= g for some model M. That is, there exists a substitution

ν : (comp(e′1) ∪ comp(e2)) ∩ U → C such that M |= e′1ν and M ̸|= e2ν. We show that

M |= e1ν: As ((comp(e1) ∪ comp(e2)) ∩ U) ⊂ ((comp(e′1) ∪ comp(e2)) ∩ U), we know

that comp(e1ν)∩U = ∅. With the substitution µ := ν ◦ σ for the existential variables in

e1ν we get M |= (e1ν)σ and thus M |= (e1ν), but as M ̸|= (e2ν) we can conclude that

M ̸|= f .

(⇐) We assume that M ̸|= f . That is, there exists a substitution ν : (comp(e1) ∪
comp(e2)) ∩ U → C such that M |= e1ν and M ̸|= e2ν. As M |= e1ν, there exists a

substitution µ : comp(e1ν) ∩ E → C such that M |= (e1ν)µ. With that we define a

substitution ν′ : (comp(e1) ∪ comp(e2)) ∩ U → C as follows: ν′ : U → C as follows:

ν′(v) =

{
µ(σ−1(v)) if v ∈ range(σ)

ν(v) else

With that substitution we get M |= e′1ν
′ but M ̸|= e2ν

′ and thus M ̸|= g. □

For a rule f we call the formula f ′ in which all existentials occurring in its body are

replaced by universals following Lemma 2 the normalized version of the rule. We call an

N3∃ formula f normalized, if all rules occurring in it as conjuncts are normalized. This

allows us to introduce the Piece Normal Form:

Theorem 3 (Piece Normal Form) For every well-formed N3∃ formula f , there exists

a set F = {f1, f2, . . . , fk} of N3∃ formulae such that F ≡ {f} and F is in piece normal

form (PNF). That is, all fi ∈ F are normalized formulae and k ∈ N is the maximal

number such that for 1 ≤ i, j ≤ k, comp(fi) ∩ comp(fj) ∩ E ̸= ∅ implies i = j. If fi
(1 ≤ i ≤ k) is a conjunction of atomic formulae, we call fi an atomic piece.

Proof: The claim follows immediately from Lemma 1 and Lemma 2. □

Since the piece normal form F of N3∃ formula f is obtained by only replacing variables

and separating conjuncts of f into the set form, the overall size of F is linear in f .

4 From N3 to Existential Rules

Without loss of generality, we translate sets F of N3∃ formulae in PNF (cf. Theorem 3)

to sets of existential rules T (F ). As a preliminary step, we introduce the language of

existential rules formally. Later on, we explain and define the translation function that

has already been sketched in Sect. 2. The section closes with a correctness argument,

establishing a strong relationship between existential rules and N3∃.
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4.1 Foundations of Existential Rule Reasoning

For existential rules, we also consider a first-order vocabulary, consisting of constants (C)

and variables (V), and additionally so-called (labeled) nulls (N)6. As already mentioned

in Sect. 2, we use the same set of constants as N3 formulae, meaningC = C. Furthermore,

let P be a set of relation names, where each p ∈ P comes with an arity ar(p) ∈ N. C, V,

N, and P are countably infinite and pair-wise disjoint. We use the ternary relation name

tr ∈ P to encode N3 triples in Sect. 2. If p ∈ P and t1, t2, . . . , tar(p) is a list of terms

(i.e., ti ∈ C∪N∪V), p(t1, t2, . . . , tar(p)) is called an atom. We often use t to summarize

a term list like t1, . . . , tn (n ∈ N), and treat it as a set whenever order is irrelevant. An

atom p(t) is ground if t ⊆ C. An instance is a (possibly infinite) set I of variable-free

atoms and a finite set of ground atoms D is called a database.

For a set of atoms A and an instance I, we call a function h from the terms occurring

in A to the terms in I a homomorphism from A to I, denoted by h : A → I, if (1)
h(c) = c for all c ∈ C (occurring in A), and (2) p(t) ∈ A implies p(h(t)) ∈ I. If any
homomorphism from A to I exists, write A → I. Please note that if n is a null occurring

in A, then h(n) may be a constant or null.

For an (existential) rule r : ∀x,y. φ[x,y] → ∃z. ψ[y, z] (cf. (5)), rule bodies (body(r))

and heads (head(r)) will also be considered as sets of atoms for a more compact repre-

sentation of the semantics. Let r be a rule and I an instance. We call a homomorphism

h : body(r) → I a match for r in I. A match h is satisfied for r in I if there is an

extension h⋆ of h (i.e., h ⊆ h⋆) such that h⋆(head(r)) ⊆ I. If all matches of r are satisfied

in I, we say that r is satisfied in I, denoted by I |= r. For a rule set Σ and database D,

we call an instance I a model of Σ and D, denoted by I |= Σ,D, if D ⊆ I and I |= r for

each r ∈ Σ. We say that two rule sets Σ1 and Σ2 are equivalent, denoted Σ1 ⇆ Σ2, iff

for all instances I, I |= Σ1 iff I |= Σ2.

Labeled nulls play the role of fresh constants without further specification, just like

blank nodes in RDF or N3. The chase is a family of algorithms that soundly produces

models of rule sets by continuously applying rules for unsatisfied matches. Rule heads

are then instantiated and added to the instance. Existentially quantified variables are

replaced by (globally) fresh nulls in order to facilitate for arbitrary constants. More

formally, we call a sequence D0D1D2 . . . a chase sequence of Σ and D if (1) D0 = D and

(2) for i > 0, Di is obtained from Di−1 by applying a rule r ∈ Σ for match h in Di−1

(i.e., h : body(r) → Di−1 is an unsatisfied match and Di = Di−1 ∪ {h⋆(head(r))} for an

extension h⋆ of h). The chase of Σ and D is the limit of a chase sequence D0D1D2 . . .,

i.e.,
⋃

i≥0 D0. Although the chase is not guaranteed to terminate, it always produces a

(possibly infinite) model7 (cf. Deutsch et al.).

For an alternative equivalence relation between rule sets, we could have equally con-

sidered equality of ground models (i.e., null-free ones). Let us define ⇆g as follows:

Σ1 ⇆g Σ2 if, and only if, for each ground instance I, I |= Σ1 iff I |= Σ2. The following

6 We choose here different symbols to disambiguate between existential rules and N3, although vocab-
ularies partially overlap.

7 Not just any model, but a universal model, which is a model that has a homomorphism to any other
model of the database and rule set. Up to homomorphisms, universal models are the smallest among
all models.
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lemma, showing that ⇆=⇆g, helps simplifying the proofs concerning the correctness of

our translation function later on.

Lemma 4 ⇆ and ⇆g coincide.

Proof: Of course, ⇆⊆⇆g holds since since the set of all ground models of a rule set is

a subset of all models of a rule set. For the converse direction, let Σ1 and Σ2 be rule sets,

such that Σ1 ⇆g Σ2. Towards a contradiction, assume Σ1 ̸⇆ Σ2. Then there is a model

M of Σ1, such that M ̸|= Σ2, implying that for some rule r ∈ Σ2 there is a match h in M
but for no extension h⋆, we get h⋆(head(r)) ⊆ M. As Σ1 ⇆g Σ2, M cannot be a ground

instance and, thus, contains at least one null. Claim: Then there is a ground instance

Mg, such that Mg |= Σ1 and M2 ̸|= Σ2. But then Mg constitutes a counterexample to

the assumption that Σ1 ⇆g Σ2.

It remains to be shown that the claim actually holds. Our plan is to construct Mg

from M by replacing every null n in M by a fresh constant cn. Unfortunately, there

might be not enough constants since M may already use all countably infinite constant

c ∈ C. Therefore, we take a little detour: the set of used constants might be infinite

in M, but the constants used in the rule sets Σ1 and Σ2 is finite. Therefore, we will

create an instance M′′ from M by replacing all constants c not part of Σ1 or Σ2 by

fresh nulls nc. Unfortunately, once again, M may already use all nulls n ∈ N. So we

have to take another detour from M to M′ as follows: Let γ : N → N be a (necessarily

injective) enumeration of N. Define η : C ∪N → C ∪N by (1) η(c) := c for all c ∈ C

and (2) η(n) := η−1(2 · η(n)). Then apply η to M to obtain M′. Note, for each number

k ∈ N, η−1(2k + 1) is not a null in M′. It holds that M |= Σ iff M′ |= Σ since η is an

isomorphism between M and M′. Recall that isomorphic models preserve all first-order

sentences (see, e.g., Ebbinghaus et al.). Hence, M′ |= Σ1 and M′ ̸|= Σ2.

Now we construct M′′ from M′ by function ω mapping the terms occurring in M′

to C ∪ N, such that (1) ω(c) = c if c is a constant occurring in Σ1 ∪ Σ2, (2) ω(d) is a

fresh null nd if d is a constant not occurring in Σ1 ∪ Σ2, and ω(n) = n if n otherwise. ω

exists because there are countably infinitely many nulls not used by M′. Note that ω is

injective and ω(M′) = M′′ uses only finitely many constants. Once again we show that

M′ |= Σ iff M′′ |= Σ for arbitrary rule sets Σ, implying that M′′ |= Σ1 and M′′ ̸|= Σ2.

Let r ∈ Σ with match h in M′. If h is satisfied in M′, then there is an extension h⋆, such

that h⋆(head(r)) ⊆ M′. By definition of ω and, thus, the construction of M′′, ω ◦ h is a

match for r in M′′ and ω ◦ h⋆ its extension with ω ◦ h⋆(head(r)) ⊆ M′′. The converse

direction uses the the same argumentation, now from M′′ to M′, using the fact that ω

is injective.

From M′′ we can finally construct our ground instance Mg by ν mapping all (finitely

many) constants c in M′′ to themselves and every null n in M′′ to a fresh constant cn. It

holds that M′′ |= Σ iff ν(M′′) = Mg |= Σ (for all rule sets Σ) by a similar argumentation

as given in the step from M′ to M′′ above. Thus, Mg |= Σ1 and Mg ̸|= Σ2, which

completes proof. □

We are going to use the auxiliary equivalence ⇆g in later proofs.
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4.2 The Translation Function from N3 to Existential Rules

The translation function T maps sets F = {f1, . . . , fk} of N3∃ formulae in PNF to sets

of rules Σ. Before we go into the details of the translation for every type of piece, we

consider an auxiliary function T : C ∪ E ∪ U → C ∪ V mapping N3 terms to terms in

our rule language (cf. previous subsection):

T(t) :=


v∀x if t = ?x ∈ U

v∃y if t = :y ∈ E

t if t ∈ C,

where v∀x , v
∃
y ∈ V and t ∈ C (i.e., we assume C ⊆ C). While variables in N3 belong

to either E or U , this separation is lost under function T. For enhancing readability

of subsequent examples, the identity of the variable preserves this information by using

superscripts ∃ and ∀. We provide the translation for every piece fi ∈ F (1 ≤ i ≤ k) and

later collect the full translation of F as the union of its translated pieces.

Translating Atomic Pieces. If fi is an atomic piece, it has the form fi = g1 g2 . . . gl
for some l ≥ 1 and each gj (1 ≤ j ≤ l) is an atomic formula. The translation of

fi is the singleton set T (fi) = {→ ∃z. tr(T(g1)) ∧ tr(T(g2)) ∧ . . . ∧ tr(T(gl))}, where
T(gj) = T(t1j ),T(t2j ),T(t3j ) if gj = t1j t2j t3j and z is the list of translated existential

variables (via T) from existentials occurring in f . For example, the formula in (10)

constitutes a single piece f(10) which translates to a set containing the rule

→ ∃v∃y . tr(:lucy, :knows, v∃y ) ∧ tr(v∃y , :likes, :cake).

Translating Rules. For fi being a rule {e1}=>{e2} we also obtain a single rule. Re-

call that the PNF ensures all variables of e1 to be universals and all universal vari-

ables of e2 to also occur in e1. If e1 = g11 g21 · · · gm1 and e2 = g12 g22 · · · gn2 ,

T (fi) = {∀x.
∧m

j=1 tr(T(g
j
1)) → ∃z.

∧n
j=1 tr(T(g

j
2))} where x and z are the lists of

translated universals and existentials, respectively. Applying the translation to the N3
formula in (4), which is a piece according to our definitions, we obtain again a singleton

set, now containing the rule

∀v∀x . tr(v∀x , :knows, :tom) → ∃v∃y . tr(v∀x , :knows, v∃y ) ∧ tr(v∃y , :name, "Tom"),

which is the same rule as (8) up to a renaming of (bound) variables, called α-conversion

(cf. Ebbinghaus et al.).

Translating Sets. For the set F = {f1, f2, . . . , fk} of N3∃ formulae in PNF, T (F ) is the

union of all translated constituents (i.e., T (F ) =
⋃k

i=1 T (fi)). Please note that T does

not exceed a polynomial overhead of its input.

The correctness argument for T splits into soundness – whenever we translate two

equivalent N3∃ formulae, their translated rules turn out to be equivalent as well – and

completeness – formulae that are not equivalent are translated to rule sets that are not

equivalent. Although the different formalisms have quite different notions of models,

models of a translated rule sets M can be converted into models of the original N3
formula by using a Herbrand argument.

Lemma 5 Let F be a set of N3∃ formulae in PNF and M be a ground instance. Define

the canonical interpretation of M by I(M) = (C, a, p) such that
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• a(t) := t for all t ∈ C and

• p(p) := {(s, o) | tr(s, p, o) ∈ M} for all p ∈ C.

M is a model of T (F ) if, and only if, I(M) is a model of F .

Proof: By induction on the number k of pieces in F = {f1, f2, . . . , fk}:

Base: For k = 1, F = {f} and f is either (a) an atomic piece or (b) a rule. In case

(a), T (F ) = T (f) = {→ ∃z.
∧n

i=1 tr(si, pi, oi)}. Every model of T (F ) satisfies

its single rule, meaning that if M is a model, there is a homomorphism h⋆ from

A = {tr(si, pi, oi) | 1 ≤ i ≤ n} to M. Then I(M) = (C, a, p) with (si, oi) ∈
p(pi) for all i ∈ {1, . . . , n}. In case comp(f) ∩ E = W is nonempty, define µ :

W → C alongside h⋆ (i.e., µ( :y) = h⋆(v∃y ) for each :y ∈ W ). For each atomic

formula gj = sj pj oj of f , we get M |= gjµ
c since tr(h⋆(sj), h

⋆(pj), h
⋆(oj)) ∈ M

implies (h⋆(sj), h
⋆(oj)) ∈ p(h⋆(pj)) and, thus, (a(sjµ

c), a(ojµ
c)) ∈ p(a(pjµ

c)). This

argument holds for every atomic formula gj of f , implying M |= F . The converse

direction uses the same argumentation backwards, constructing h⋆ from µ.

In case (b), we have F = {f} with f = {e1}=>{e2} and T (F ) = {∀x. φ → ∃z. ψ}
where φ and ψ are translated conjunctions from e1 and e2. Let I(M) be a

model of F . To show that M is a model of T (F ), it suffices to prove, for

each match h of the rule, the existence of an extension h⋆ (of h), such that

h⋆(ψ) ⊆ M. Let h be a match for the body of the rule and the body of the

rule is a conjunction of atoms. Then σ with σ(?x) = h(v∀x ) for each universal

variable in e1 is a substitution, such that I(M) |= e1σ
c. In order to prove this

claim, let s p o be a triple in e1. Hence, tr(s, p, o) ∈ φ and, by the choice of h,

tr(h(s), h(p), h(o)) ∈ M. This implies that (h(s), h(o)) ∈ p(h(p)), which also im-

plies (sσc, oσc) ∈ p(oσc). As this argument holds for all triples in e1, the claim

follows. Please note that, as in case (a), this reasoning can be converted to con-

struct a match h from a substitution σ. As I(M) is a model of f , there is a

substitution µ : comp(e2) ∩ E → C, such that I(M) |= e2σ
cµc. Define h⋆ :=

h∪{w 7→ µ(w) | w ∈ comp(e2)∩E}. It holds that h⋆ satisfies match h since for each

atomic formula si pi oi of e2, we get a(µ(σ(si)), µ(σ(oi))) ∈ p(a(µ(σ(pi)))) imply-

ing tr(µ(σ(si)), µ(σ(pi), µ(σ(oi)))) ∈ M and h⋆(T(x)) = µ(σ(x)) (x ∈ {si, pi, oi})
providing a match for tr(T(si),T(pi),T(oi)) (part of the head ψ). As this argument

holds for all atomic formulae of e2, h is a satisfied match via h⋆. As before, the

construction can be inverted, obtaining µ from h⋆ and σ from h, which completes

the proof for this case.

Step: Let F = {f1, f2, . . . , fk, fk+1} be a set of N3∃ formulae in PNF. By induction hy-

pothesis,M is a model of T ({f1, f2, . . . , fk}) iff I(M) is a model of {f1, f2, · · · , fk}.
Also by induction hypothesis, M is a model of T ({fk+1}) iff I(M) is a model of

{fk+1}. Thus, M is a model of T (F ) iff it is a model of T ({f1f2 · · · fk}) and of

T ({fk+1}) iff I(M) is a model of {f1f2 · · · fk} and of {fk+1} iff I(M) is a model

of F .

Our correctness proof also considers completeness since, otherwise, a trivial translation

function would have sufficed: Let T0 be a function mapping all N3∃ formulae to the empty

rule set (i.e., ∅): All equivalent N3∃ formulae are mapped to the same (i.e., equivalent)

rule set ∅, but also pairs of non-equivalent formulae yield the same translation. Having
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the stronger criterion between N3 and existential rules allows us to soundly use the

translation function T in practice.

Theorem 6 For PNFs F and G of N3∃ formulae, F ≡ G iff T (F ) ⇆ T (G).

Proof: We prove soundness and completeness separately.

Soundness: If F ≡ G, then M is a ground model of T (F ) iff I(M) is a model of F (by

Lemma 5) iff I(M) is a model of G (by assumption) iff M is a ground model of

T (G) (again by Lemma 5). Hence, T (F ) ⇆g T (G) which implies T (F ) ⇆ T (G)

(by Lemma 4).

Completeness: If F ̸≡ G, then there is an interpretation M = (D, a, p), such that

(w.l.o.g.) M |= F and M ̸|= G. Claim: By using a Herbrand argument once more,

there is an interpretation Mg = (C, b, q) such that (1) for each set of N3∃ formulae

H in PNF, Mg |= H if, and only if, M |= H and (2) there is an instance Mg such

that I(Mg) = Mg. If the claim holds, we obtain that M |= F iff Mg |= F (by (1))

iff Mg |= T (G) for ground Mg with I(Mg) = Mg (by Lemma 5). Mg ̸|= T (G)

since, otherwise, M |= G (using the previous chain of arguments backwards) which

contradicts our choice of M. Thus, T (F ) ̸⇆g T (G) implying T (F ) ̸⇆ T (G) (by

Lemma 4).

The claim remains to be shown: For M = (D, a, p), define Mg = (C, b, q) by (a) b(c)

is the identity on C and (b) q(p) := {(s, o) | (a(s), a(o)) ∈ p(a(p))} for all p ∈ C.

Instance Mg := {tr(s, p, o) | (s, o) ∈ q(p)} has property (2) (i.e., I(Mg) = Mg).

We show that M |= H iff Mg |= H for arbitrary sets H of N3∃ formulae in PNF

by induction on the number of pieces |H| = k.

Base: There are two cases to consider for k = 1 and H = {f}: f is an atomic piece

g1 · · · gl and f is an N3 rule {e1}=>{e2}. In case f is an atomic piece, then

M |= f iff M |= fµc for some µ : comp(f) ∩ E → C iff for each atomic formula

g = s p o in f , (a(µ(s)), a(µ(o))) ∈ p(a(µ(p))) (all by the semantics of N3∃) iff

(b(µ(s)), b(µ(o))) ∈ q(b(µ(p))) for each atomic formula g of f (by construction

of Mg) iff Mg |= fµc iff Mg |= f (by the semantics of N3∃).

In case f is an N3 rule {e1}=>{e2}, M |= f iff for each substitution σ : U → C

with M |= e1σ
c, there is a substitution µ : comp(e2) ∩ E → C such that

M |= e2σ
cµc. Let σ : U → C and µ : comp(e2) ∩ E → C be substitutions.

M |= e1σ
c iff (a(σ(s)), a(σ(o))) ∈ p(a(σ(p))) for each atomic formula s p o in

e1 (by the semantics of N3∃) iff (b(σ(s)), b(σ(o))) ∈ q(b(σ(q))) for each atomic

formula s p o of e1 iff Mg |= e1σ
c. The same argumentation can be used to

argue for M |= e2σ
tµc iff Mg |= e2σ

cµc. Thus, for each σ : U → C for which

M |= e1σ
c implying a substitution µ : comp(e2)∩E → C such thatM |= e2σ

cµc,

we get that Mg |= e1σ
c and Mg |= e2σ

cµc, and vice versa.

Step: For H = {f1, . . . , fk, fk+1}, the induction hypothesis applies to H ′ =

{f1, . . . , fk} and H ′′ = {fk+1}, meaning that M |= H iff M |= H ′ and M |= H ′′

(by Lemma 1) iffMg |= H ′ andMg |= H ′′ (by induction hypothesis) iffMg |= H

(by Lemma 1). □

Beyond the correctness of T , we have no further guarantees. As N3∃ reasoning does

not necessarily stop, there is no requirement for termination of the chase over translated

rule sets. We expect that the similarity between N3∃ and existential rules allows for the
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adoption of sufficient conditions for finite models, for instance, by means of acyclicity

(see Cuenca Grau et al. for a survey).

5 Reasoning with Lists

So far, we discussed N3∃ as a fragment of N3 which can directly be mapped to existential

rules. In this section, we detail how N3∃ and our translation to existential rules can be

extended towards supporting lists. Lists is a very important concept in N3. We first

explain them in more detail and provide their semantics. Then we explain how lists and

list functions can be covered by existential rules. We finish our section by discussing

different ways to implement list functions in N3.

5.1 N3 Lists

Before introducing them formally, we explain the role of lists in Notation3 Logic by

examples. N3 is based on RDF, but, in contrast to RDF, N3 treats lists as first-class

citizens. To illustrate this, we take a closer look at the following triple containing a list:

:lucy :likes (:cake :chocolate :tea). (11)

Stating that lucy likes cake, chocolate and tea. If we understand the above as an

example of RDF-turtle Beckett and Berners-Lee (2008), the list-notation ( ) is syntactic

sugar for:

:lucy :likes :l1. (12)

:l1 rdf:first :cake; rdf:rest :l2.

:l2 rdf:first :chocolate; rdf:rest l3.

:l3 rdf:first :tea; rdf:rest rdf:nil.

According to RDF semantics the predicates rdf:first and rdf:rest are properties

whose domain is the class of lists, for rdf:rest the range is the class of lists and rdf:nil

is itself a list. Their meaning is not clarified further.

In N3, the list in example 11 itself is understood as a resource and not just as syntactic

sugar for example 12. The predicates rdf:first and rdf:rest have a more specific

meaning, they stand for the relation between a list and its first element, respectively, a

list and its rest list, that is the list, we retrive if we remove the first element. The rule

{ (:a :b :c) rdf:first ?x; rdf:rest ?y}=>{?x :and ?y}. (13)

for example, yields

:a :and (:b :c). (14)

The constant rdf:nil stands for the empty list and can also be written as ( ).

If we define the semantics in a naive way, N3’s view of lists is not fully compatible

with the syntactic-sugar view of RDF. Suppose, we have a new triple stating the food

preferences of Tom (which coincide with Lucy’s preferences):

:tom :likes (:cake :chocolate :tea). (15)
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If we apply the N3 rule

{?x :likes ?z. ?y :likes ?z}=>{?x :sharesPreferencesWith ?y}. (16)

on triple 15 and 11, we retrieve8 that:

:lucy :sharesPreferencesWith :tom. (17)

Now, we replace triple 15 by the first-rest combination it stands for, namely

:ben :likes :k1. (18)

:k1 rdf:first :cake; rdf:rest :k2.

:k2 rdf:first :chocolate; rdf:rest :k3.

:k3 rdf:first :tea; rdf:rest rdf:nil.

If we again apply rule 16, but this time on the list representations 12 and 18, it is not

immedeately evident that we get triple 17 as a result. The lists are represented by the

blank nodes :l1 and :k1, and it is not immediately evident that these refer to the same

list. The original informal N3 specification overcomes the problems caused by the different

representations by providing three axioms (Berners-Lee et al. (2008); Berners-Lee and

Connolly (2011)) which need to hold for N3 lists:

Existence of lists All lists exist. That is, the triple [rdf:first :a; rdf:rest

rdf:nil]. does not carry any new information.

Uniqueness of lists Two lists having the same rdf:first-element and also the same

rdf:rest-element are equal. If we add the notion of equality9 (=):

{?L1 rdf:first ?X; rdf:rest ?R. ?L12 rdf:first ?X; rdf:rest ?R.} =>

{?L1 = ?L2}.
Functionality The predicates rdf:first and rdf:rest are functional properties. If we

again add equality (=):

{?S rdf:first ?O1, ?O2.}=>{?O1 = ?O2}.
{?S rdf:rest ?O1, ?O2.}=>{?O1 = ?O2}.

The first axiom guarantees that there is no new informaion added when translating from

the native list notation (example 11) to the first-rest noation (example 12). The second

and the third are important for the other direction, and, in a modified version, also for

the purposes of our research which is to express N3 lists and list predicates by means of

existential rules. We will come back to that in Section 5.2.

Before introducing the non-basic list predicates, we provide the syntax and semantics of

the extension of N3∃ with basic lists. We start with the syntax and extend the grammar

provided in Figure 1 as follows:

8 Of course, we retrive more, namely, that Tom shares preferences with Lucy and that both share
preferences with themselves.

9 Note that this equality is not that same kind of equality that the N3 predicate log:equalTo provides.
The latter is on syntax and not on semantics level.
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• the set t of term additionally contains the empty list () and the concept (l) of

list terms, with

l ::=

t

l t

• the set n of N3 terms additionally contains the concept (k) of N3 list terms, with

k ::=

n

k n

We furthermore need to extend the application of a substitution introduced in Sec-

tion 3.2 by (t1 . . . tn)σ = (t1σ . . . tnσ) if x = (t1 . . . tn) is a list, and the ob-

ject function a of N3 interpretations I = (D, a, p) as follows: If t = (t1 . . . tn) then

a(t) = (a(t1) . . . a(tn)). If t = () then a(t) = ().

Note, that with our extension the domain D of a model for a graph containing a

list term also needs to contain a list of domain elements. However, the amount of lists

necessarily contained in D is determined by the number of lists which can be produced

using the alphabet. It is countable and does not depend on D itself. If D contains all

lists which can be constructed using the interpretations of the N3 terms, then axiom 1

(existence of lists) is fulfilled.

We finish the definition of the semantics of N3∃ with basic lists as follows:

Given an N3 alphabet which contains the list constants rdf:first and rdf:rest, and

an N3 Interpretation I = (D, a, p). We say that I is a model according to the simple

list semantics of a formula ϕ, written as I |=sl ϕ iff I |= ϕ and for triples containing

rdf:first or rdf:rest in predicate position:

• I |=sl s rdf:first o. iff a(s) = (s1 . . . sn) and a(o) = s1
• I |=sl s rdf:rest o. iff a(s) = (s1 s2 . . . sn) and a(o) = (s2 . . . sn)

Note that with this definition, we also fulfill the two missing axioms stated above. The

syntactic list structure maps to a list structure in the domain of discourse. This domain

list can only have one first element and only one rest list, and it is fully determined by

these two parts.

In addition to rdf:first and rdf:rest, N3 contains a few more special predi-

cates which make it easier to handle lists. In our list-extension of N3∃ we include10

list:last, list:in, list:member, list:append, and list:remove: list:last is used

to relate a list to its last argument11 ( (:a :b :c) list:last :c.), list:member de-

fines the relation between a list and its member ( (:a :b :c) list:member :a, :b,

:c.), list:in is the inverse of list:member (:b list:in (:a :b :c).), list:append

expresses that the list in object position is the combination of the two lists in subject

position (((:a :b) (:c :d)) list:append (:a :b :c :d).), and by list:remove

we express that the object list is the list we get by removing all occurrences of

10 The list predicates are specified at https://w3c.github.io/N3/reports/20230703/builtins.html#
list. We exclude the rather complex predicates list:iterate and list:memberAt.

11 We give an example of one or more triples (in brackets) which need to be true after each explanation.

https://w3c.github.io/N3/reports/20230703/builtins.html#list
https://w3c.github.io/N3/reports/20230703/builtins.html#list
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the second argument of the subject list of the first argument of the subject list

(((:a :b :a :c) :a) list:remove (:b :c).).

Note, that N3 built-ins are not defined as functions but as relations. As a consequence of

that, they can be used in different ways. We illustrate this on the predicate list:append.

If we write the following rule

{((:a :b) (:c :d)) list:append ?x}=>{:result :is ?x}. (19)

a reasoner will retrieve

:result :is (:a :b :c :d). (20)

But we can also write a rule like

{(?x ?y) list:append (:a :b :c)}=>{?x :and ?y}. (21)

which yields

() :and (:a :b :c).

(:a) :and (:b :c).

(:a :b) :and ( :c).

(:a :b :c) :and ().

Additionally, it is possible that only one of the two varaibles in the subject list is instan-

tiated, with

{((:a :b) ?y) list:append (:a :b :c)}=>{:we :get ?y}. (22)

for example, we get

:we :get (:c). (23)

On a practical level, however, this understanding of built-ins as relations comes with

some limitations. If the presence of a built-in predicate causes a rule to produce infinitely

many results, like it is the case with

{?x list:last :c}=>{:we :get ?x}. (24)

where all possible lists having :c as last element need to be produced, reasoning engines

normally ignore the rule.12 We will define the full meaning of built-in predicates in our

semantics, but our translation to existential rules provided in the next section will only

focuss on built-in predicates producing a limited number of solutions.

We now come to the semantics of list predicates. Given an N3 alphabet which con-

tains the list constants rdf:first, rdf:rest, list:in, list:member, list:append,

list:last and list:remove, and an N3 Interpretation I = (D, a, p). We say that I is

a model according to list semantics of a formula ϕ, written as I |=l ϕ iff I |=sl ϕ and the

following conditions hold:

• I |=l s list:in o. iff a(o) = (o1 . . . on) and a(s) = oi for some i with 1 ≤ i ≤ n,

• I |=l s list:member o. if a(s) = (s1 . . . sn) and a(o) = si for some i with 1 ≤ i ≤ n,

• I |=l s list:append o. iff a(s) = ((a1 . . . an)(b1 . . . bm)), 0 ≤ n, 0 ≤ m, and

a(o) = (a1 . . . an b1 . . . bm),

• I |=l s list:last o iff a(s) = (s1 . . . sn) and a(o) = sn,

12 To be more precise, the N3 specification comes with so-called argument-modes specifying which ar-
guments need to be instatntiated for the predicate to be called, see also Woensel and Hochstenbach
(2023).
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• I |=l s list:remove o iff a(s) = ((a1 . . . an) b) and a(o) = (ai)ai ̸=b

In the next section we discuss how lists and list predicates can be modeled with existential

rules.

5.2 Implementing N3 Lists in Exitential Rules

We model lists alongside the RDF representation of the previous subsection, sticking to

the criteria imposed by N3, predominantly uniqueness of lists and functionality. For read-

ability purposes we subsequently diverge from using our triple tr predicate for lists. In-

stead of tr(x, rdf:first, y) we use an auxiliary binary predicate first and write first(x, y).

Similarly we use rest(x, y) to denote tr(x, rdf:rest, y). For technical reasons, we use a

unary predicate list to identify all those objects that are lists. Before modeling lists and

their functions, let us formulate the criteria based on the three predicates: A model M
of rule set Σ and database D satisfies

Uniqueness of lists if for all lists l1 and l2 (i.e., list(l1), list(l2) ∈ M),

first(l1, x),first(l2, x) ∈ M and rest(l1, r), rest(l2, r) ∈ M implies l1 = l2;

Functionality if for all lists l (i.e., list(l) ∈ M), first(l, x),first(l, y) ∈ M implies x = y,

and rest(l, x), rest(l, y) ∈ M implies x = y.

Towards existence of lists, we ensure the necessary existence of the empty list:

→ list(rdf:nil) (25)

Given that many rule reasoners operate via materialization of derived facts, we cannot

fully implement the criterion of existence of lists since materializing all lists certainly

entails an infinite process. Instead, we create lists on-demand. The binary getList predi-

cate expects a list element x (to be added) and a list l, and creates a new list with first

element x and rest list l:

getList(x, l) ∧ list(l) → ∃l′. list(l′) ∧ first(l′, x) ∧ rest(l′, l) (26)

With this interface in place, we replicate example (11) as follows:

→ getList(:tea, rdf:nil)

first(l, :tea) ∧ rest(l, rdf:nil) → getList(:chocolate, l)

first(l, :chocolate) ∧ rest(l, l′)∧
first(l′, :tea) ∧ rest(l′, rdf:nil) → getList(:tea, l)

first(l, :cake) ∧ rest(l, l′)∧
first(l′, :chocolate) ∧ rest(l′, l′′)∧
first(l′′, :tea) ∧ rest(l′′, rdf:nil) → tr(:lucy, :likes, l)

This rather cumbersome encoding achieves our goal to implement the uniquness of lists

criterion. Towards a much simpler encoding, suppose we only take the following rule to

obtain the same list as above:

→ ∃l1, l2, l3. list(l1) ∧ list(l2) ∧ list(l3)∧
first(l1, :cake) ∧ rest(l1, l2)∧
first(l2, :chocolate) ∧ rest(l2, l3)∧
first(l3, :tea) ∧ rest(l3, rdf:nil)

(27)
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The rule itself can now be combined with other rules as well as the previous one. However,

uniqueness can be violated when the restricted chase is used for reasoning. Recall from

Sect. 4.1 that the restricted chase creates new facts (by instantiating rule heads) only if

the rule matches are not yet satisfied. Suppose we create an alternative list that is the

same as before but replaces :cake for :cookies:

→ ∃l1, l2, l3. list(l1) ∧ list(l2) ∧ list(l3)∧
first(l1, :cookies) ∧ rest(l1, l2)∧
first(l2, :chocolate) ∧ rest(l2, l3)∧
first(l3, :tea) ∧ rest(l3, rdf:nil)

(28)

While the list created by rule (28) is surely distinct from the one created through rule

application of (27), they also obtain different sublists. After a restricted chase over rule

set {(27), (28)} and the empty database, we get two distinct lists l and l′ such that

first(l, :tea), first(l′, :tea), rest(l, rdf:nil), rest(l′, rdf:nil), contradicting the unique-

ness criterion. The reason for this is that the application condition of the restricted chase

checks whether the head of the rule is already satisfied. If not, the full head is instantiated

with (globally) fresh nulls in place of the existentially quantified variables. Our encoding

via rule (26) overcomes this issue by step-wise introducing new list elements. If a sublist

already exists, rule creation is not triggered unnecessarily.

Theorem 7 Let D be a database, Σ a rule set, and I the restricted chase of Σ and D.

If the only rules in Σ using predicates list, first, or rest in their heads are those of (25)

and (26), then I satisfies (a) uniqueness of lists and (b) functionality.

Proof: Functionality follows from the fact that the only rule introducing first- and rest-

atoms is (26) and, thereby, determines uniquely first and rest elements for a list term.

Thus, predicates first and rest are functional.

Regarding uniqueness, we observe that, once more, only rule (26) introduces lists to-

gether with their functional atoms with first and rest predicate. Hence, if there were two

lists l1 and l2 with the same first and rest elements, then the respective chase sequence

D0D1D2 . . . contains a member Di in which (without loss of generality) l1 is contained.

Furthermore, there is a later instance Dj (j > i) in which l2 is not yet contained but is

about to be added to Dj+1. Now, rule (26) is already satisfied for the respective first/rest

elements. Thus, l2 will never be instantiated by the restricted chase and can, thus, not

be part of the chase. □

Before we get into the intricates of appending two or more lists, let us briefly show

the rules for implementing list:last and list:in (and list:member as the inverse of

list:in), represented by binary predicate symbols last and isIn.

first(l, x) ∧ rest(l, rdf:nil) → last(x, l) (29)

rest(l, l′) ∧ last(y, l′) → last(y, l) (30)

first(l, x) → isIn(l, x) (31)

rest(l, l′) ∧ isIn(l′, y) → isIn(l, y) (32)

Note, these rules are sufficient for creating all necessary facts to obtain the required re-

sults. Regarding list concatenation via list:append, we introduce the ternary predicate

append with the appended list in the first position and the two constituent lists in second
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and last. First, every list l prepended by the empty list yields itself:

list(l) → append(l, rdf:nil, l) (33)

Second, if we append lists l1 and l2 to get l3 (i.e., append(l3, l1, l2)), and x is the first

element of l2, then l3 can also be obtained by appending x to l1, and the result to the

rest of l2. Therefore, we need an auxiliary set of rules that appends a single element x to

a list l:

append(l3, l1, l2) ∧ first(l2, x) → getAppendS(l1, x) (34)

getAppendS(l, x) ∧ rest(l, l′) → getAppendS(l′, x) (35)

Rule (34) requests a new list that starts with the same elements as l1 and appends the

additional element x. Rule (35) recursively pushes the request through the list. Once,

the empty list (rdf:nil) is reached, appending the element x is the same as prepending

it to rdf:nil:

getAppendS(rdf:nil, x) → getList(x, rdf:nil)

getAppendS(rdf:nil, x) ∧ list(l)∧
first(l, x) ∧ rest(l, rdf:nil) → appendS(l, rdf:nil, x)

(36)

These rules create a fresh list with first element x and rest rdf:nil if necessary. Predicate

appendS stands for append singleton and, therefore, appendS(l, l′, x) tells that list l is the

re {TODO: implement the append as beforesult of appending the singletion x to list

l′.} The recursive step is implemented as follows:

getAppendS(l, x) ∧ first(l, y) ∧ rest(l, l′) ∧ appendS(l′′, l′, x) → getList(y, l′′)

getAppendS(l, x) ∧ first(l, y) ∧ rest(l, l′)∧
appendS(l′′, l′, x) ∧ list(lν) ∧ first(lν , y) ∧ rest(lν , l

′′) → appendS(lν , l, x)
(37)

So if a list l shall be appended by singleton x and we already know that for the rest of

l (i.e., l′) there is a version with appended x (i.e., l′′), then l appended by x is the new

list formed by the first element of l (i.e., y) and l′′ as rest.

Last, appending two rules can also be requested via rules. Once more, we use a predicate

for this request, namely getAppend . This predicate is an interface for users (i.e., other

rules) to create lists beyond predicate getList . Such requests are served by the following

rules:

getAppend(rdf:nil, l2) → append(l2, rdf:nil, l2) (38)

getAppend(l1, l2) ∧ first(l1, x) ∧ rest(l1, l
′
1) → getAppend(l′1, l2) (39)

getAppend(l1, l2) ∧ first(l1, x) ∧ rest(l1, l
′
1) ∧ (40)

∧append(l3, l′1, l2) → getList(x, l3) (41)

getAppend(l1, l2) ∧ first(l1, x) ∧ rest(l1, l
′
1) ∧ (42)

append(l3, l
′
1, l2) ∧ first(l′3, x) ∧ rest(l′3, l3) → append(l′3, l1, l2) (43)

The remove functionality can be implemented in a similar fashion. Note that none of

the additionally instantiated rules for list built-ins use predicates list , first , or rest in their

heads. Thus, Theorem 7 still holds in rule sets using built-in functions. Throughout the

rest of this subsection we aim at showing how the framework implements the examples

given throughout Sect. 5.1 as well as an example of list usage inside N3 rules.
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Appending Lists. First, recall the following N3 rule (cf. (19)):

{((:a :b) (:c :d)) list:append ?x}=>{:result :is ?x}.
For the implementation of this rule, we need to make sure the constant lists (the operands

of list:append) exist:

→ getList(:b, rdf:nil)

list(l) ∧ first(l, :b) ∧ rest(l, rdf:nil) → getList(:a, l)

→ getList(:d, rdf:nil)

list(l) ∧ first(l, :d) ∧ rest(l, rdf:nil) → getList(:c, l)

After these rules have been used, the lists in example (19) are guaranteed to exist. Next,

we can request to append the two lists matched within the rule:

list(l1) ∧ first(l1, :a) ∧ rest(l1, l
′
1)∧

first(l′1, :b) ∧ rest(l′1, rdf:nil)∧
list(l2) ∧ first(l2, :c) ∧ rest(l2, l

′
2)∧

first(l′2, :d) ∧ rest(l′2, rdf:nil) → getAppend(l1, l2)

After this rule we are guaranteed to have all lists in place for implementing our rule.

list(l1) ∧ first(l1, :a) ∧ rest(l1, l
′
1)∧

first(l′1, :b) ∧ rest(l′1, rdf:nil)∧
list(l2) ∧ first(l2, :c) ∧ rest(l2, l

′
2)∧

first(l′2, :d) ∧ rest(l′2, rdf:nil)∧
append(x, l1, l2) → tr(:result, :is, x)

Second, we reconsider rule (21):

{(?x ?y) list:append (:a :b :c)}=>{?x :and ?y}.
In this example we need to ensure the resulting list exists. Our rule framework (especially

rules (33)–(37)) takes care of disecting the list into its fragment. Thus, the example rule

can be implemented, once the list (:a :b :c) has been created as before, by

list(l) ∧ first(l, :a) ∧ rest(l, l′)∧
first(l′, :b) ∧ rest(l′, l′′)∧

first(l′′, :c) ∧ rest(l′′, rdf:nil)∧
append(l, x, y) → tr(x, :and, y)

List Creation in Rules. Last, we consider an N3 rule that identifies two lists in its body

and creates a new list based on some elements identified within the list. The following rule

identifies two lists, one with three elements (?x, ?y, and ?z) and one with two elements

(?a and ?b), and then cwhole examplereates a new list with first element ?y and a rest

list with the singleton element ?b:

{:s :p (?x ?y ?z). :k :l (?a ?b)}=>{:h :i (?y ?b)}. (44)
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This rule needs splitting into creating the list for the result and then creating the output

triple:

list(l1) ∧ first(l1, x) ∧ rest(l1, xl) ∧
first(xl, y) ∧ rest(xl, yl) ∧

first(yl, z) ∧ rest(yl, rdf:nil) ∧
list(l2) ∧ first(l2, a) ∧ rest(l2, al) ∧

first(al, b) ∧ rest(al, rdf:nil) ∧
tr(:s, :p, l1) ∧ tr(:k, :l, l2) → getList(b, rdf:nil)

list(l1) ∧ first(l1, x) ∧ rest(l1, xl) ∧
first(xl, y) ∧ rest(xl, yl) ∧

first(yl, z) ∧ rest(yl, rdf:nil) ∧
list(l2) ∧ first(l2, a) ∧ rest(l2, al) ∧

first(al, b) ∧ rest(al, rdf:nil) ∧
tr(:s, :p, l1) ∧ tr(:k, :l, l2) ∧

list(l) ∧ first(l, b) ∧ rest(l, rdf:nil) → getList(y, l)

list(l1) ∧ first(l1, x) ∧ rest(l1, xl) ∧
first(xl, y) ∧ rest(xl, yl) ∧

first(yl, z) ∧ rest(yl, rdf:nil) ∧
list(l2) ∧ first(l2, a) ∧ rest(l2, al) ∧

first(al, b) ∧ rest(al, rdf:nil) ∧
tr(:s, :p, l1) ∧ tr(:k, :l, l2) ∧

list(l′) ∧ first(l′, b) ∧ rest(l′, rdf:nil) ∧
list(l) ∧ first(l, y) ∧ rest(l, l′) → tr(:h, :i, l)

DA: Ich würde hier noch den Hinweis geben, dass soetwas komplizierter werden kann,

wenn Listen im Body voneinander abhängen, z.B. remove und dann append auf derselben

Liste, oder eben zweimal append, wie im body

5.3 N3 list predicates as syntactic sugar

As detailed in the previous section, N3 list predicates can be expressed by means of ex-

istential rules if reasoning produces the restricted chase. This is particularly interesting

in the context of Notation3 Logic: it is well known that the list predicates list:in,

list:member, list:append, list:last and list:remove introduced in subsection 5.1

are only syntactic sugar, and can be expressed using rules in combination with the pred-

icates rdf:first and rdf:rest. But typically these rules are only written for reasoners

supporting backward-chaining, that is, with algorithms which perform reasoning starting

from the goal and following rules from head to body till some evidence is found.13

13 This kind of reasoning is very similar to Prolog’s SLD resolution (e.g., Nilsson and Maluszynski (1990)).
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To better illustrate this, we provide the rules for list:append as an example:14

{(() ?x) list:append ?x}<={ }. (45)

{(?x ?y) list:append ?z}<={?x rdf:first ?a. ?x rdf:rest ?r. (46)

?z rdf:first ?a. ?z rdf:rest ?q.

(?r ?y) list:append ?q } .

If these rules are used in backward-chaining, they get triggered by each execution of a

rule containing a triple with the predicate list:append. If we, for example, would like

to get all instances of the triple :result :is ?x. which can be derived by rule (19), the

triple in the body of the rule triggers rule (46), to test whether there is evidence for the

triple ((:a :b) (:c :d)) list:append ?x. The rule is again followed in a backwards

direction yielding:

(:a :b) rdf:first :a; rdf:rest (:b). (47)

?x rdf:first :a; rdf:rest ?q.

((:b) (:c :d)) list:append ?q. .

The triples in the first line of this example got instantiated according to the semantics of

rdf:first and rdf:rest. This istantiation also caused that the triples in the following

two lines to partly be instantiated. There is not enough information to instantiate the

triples from the second line, a reasoner would thus continue with the last triple which

again has list:append in predicate position. Rule (46) gets called again. This time we

retrive:

(:b) rdf:first :b; rdf:rest (). (48)

?q rdf:first :b; rdf:rest ?q2.

(() (:c :d)) list:append ?q2. .

Again following the rules backwards, we can apply rule (45) to get a value for ?q2:

(() (:c :d)) list:append (:c :d).

With this information, we get a binding for ?q in equation (48):

(:b) rdf:first :b; rdf:rest ().

(:b :c :d) rdf:first :b; rdf:rest (:c :d).

(() (:c :d)) list:append (:c :d). .

This, again, provides a new binding ?x in equation (47):

(:a :b) rdf:first :a; rdf:rest (:b).

(:a :b :c :d) rdf:first :a; rdf:rest (:b :c :d ).

((:b) (:c :d)) list:append (:b :c :d). .

This produces :we :get (:a :b :c :d). as a solution. The backward-chaining process

produces triples on-demand: only if a rule premise depends on the information, a back-

ward rule is called to retrieve it, and this allows us to have infinitely large models which

we do not materialize during reasoning.

14 N3 allows rules to be written in a backwards, that is instead of A=>B. we write B<=A. The backward
notation is usally used to indicate that this rule is expected to be reasoned with via backward-chaining.
We use this notation here, the model-theoretic semantics keeps being the same as before.
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In the N3 community, this and other examples are normally used to argue that N3
reasoners should support backwards-reasoning as a way to only produce triples when

these are needed to find instances of a goal. Following the findingss of the previous

subsection, it is not true that we necessarily need backward rules to support triple pro-

duction on-demand. Instaed of writing rule (45) and (46), we can also add the triple

(:a :b) :getAppend (:c :d). to our initial rule (19). With the following rules, we

retrieve the same result as above:

{() :getAppend ?y}}=>{(() ?y) list:append ?y}.

{?x :getAppend ?y; rdf:rest ?b}=>{?b :getAppend ?y}.

{?x :getAppend ?y; rdf:first ?a; rdf:rest ?b.

(?b ?y) list:append ?z. ?z2 rdf:first ?a ; rdf:rest ?z }

=>{(?x ?y) list:append ?z2 }.}

These rules follow the structure of the rules in the previous section with the exception

that we do not need list constructors in N3. If we apply our rules to the fact above, we su-

cessively construct the triples (() (:c :d)) list:append (:c :d)., ((:b) (:c :d))

list:append (:b :c :d). and ((:a :b) (:c :d)) list:append (:a :b :c :d)..

These can then directly be used in rules. In more complicated cases, where the argu-

ments of the predicate list:append do not appear partly instantiated in rule bodies,

the relevant instances of the fact ?x :getAppend ?y. need to be constructed via rules

just as it is the case for existential rules. As N3 follows the axioms introduced in sec-

tion 5.1, the first-rest interpretation of RDF lists is equilvalent to N3’s representation

of lists as first-class citizens. As a consequence of that, the rules actually work for all

examples introduced above. Similarly, the other list predicates can be written by means

of rdf:first and rdf:rest, and handled via backward-chaining or alternatively with

some version of the chase.

We make the observation, that the backward rules handling list:append can be mim-

icked by splitting them in several forward rules acting on a getter triple, that is, a triple

causing the production of the required instance of the predicate. We additionally need

rules producing the required instances of that getter triple, here we need to be careful

with dependencies between triples. But the mechanism introduced in the previuos sub-

section provides us with a possibility to do reasoning on demand in a purely forward

manner.

6 Evaluation

The considerations provided above allow us to use existential rule reasoners to perform

N3∃ reasoning. We would like to find out whether our finding is of practical relevance,

that is whether we can identify datasets on which existential rule reasoners, running on

the rule translations, outperform classical N3 reasoners provided with the original data.

In order to do this we have implemented T as a python script that takes an arbitrary

N3∃ formula f , constructs its set representation F in PNF, and produces the set of

rules T (F ). This script and some additional scripts to translate existential rules (with at

most binary predicates) to N3∃ formulae are available on GitHub. Our implementation

allows us to compare N3 reasoners with existential rule reasoners, performance-wise.

As existential rule reasoners we chose VLog (Carral et al. (2019)), a state-of-the-art

https://github.com/smennicke/n32rules
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Fig. 2. Structure of the Deep Taxonomy benchmark.

reasoning engine designed for working with large piles of input data, and Nemo (Ivliev

et al. (2023)), a recently released rust-based reasoning engine. As N3 reasoners we chose

cwm (Berners-Lee (2009)) and EYE (Verborgh and De Roo (2015)) which – due to their

good coverage of N3 features – are most commonly used. All experiments have been

performed on a laptop with 11th Gen Intel Core i7-1165G7 CPU, 32GB of RAM, and

1TB disk capacity, running a Ubuntu 22.04 LTS.

6.1 Datasets

We performed our experiments on two datasets: Lubm from the Chasebench Benedikt

et al. (2017) provides a fixed set of 136 rules and varies in the number of facts these rules

are applied; the Deep Taxonomy (DT) benchmark developed for the WellnessRules

project Boley et al. (2009) consists of one single fact and a varying number of mutually

dependent rules.

The Chasebench is a benchmarking suite for existential rule reasoning. Among the

different scenaria in Chasebench we picked Lubm for its direct compatibility with N3:
all predicates in Lubm have at most arity 2. Furthermore, Lubm allows for a glimpse

on scalability since Lubm comes in different database sizes. We have worked with

Lubm 001, 010, and 100, roughly referring to dataset sizes of a hundred thousand,

one million and ten million facts. We translated Lubm data and rules into a canon-

ical N3 format. Predicate names and constants within the dataset become IRIs us-

ing the example prefix. An atom like src advisor(Student441,Professor8) becomes the

triple :Student441 :src advisor :Professor8.. For atoms using unary predicates,

like TeachingAssistent(Student498), we treat :TeachingAssistent as a class and relate

:Student498 via rdf:type to the class. For any atom A, we denote its canonical trans-

lation into triple format by t(A). Note this canonical translation only applies to atoms

of unary and binary predicates. For the existential rule

∀x. B1 ∧ . . . ∧Bm → ∃z. H1 ∧ . . . ∧Hn

we obtain the canonical translation by applying t to all atoms, respecting universally and

existentially quantified variables (i.e., universally quantified variables are translated to

universal N3 variables and existentially quantified variables become blank nodes):

{t(B1). · · · t(Bm).}=>{t(H1). · · · t(Hn).}.
All N3 reasoners have reasoned over the canonical translation of data and rules which was

necessary because of the lack of an N3 version of Lubm. Since we are evaluating VLog’s

and Nemo’s performance on our translation T , we converted the translated Lubm by T
back to existential rules before reasoning. Thereby, former unary and binary atoms were

turned into triples and then uniformly translated to tr-atoms via T .
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Table 1. Experimental Results

Dataset # facts # rules cwm EYE-fw EYE-bw VLog Nemo

DT 1000 1 3001 180 s 0.1 s 0.001 s 1.6 s 1.7 s
DT 100000 1 30,001 — 0.3 s 0.003 s — —
Lubm 001 100,543 136 117.4 s 3.4 s 0.2 s 2.4 s
Lubm 010 1,272,575 136 — 44.8 s 4.3 s 31.2 s
Lubm 100 13,405,381 136 — — 47.3 s 362 s

The Deep Taxonomy benchmark simulates deeply nested RDFS-subclass reasoning15.

It contains one individual which is member of a class. This class is subclass of three

other classes of which one again is subclass of three more classes and so on. Figure 2

illustrates this idea. The benchmark provides different depths for the subclass chain and

we tested with the depths of 1,000 and 100,000. The reasoning tests for the membership

of the individual in the last class of the chain. For our tests, the subclass declarations

were translated to rules, the triple :N0 rdfs:subClassOf :N1. became

{ ?x a :N0.}=>{ ?x a :N1.}.
This translation also illustrates why this rather simple reasoning case is interesting: we

have a use case in which we depend on long chains of rules executed after each other.

The reasoner EYE allows the user to decide per rule whether it is applied using forward-

or backward-reasoning, at least if the head of the rule does not contain blank nodes. For

this dataset, we evaluated full backward- and full forward-reasoning, separately.

6.2 Results

Table 1 presents the running times of the four reasoners and additionally gives statistics

about the sizes of the given knowledge base (# facts) and the rule set (# rules). For DT

we display two reasoning times for EYE, one produced by only forward reasoning (EYE-

fw), one for only backward-reasoning (EYE-bw). Note, that for the latter, the reasoner

does not produce the full deductive closure of the dataset, but answers a query instead.

As Lubm contains rules with blank nodes in their haeds, full backward reasoning was not

possible in that case, the table is left blank. EYE performs much better than VLog and

Nemo for the experiments with DT. Its reasoning time is off by one order of magnitude.

Conversely, VLog and Nemo could reason over all the Lubm datasets while EYE has

thrown an exception after having read the input facts. The reasoning times of VLog are

additionally significantly lower than the times for EYE. While Nemo shows a similar

runtime on DT as VLog, it is slower on Lubm. However, we may be quite optimistic

regarding its progress in runtime behavior, as Nemo already shows better running times

on the original Lubm datasets. The reasoner cwm is consistently slower than the other

three and from Lubm 010 on. All reasoners tried to find the query answers/deductive

closures for at least ten minutes (i.e., — in Table 1 indicates a time-out).

15 N3 available at: http://eulersharp.sourceforge.net/2009/12dtb/.

http://eulersharp.sourceforge.net/2009/12dtb/
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6.3 Discussion

In all our tests we observe a very poor performance of cwm which is not surprising, given

that this reasoner has not been updated for some time. The results for EYE, VLog and

Nemo are more interesting as they illustrate the different strengths of the reasoners.

For very high numbers of rules compared to the amount of data, EYE performs much

better than VLog and Nemo. The good results of 0.1 and 0.3 seconds can even be im-

proved by using backward reasoning. This makes EYE very well-suited for use cases

where we need to apply complex rules on datasets of low or medium size. This could be

interesting in decentralized set-ups such as policy-based access control for the Solidpro-

ject.16 On the other hand we see that VLog and Nemo perform best when provided with

large datasets and lower numbers of rules. This could be useful use cases involving bigger

datasets in the Web like Wikidata or DBpedia17.

From the perspective of this paper, these two findings together show the relevance

of our work: we observed big differences between the tools’ reasoning times and these

differences depended on the use cases. In other words, there are use cases which could

benefit from our translation and we thus do not only make the first steps towards having

more N3 reasoners available but also broaden the scope of possible N3 applications.

7 Related work

When originally proposed as a W3C member submission (Berners-Lee and Connolly

(2011)), the formal semantics of N3 was only introduced informally. As a consequence,

different systems, using N3, interpreted concepts like nested formulae differently (Arndt

et al. (2019)). Since then, the relation of N3 to other Web standards has been studied from

a use-case perspective (Arndt, Dörthe (2019)) and a W3C Community group has been

formed (Woensel et al. (2023)), which recently published the semantics of N3 without

functions (Arndt and Champin (2023)). Even with these definitions, the semantic relation

of the logic to other standards, especially outside the Semantics Web, has not been studied

thoroughly.

For N3’s subset RDF, de Bruijn and Heymans (2007) provide a translation to first-

order logic and F-Logic using similar embeddings (e.g., a tenary predicate to represent

triples) to the ones in this paper, but do not cover rules. Boley Boley (2016) supports N3
in his RuleML Knowledge-Interoperation Hub providing a translation of N3 to PSOA

RuleML. This can be translated to other logics. But the focus is more on syntax than on

semantics.

In Description Logics (DL), rewritings in rule-based languages have their own tradition

(see, e.g., Carral and Krötzsch (2020) for a good overview of existing rewritings and their

complexity, as well as more references). The goal there is to (1) make state-of-the-art

rule reasoners available for DLs and, thereby, (2) use a fragment of a rule language that

reflects on the data complexity of the given DL fragment. Also practical tools have been

designed to capture certain profiles of the Web Ontology Language (OWL), like the Orel

system Krötzsch et al. (2010) and, more recently, DaRLing Fiorentino et al. (2020). To

16 https://solidproject.org/.
17 https://www.wikidata.org/ and https://www.dbpedia.org/

https://solidproject.org/
https://www.wikidata.org/
https://www.dbpedia.org/
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the best of our knowledge, a rewriting for N3 as presented in this paper did not exist

before. Also, existential rule reasoning engines have not been compared to the existing

N3 reasoners.

8 Conclusion

In this paper we studied the close relationship between N3 rules supporting blank node

production and existential rules. N3 without special features like built-in functions, nest-

ing of rules, or quotation can be directly mapped to existential rules with tenary predi-

cates. In order to show that, we defined a mapping between N3∃, N3 without the afore-

mentioned features, and existential rules. We argued that this mapping and its inverse

preserve the equivalence and non-equivalence between datasets. This result allows us to

trust the reasoning results when applying the mapping in practice, that is, when (1)

translating N3∃ to existential rules, (2) reasoning within that framework, and (3) using

the inverse mapping to transfer the result back into N3.
We applied that strategy and compared the reasoning times of the N3 reasoners cwm

and EYE with the existential rule reasoners VLog and Nemo. The goal of that comparison

was to find out whether there are use cases for which N3 reasoning can benefit from the

findings on existential rules. We tested the reasoners on two datasets: DT consisting of

one single fact and a varying number of mutually dependent rules and Lubm consisting of

a fixed number of rules and a varying number of facts. EYE performs better on DT while

VLog and Nemo showed their strength on Lubm. We see that as an indication that for use

cases of similar nature, that is, reasoning on large numbers of facts, our approach could

be used to improve reasoning times. More generally, we see that reasoners differ in their

strengths and that by providing the revertible translation between N3∃ and existential

rules we increase the number of reasoners (partly) supporting N3 and the range of use

cases the logic can support in practice. We see our work as an important step towards

fully establishing rule-based reasoning in the Semantic Web.

Of course, N3 also contains constructs and built-in predicates which are not supported

(yet) by our translation. In order to test how extensible our framework is, we provided

strategies to also cover lists and their built-in predicates in the translation. Lists were

constructed using nulls which made reasoning with them dependent on the chase applied.

We provided rules to mimic the list-append function of N3 under the standard chase,

which is also implemented in some N3 reasoners. The append function came with rules

calling it on demand which is very interesting in many situations and, maybe even more

important, which was believed by the N3 community to only be possible employing

backward reasoning. In that sense we also contributed to the ongoing discussion in that

community whether the intended reasoning direction should be part of the semantics,

which we would clearly argue against.

As many N3 use cases rely on more powerful N3 predicates and logical features such

as support for graph terms and nested rules, future work should include the extension of

our translation towards full coverage of N3. Another direction of future work could be

to investigate the differences and similarities we found in our evaluation in more detail:

while showing differences in their performance, the reasoners produced the exact same

result sets (modulo isomorphism) when acting on rules introducing blank nodes. That

is, the different reasoning times do not stem from the handling of existentially quantified
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rule heads but from other optimization techniques. Fully understanding these differences

will help the N3 and the existential rule community to further improve their tools. In that

context, it would also be interesting to learn if EYE’s capability to combine forward and

backward reasoning could improve the reasoning times for data sets including existentially

quantified rule heads.

We thus hope that our research on existential N3 will spawn further investigations

of powerful data-centric features in data-intensive rule reasoning as well as significant

progress in tool support towards these features. Ultimately, we envision a Web of data

and rule exchange, fully supported by the best tools available as converging efforts of the

N3 community, the existential rule reasoning community, and possibly many others.
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P. and Calautti, M., editors, Proc. 22nd Int. Conf. on Database Theory (ICDT’19) 2019,
volume 127 of LIPIcs, pp. 3:1–3:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.

Nilsson, U. and Maluszynski, J. 1990. Logic, Programming and PROLOG. John Wiley &
Sons, Inc., USA.

Verborgh, R., Arndt, D., Van Hoecke, S., De Roo, J., Mels, G., Steiner, T., and
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