SAT Solving – Extensions

Steffen Hölldobler
International Center for Computational Logic
Technische Universität Dresden
Germany

- Heuristics
- Polynomial Sub-Classes
- Backdoors
- Simplification
- Implementation
- Combining Systematic and Stochastic Solvers
- Parallelization

"Logic is everywhere ..."
Variable Selection Heuristics – VSIDS

- **Variable State Independent Decay Sum**

- To each variable A an *activity* $activity(A)$ is assigned

- **Initialization**
 - random, frequency of occurrence in given formula, or 1

- **Parameter** $decay \geq 1$ (often $decay := 1/0.95$)

- **Increment value** inc (initially set to $inc := 1$)

- At each conflict do
 - $activity(A) := activity(A) \times inc$
 for each A occurring in the derivation of the learned clause
 - $inc = inc \times decay$

- Pick the variable with the highest activity
Variable Selection Heuristics – VMTF

- **Variable Move to Front**

- Like VSIDS except the following
 - At each conflict do
 - $activity(A) := inc$
 for each A occurring in the derivation of the learned clause
 - $inc := inc \times decay$
Variable Selection Heuristics – BerkMin

► Berkeley-Minsk SAT solver

► Store conflict clauses in a stack

► For each variable A
 ▶ $activity(A)$ counts the number of conflict clauses in which A occurs
 ▶ $activity(A)$ is periodically divided by a small constant ≥ 1

► Selection
 ▶ Select a variable with the highest activity occurring in the top-most unsatisfied clause of the stack
 ▶ If no such clause exists, select a variable with the highest activity
Variable Selection Heuristics – MOMS

- **Maximum number of Occurrences on clauses of Minimum Size**

- Let m be the minimum clause length of formula F

- For each literal L
 let $h(L)$ be the number of occurrences of L in clauses of length m

- Pick a literal with highest h-value
Polarity Selection Heuristics

- Random
 - Pick a random polarity

- Ratio Heuristics
 - Pick the polarity according to a predefined ratio between positive and negative literals

- Jeroslaw-Wang Heuristics
 - For any literal L occurring in F let $h(L) = \sum_{C \in F, L \in C} 2^{-|C|}$
 - Select polarity which leads to higher h-value

- Phase Saving / Progress Saving
 - Use the last polarity the variable had before it was backtracked
 - Use any other heuristics if the variable was not assigned before
Restart-Schedule Heuristics – Geometric Series

► Geometric series

▷ Let $decay \geq 1$
▷ Let c be a counter (usually initialized with a value in $[100, 1000]$)
▷ Schedule a restart after the next c conflicts
▷ When a restart is scheduled set $c := c \times decay$

► Nested Geometric Series

▷ Use two geometric series, where the outer is used as limit for the inner one
▷ Use the inner series as above until it exceeds the current value of the outer
▷ Reset the inner and increase the limit of the outer series

Restart-Schedule Heuristics – Luby Series

- Consider the Luby series

 \[1 1 2 1 1 2 4 1 1 2 4 8 \ldots\]

- Let \(f \) be a factor (usually set to a value in \([1, 512]\))

- Let \(c \) be a counter (initially set to 0)

- Let \(r \) be a counter (initially set to 1)

- At each conflict do
 - \(c := c + 1 \)
 - restart if \(c > f \times Luby[r] \)

- At each restart do
 - \(r := r + 1 \)

Huang: The Effect of Restarts on the Efficiency of Clause Learning
Remove Heuristics

► Usually, short clauses are not removed at all
 ▶ Let C be a clause.
 ▶ C is not removed if $|C| < n$, where $n \in \mathbb{N}$
 ▶ Often $n = 3$

Remove Heuristics – Activity Removal

Like VSIDS except the following

- to each clause an activity is assigned
- the activity is updated whenever the clause is used in a linear resolution derivation of a learnt clause

Let C be a learned clause.

Let $L(C) = \{ \ell \mid \ell \text{ is the level of some literal occurring in } C \}$

Let $n \in \mathbb{N}$

Clause C is removed if $|L(C)| \geq n$

Remove Heuristics – Progress Saving Measure

- Is based on the phase saving polarity heuristics
- Let C be a clause
- Let \mathcal{P} be the set of saved literal polarities, i.e. for each atom A we find $A \in \mathcal{P}$ if the last used polarity of A was positive and $\overline{A} \in \mathcal{P}$ otherwise
- Let $\text{psm}_\mathcal{P}(C) = |\mathcal{P} \cap C|$
- Remove clauses with a high psm-value
Heuristics – Parameter Selection

- **Idea** Use a stochastic local search algorithm on the parameter space of a SAT-solver to find a *good* parameter setting
Polynomial Sub-Classes

- **2SAT** \(F \) is in 2SAT iff each clause occurring in \(F \) has at most two literals

- **Horn** \(F \) is in Horn iff each clause has at most one positive literal

- **AHorn** \(F \) is in AHorn (anti Horn) iff each clause has at most one negative literal

- **RHorn** \(F \) is in RHorn (renamable Horn) iff there is a mapping \(\Phi \) from variables to literals such that after applying \(\Phi \) and modulo double negation \(F \) is in Horn

 ▶ Let \(F = \langle [1, 2], [\bar{3}, \bar{4}] \rangle \)

 ▶ Let \(\Phi = \{1 \mapsto \bar{5}, 3 \mapsto \bar{6}\} \)

 ▶ After applying \(\Phi \) and modulo double negation we obtain \(F = \langle [\bar{5}, 2], [6, \bar{4}] \rangle \)

- **UP+PL** \(F \) is in UP+PL iff it can be solved by applying only UNIT and PURE
2SAT – Backtrack Once

- Let F be a 2SAT-formula and J a partial interpretation

- Procedure $\text{unitPropagate}(F :: J)$
 - computes the closure of $F :: J$ under UNIT

- Procedure $\text{BTOSAT}(F :: J)$
 while $[] \not\in F|_J$ and $F|_J \neq \lambda$
 - choose an unassigned literal L
 - $F :: J' := \text{unitPropagate}(F :: J, \bar{L})$
 - if $[] \in F|_{J'}$ then $F :: J := \text{unitPropagate}(F :: J, \bar{L})$ else $F :: J := F :: J'$
 if $[] \in F|_J$ then return unsatisfiable else return J
BTOSAT – Examples

- Suppose literals are assigned in their natural order
- Suppose positive literals are preferred
- What happens if BTOSAT is applied to
 \[F = \langle [1, 2], [1, 3], [2, 4], [4, \overline{3}] \rangle \]
 \[F = \langle [1, 2], [2, 3], \ldots, [8, 9], [8, \overline{9}], [8, 9] \rangle \]?
 \[\Rightarrow \text{next slide} \]
 \[F = \langle [1, 2], [2, 3], \ldots, [9, 10], [10, 11], \ldots, [18, 19],
 [1, 20], [1, 20], \ldots, [9, 20], [9, 20] \rangle \]?
 \[\Rightarrow \text{Exercise} \]

- The worst-case complexity of BTOSAT is \(O(nm) \), where
 \[n \text{ is the number of variables and} \]
 \[m \text{ is the number of clauses in } F \]
BTOSAT – A Derivation

Let $F = \langle [1, 2], [2, 3], \ldots, [8, 9], [8, \bar{9}], [8, 9] \rangle$ and $J = ()$

We obtain $F :: ()$

$\sim \text{DECIDE} \quad F :: (\hat{1})$

$F|_{(\hat{1})} = \langle [2], [2, 3], \ldots, [8, 9], [8, \bar{9}], [8, 9] \rangle$

$F :: ([1, 2])$

$F|_{(1, 2)} = \langle [3], \ldots, [8, 9], [8, \bar{9}], [8, 9] \rangle$

$\sim \text{UNIT} \quad F :: ([1, 2, \ldots, 8])$

$F|_{(1,2,\ldots,8)} = \langle [9], \bar{9} \rangle$

$\sim \text{UNIT} \quad F :: ([1, 2, \ldots, 8, 9])$

$F|_{(1,2,\ldots,8,9)} = \langle [3] \rangle$

$\sim \text{UNIT} \quad F :: ([1, 2, \ldots, 8, 9])$

$F|_{(1,2,\ldots,8,9)} = \langle [3] \rangle$

$\sim \text{UNIT} \quad F :: ([1, 2, \ldots, 8])$

$F|_{(1,2,\ldots,8)} = \langle [9] \rangle$

$\sim \text{UNIT} \quad F :: ([1, 2, \ldots, 8, 9])$

$F|_{(1,2,\ldots,8,9)} = \langle [3] \rangle$

$\sim \text{UNIT} \quad F :: ([1, 2, \ldots, 8])$

$F|_{(1,2,\ldots,8)} = \langle [9] \rangle$

$\sim \text{UNIT} \quad F :: ([1, 2, \ldots, 8, 9])$

$F|_{(1,2,\ldots,8,9)} = \langle [3] \rangle$

$\sim \text{UNIT} \quad F :: ([1, 2, \ldots, 8, 9])$

$F|_{(1,2,\ldots,8,9)} = \langle [9] \rangle$

$\sim \text{UNIT} \quad F :: ([1, 2, \ldots, 8])$

$F|_{(1,2,\ldots,8)} = \langle [9] \rangle$

$\sim \text{UNIT} \quad F :: ([1, 2, \ldots, 8, 9])$

$F|_{(1,2,\ldots,8,9)} = \langle [9] \rangle$

$\sim \text{UNIT} \quad F :: ([1, 2, \ldots, 8])$

$F|_{(1,2,\ldots,8)} = \langle [9] \rangle$

$\sim \text{UNIT} \quad F :: ([1, 2, \ldots, 8, 9])$

$F|_{(1,2,\ldots,8,9)} = \langle [9] \rangle$

$\sim \text{UNIT} \quad F :: ([1, 2, \ldots, 8])$

$F|_{(1,2,\ldots,8)} = \langle [9] \rangle$

$\sim \text{UNIT} \quad F :: ([1, 2, \ldots, 8, 9])$

$F|_{(1,2,\ldots,8,9)} = \langle [9] \rangle$

$\sim \text{UNIT} \quad F :: ([1, 2, \ldots, 8])$

$F|_{(1,2,\ldots,8)} = \langle [9] \rangle$

$\sim \text{UNIT} \quad F :: ([1, 2, \ldots, 8, 9])$

$F|_{(1,2,\ldots,8,9)} = \langle [9] \rangle$

$\sim \text{UNIT} \quad F :: ([1, 2, \ldots, 8])$

$F|_{(1,2,\ldots,8)} = \langle [9] \rangle$

$\sim \text{UNIT} \quad F :: ([1, 2, \ldots, 8, 9])$

$F|_{(1,2,\ldots,8,9)} = \langle [9] \rangle$

$\sim \text{UNIT} \quad F :: ([1, 2, \ldots, 8])$

$F|_{(1,2,\ldots,8)} = \langle [9] \rangle$

$\sim \text{UNIT} \quad F :: ([1, 2, \ldots, 8, 9])$

$F|_{(1,2,\ldots,8,9)} = \langle [9] \rangle$
Let F be a 2SAT-formula

We distinguish between permanent and temporary partial interpretations

$F\mid_{permVal}$
\begin{itemize}
 \item denotes the reduct of F wrt a permanent partial interpretation
\end{itemize}

$F\mid_{tempVal_permVal}$
\begin{itemize}
 \item denotes the reduct of F wrt a permanent and a temporary partial interpretation, where the permanent interpretation overrules the partial one
\end{itemize}
2SAT – BinSAT

► Procedure \textit{unitPropagate}(F) computes the closure of \(F \) under UNIT with respect to and setting \(\text{permVal}(A) \) and \(\text{permVal}(\overline{A}) \) accordingly

► Procedure \textit{BinSAT}(F)

for each atom \(A \) occurring in \(F \) do

\begin{itemize}
 \item \(\text{tempVal}(A), \text{tempVal}(\overline{A}), \text{permVal}(A), \text{permVal}(\overline{A}) := \text{nil} \)
\end{itemize}

\(F := \text{unitPropagate}(F) \)

while \([] \not\in F|_{\text{permVal}} \) and \((\exists L) \text{permVal}(L) = \text{tempVal}(L) = \text{nil} \) do

\begin{itemize}
 \item \(\text{tempUnitPropagate}(L) \)
\end{itemize}

If \([] \in F|_{\text{permVal}}^{\text{tempVal}} \) then return \textit{unsatisfiable} else return \textit{satisfiable}
Let F be a 2SAT-formula

Let L be an unassigned or a temporarily assigned literal

Procedure $\text{tempUnitPropagate}(L)$

- if $\text{tempVal}(L) = \bot$ (a conflict has occurred) then do
 - $F := \text{unitPropagate}(F \land [L])$
 - return

- $\text{tempVal}(L) := \top; \text{tempVal}(\overline{L}) = \bot$

for each $[\overline{L}, L'] \in F$ do

- if $[] \in F|_{\text{permVal}}$ then return
- if $\text{tempVal}(L') \neq \top$ then $\text{tempUnitPropagate}(L')$
BinSAT returns only *satisfiable*

In this case, a model can be generated as follows

For each A do

- if $permVal(A) \neq nil$ then A is assigned $permVal(A)$
- otherwise, A is assigned $tempVal(A)$
Suppose literals assigned in their natural order.

Suppose positive literals are preferred.

What happens if BinSAT is applied to

\[F = \langle [1, 2], [1, 3], [2, 4], [4, 3] \rangle? \]

\[F = \langle [1, 2], [2, 3], \ldots, [8, 9], [8, \bar{9}], [\bar{8}, 9], [8, 9] \rangle? \]

\[F = \langle [1, 2], [2, 3], \ldots, [9, 10], [10, 11], \ldots, [18, 19], [1, 20], [1, 20], \ldots, [9, 20], [9, 20] \rangle? \]

The worst-case complexity of BinSAT is \(O(m) \), where

\(m \) is the number of clauses in \(F \)
2SAT – BinSAT – A Derivation

- **Notation**
 - $F :: permVal :: tempVal$
 - denotes a formula with a permanent and a temporary partial interpretation

- **Let** $F = \langle [1, 2], [1, 3], [2, \bar{4}], [4, \bar{3}] \rangle$.

- **We obtain**

 $F :: () :: ()$
 $\xrightarrow{\text{tempDECIDE}} F :: () :: (\bar{1}) \quad \{[1, 2]\}$
 $\xrightarrow{\text{tempUNIT}} F :: () :: (1, 2) \quad \{[2, \bar{4}]\}$
 $\xrightarrow{\text{tempUNIT}} F :: () :: (1, 2, \bar{4}) \quad \{[4, \bar{3}]\}$
 $\xrightarrow{\text{tempUNIT}} F :: () :: (1, 2, \bar{4}, \bar{3}) \quad \emptyset$
 $\xrightarrow{\text{SAT}} F :: \text{SAT}$
2SAT – BinSAT – Another Derivation

- Let \(F = \langle [\overline{1}, 2], [\overline{2}, 3], \ldots, [\overline{8}, 9], [\overline{8}, \overline{9}], [8, 9] \rangle \)

- We obtain \(F :: () :: () \)

\[\sim_{\text{tempDECIDE}} F :: () :: (\overline{1}) \quad \{[\overline{1}, 2]\} \]

\[\sim_{\text{tempUNIT}} F :: () :: (\overline{1}, 2) \quad \{[\overline{2}, 3]\} \]

\[\ldots \]

\[\sim_{\text{tempUNIT}} F :: () :: (\overline{1}, 2, \ldots, 8) \quad \{[\overline{8}, 9], [\overline{8}, \overline{9}]\} \]

\[\sim_{\text{tempUNIT}} F :: () :: (\overline{1}, 2, \ldots, 8, 9) \quad \{[9, 8], [9, \overline{8}]\} \]

\[\sim F :: (\overline{8}) :: (\overline{1}, 2, \ldots, 8, 9) \]

\[\sim_{\text{UNIT}} F :: (\overline{8}, 9) :: (\overline{1}, 2, \ldots, 8, 9) \quad [\quad] \in F|_{(\overline{8}, 9)} \]

\[\sim_{\text{UNSAT}} F :: \text{UNSAT} \]

- **Note**

\[\sim \] denotes the call of \textit{unitPropagate} within \textit{tempUnitPropagate}.

- In general, temporary partial interpretations are kept but they may be overwritten by the permanent ones.
Backdoors

- Why show SAT solvers such a good scaling behavior although SAT is in NP?
 - Practical combinatorial problem instances have a substantial amount of (hidden) tractable sub-structure
 - New algorithmic techniques exploit such tractable structure
Let F be a SAT-instance.

A sub-solver S given F as input satisfies the following:

- **Trichotomy** S either rejects F or determines F correctly.
- **Efficiency** S runs in polynomial time.
- **Trivial solvability** S can determine if F is trivially true (i.e. is empty) or trivially false (i.e. contains the empty clause).
- **Self-reducibility** If S determines F, then it determines $F|_J$ for any (partial) interpretation J.
Sub-Solver – Example

2SAT

- **Trichotomy** S must reject a formula F if it is not 2SAT, i.e. if F contains a clause with more than 2 literals
- **Efficiency** S must solve 2SAT in polynomial time like eg. BTOSAT or BinSAT
- **Trivial Solvability** obvious
- **Self-reducibility** If F is in 2SAT, then $F|_J$ is also in 2SAT
Backdoors

- Let S be a sub-solver and F a SAT-instance.
- A non-empty subset $\mathcal{B} \subseteq \text{atoms}(F)$ is a weak backdoor in F for S if for some $J : \mathcal{B} \rightarrow \{\top, \bot\}$, S returns a satisfying assignment for $F|_J$.
- A non-empty subset $\mathcal{B} \subseteq \text{atoms}(F)$ is a strong backdoor in F for S if for all $J : \mathcal{B} \rightarrow \{\top, \bot\}$, S returns a satisfying assignment for $F|_J$.
Backdoors – Example 1

- Consider $F = \langle [2, 3], [1, 3, 4], [\overline{1}, 6], [\overline{1}, 5, \overline{6}], [4, \overline{5}], [2, \overline{5}, \overline{6}] \rangle$

- $\mathcal{B} = \{1\}$ is a weak backdoor in F for UP+PL
 - Let $F' = F|_1 = \langle [\overline{2}, 3], [6], [5, \overline{6}], [4, \overline{5}], [2, \overline{5}, \overline{6}] \rangle$
 - We obtain $F' :: ()$
 - $F' :: (6)$
 - $F' :: (6, 5)$
 - $F' :: (6, 5, 2)$
 - $F' :: (6, 5, 2, 3)$
 - $F' :: (6, 5, 2, 3, 4)$
 - $\leadsto \text{SAT} F' :: \text{SAT}$
 - $F'|_{(6)} = \langle [\overline{2}, 3], [5], [4, \overline{5}], [2, \overline{5}] \rangle$
 - $F'|_{(6,5)} = \langle [\overline{2}, 3], [4], [2] \rangle$
 - $F'|_{(6,5,2)} = \langle [3], [4] \rangle$
 - $F'|_{(6,5,2,3)} = \langle [4] \rangle$
 - $F'|_{(6,5,2,3,4)} = \langle \rangle$
Backdoors – Example 2

- **Reconsider** $F = \langle [2, 3], [1, 3, 4], [\overline{1}, 6], [\overline{1}, 5, \overline{6}], [4, \overline{5}], [2, \overline{5}, \overline{6}] \rangle$

- $\mathcal{B} = \{1, 2\}$ is a strong backdoor in F for 2SAT because
 - $F_1 = F|_{1,2} = \langle [3], [6], [5, \overline{6}], [4, \overline{5}] \rangle$ and $(4, 5, 6, 3) \models F_1$
 - $F_2 = F|_{\overline{1},2} = \langle [3], [\overline{3}, 4], [4, \overline{5}] \rangle$ and $(\overline{5}, 4, 3) \models F_2$
 - $F_3 = F|_{1,\overline{2}} = \langle [6], [5, \overline{6}], [4, \overline{5}] \rangle$ and $(4, 5, 6) \models F_3$
 - $F_4 = F|_{\overline{1},\overline{2}} = \langle [\overline{3}, 4], [4, \overline{5}], [\overline{5}, \overline{6}] \rangle$ and $(\overline{5}, 4, 3) \models F_4$
Minimal and Smallest Backdoors

Let S be a sub-solver and F a SAT-instance.

A (weak/strong) backdoor B in F for S is said to be **minimal** iff no proper subset of B is a (weak/strong) backdoor in F for S.

A (weak/strong) backdoor B in F for S is said to be **smallest** iff it is minimal and $|B| \leq |B'|$ for any minimal (weak/strong) backdoor B' in F for S.

Minimal and Smallest Backdoors – Examples

Let $G = \langle [1, 2, 4], [4, 6], [4, 6, 7], [5, 6], [5, 6, 7] \rangle$

$F = \langle [1, 3], [2, 3], [3, 4, 5] \rangle \land G$

- G can be solved by a Horn sub-solver
- $(1, 4, 5) \models G$

- $B_1 = \{3, 4\}$ is a strong backdoor in F for Horn \(\leadsto\) Exercise
 - Neither $\{3\}$ nor $\{4\}$ are strong backdoors in F for Horn
 - $B_1 = \{3, 4\}$ is a minimal strong backdoor in F for Horn

- $B_2 = \{1, 3, 4\}$ is another strong backdoor in F for Horn
 - B_2 is not a minimal strong backdoor in F for Horn

- $B_3 = \{1, 2, 4\}$ is yet another strong backdoor in F for Horn. \(\leadsto\) Exercise
 - B_3 is not a smallest strong backdoor in F for Horn
 - B_1 is a smallest strong backdoor in F for Horn \(\leadsto\) Exercise

- $B_4 = \{3, 5\}$ is another smallest strong backdoor in F for Horn \(\leadsto\) Exercise
Backdoors – Remarks

- Backdoors exist for each F
- Given a weak backdoor \mathcal{B} in F
 - The search cost for solving F is of order $2^{|\mathcal{B}|}$
- The size of backdoors in practical problem instances may be surprisingly small

<table>
<thead>
<tr>
<th>instance</th>
<th># vars</th>
<th># clauses</th>
<th>backdoor</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>logistics.c</td>
<td>6783</td>
<td>437431</td>
<td>12</td>
<td>0.0018</td>
</tr>
<tr>
<td>3bitadd_32</td>
<td>8704</td>
<td>32316</td>
<td>53</td>
<td>0.0061</td>
</tr>
<tr>
<td>pipe_01</td>
<td>7736</td>
<td>26087</td>
<td>23</td>
<td>0.0030</td>
</tr>
<tr>
<td>qg_30.1</td>
<td>1235</td>
<td>8523</td>
<td>14</td>
<td>0.0113</td>
</tr>
<tr>
<td>qg_35.1</td>
<td>1597</td>
<td>10658</td>
<td>15</td>
<td>0.0094</td>
</tr>
</tbody>
</table>

- Given F with $|\text{var}(F)| = n$, $k \geq 0$, and sub-solver S. The problem whether there exists a (weak/strong) backdoor in F for S of size k is \mathcal{NP}-hard
Backdoors and Parameterized Complexity

Simplification – Warm Up (1)

► When are two formulas F and G semantically equivalent ($F \equiv G$)?

► Let $G = F \setminus \{C\}$
 ▶ Is $G \equiv F$?
 ▶ Under which condition is $G \equiv F$?
 ▶ How is the check performed?
 ▶ How complex is this check?

► How is $F \equiv_{\text{SAT}} G$ defined?

► Are there other redundancies which can be eliminated?
Which of the following statements is true?

- \(F \land L \equiv F \mid_L \)
- \(F \land L \equiv_{\text{SAT}} F \mid_L \)
- \(F \land L \models F \mid_L \)
- Let \(C \) and \(D \) be clauses with \(C \subseteq D \) in \(F \land D \models F \land C \)
- Let \(C \) and \(D \) be clauses with \(C \subseteq D \) in \(F \land C \models F \land D \)
How many models has the formula $F = (a \lor \bar{b}) \land (\bar{a} \lor b)$?

Enumerate the models!

How many models has the formula $F = (a \lor \bar{a}) \land (\bar{a} \lor a)$?

Enumerate the models!

Do you see a connection?
Equivalence Preserving Techniques

A clause C is a **tautology** iff it contains a complementary pair of literals

- $(a \lor b \lor \overline{b})$
- Tautologies can be removed

Clause C **subsumes** clause D iff $C \subseteq D$

- $(a \lor b)$ subsumes $(a \lor b \lor \overline{c})$
- Subsumed clauses can be removed
Resolution

Remember Let C_1 be a clause containing L and C_2 be a clause containing \overline{L}.
The (propositional) resolvent of C_1 and C_2 with respect to L is the clause

$$(C_1 \setminus \{L\}) \cup (C_2 \setminus \{\overline{L}\})$$

C is said to be a resolvent of C_1 and C_2 iff there exists a literal L such that C is the resolvent of C_1 and C_2 wrt L.

We will write $C_1 \otimes_L C_2$ to denote the resolvent of C_1 and C_2 wrt L.

Is the addition of resolvents an equivalence preserving technique?

Shall we apply it?
Self-Subsuming Resolution

- **Suppose** \(C \lor L \otimes_L D \lor \bar{L} = D \)
- **Example** \((a \lor b \lor d) \otimes_d (a \lor b \lor c \lor \bar{d}) = (a \lor b \lor c) \)
- **Observe** the resolvent subsumes one of its parent clauses
- **Example (continued)** Suppose, a CNF contains both parent clauses

\[\ldots (a \lor b \lor d), (a \lor b \lor c \lor \bar{d}) \ldots \]

- If \(D \) is added, then \(D \lor \bar{L} \) can be removed
- which in essence removes \(\bar{L} \) from \(D \lor \bar{L} \)

\[\ldots (a \lor b \lor d), (a \lor b \lor c) \ldots \]

- **Initially in the SATeLite preprocessor**
- now common in most solvers (i.e., as pre- and inprocessing)
Self-Subsuming Resolution – Example

➢ Self-Subsuming Resolution \(C \vee L \otimes_L D \vee \bar{L} = D \)

➢ Example

\[
\begin{align*}
(b \vee c) \land (\bar{a} \vee b \vee c) \land \\
(\bar{a} \vee \bar{b}) \land (\bar{a} \vee \bar{b} \vee \bar{d}) \land \\
(a \vee \bar{c}) \land (a \vee \bar{c} \vee \bar{d})
\end{align*}
\]
Probing (1)

► **Idea** use unit propagation do derive extra information

► **Vivification** of a clause $C = (L_1 \lor \cdots \lor L_n), C \in F$

► Unit propagation results in the empty clause

1. $F :: (\overline{L_1}, \ldots, \overline{L_i}) \sim_{UNIT}^* F :: J$, where $[] \in F|_J, i < n$

► Unit propagation implies another literal of the clause C

2. $F :: (\overline{L_1}, \ldots, \overline{L_i}) \sim_{UNIT}^* F :: J$, where $L_j \in J, i < j \leq n$

► Unit propagation implies another negated literal of the clause C

3. $F :: (\overline{L_1}, \ldots, \overline{L_i}) \sim_{UNIT}^* F :: J$, where $\overline{L_j} \in J, i < j \leq n$

► **Exploit** $F \models ((\overline{L_1} \land \cdots \land \overline{L_i}) \rightarrow L)$ and, hence, $F \equiv F \land (L_1 \lor \cdots \lor L_i \lor L)$

► By the above statements and self-subsuming resolution, replace C with

1. $(L_1 \lor \cdots \lor L_i)$
2. $(L_1 \lor \cdots \lor L_i \lor L_j)$
3. $C \setminus \{L_j\}$
Failed Literal test for some literal L

- $F :: L \leadsto_{\text{UNIT}}^* F :: J$, where $[] \in F|_J$, then add the unit clause \bar{L}
- Could also apply conflict analysis
- Then: learn all UIP clauses (have to be units)

Test for entailed literals (also backbones, necessary assignments), and equivalent literals wrt F

- $F :: L \leadsto_{\text{UNIT}}^* F :: J_L$ where J_L is the set of all implied literals of L
- $F :: \bar{L} \leadsto_{\text{UNIT}}^* F :: J_{\bar{L}}$ where $J_{\bar{L}}$ is the set of all implied literals of \bar{L}
- L' is an entailed literal if $L' \in J_L \cap J_{\bar{L}}$
- L' and L are equivalent if $L' \in J_L$ and $\bar{L}' \in J_{\bar{L}}$
Simplification – Equivalence Preserving Techniques

- Unit propagation
- Subsumption
- Resolution, hyper binary resolution
- Self-subsuming resolution
- Hidden tautology elimination
- Asymmetric tautology elimination
- Probing
 - Clause vivification
 - Necessary assignments
 - Failed literals
- Adding and removing transitive implications (binary clauses)
- Higher reasoning: Gaussian elimination, Fourier-Motzkin method
- No need to construct a model, the found model can be used
Simplification – Equisatisfiability Preserving Techniques

- Model needs to be constructed
- Information required for model construction can be stored on a stack
- Reason: $F \sim_{\text{bad}} F' \sim_{\text{bad}} F'' \sim_{\text{bad}} F''' \ldots$
- Reconstruction processes this chain in the opposite direction
 - $\ldots J''' \rightarrow J'' \rightarrow J' \rightarrow J$
- Thus, techniques can be run in any order, and mixed with the good ones
- For all currently used techniques, this process is polynomial (linear in the stack)
Equivalent Literal Substitution

- Given a formula F such that $F \models (L_1 \leftrightarrow L_2)$
 - then replace each occurrence of L_1 and $\overline{L_1}$ in F by L_2 and $\overline{L_2}$, respectively
 - remove double negation

- How to find equivalent literals?
 - By probing
 - By analyzing the binary implication graph (each SCC is an equivalence)
 - $F \models (a \rightarrow b) \land (b \rightarrow c) \land (c \rightarrow a)$, then $F \models a \leftrightarrow b \leftrightarrow c$
 - By structural hashing
 - $F \models (L_1 \leftrightarrow (a \land b)) \land (L_2 \leftrightarrow (a \land b))$, then $F \models (L_1 \leftrightarrow L_2)$
 - Works for many other gate types and variable definitions
 - Weakness definitions have to be found (structurally or semantically)

- How to construct the model J from J'?
 - If $L_2 \in J'$, then $J := (J' \setminus \{L_1, \overline{L_1}\}) \cup \{L_1\}$
 - If $\overline{L_2} \in J'$, then $J := (J' \setminus \{L_1, \overline{L_1}\}) \cup \{\overline{L_1}\}$
Variable Elimination by Clause Distribution

Given a formula F in CNF and a literal L

$F_L = \{ C \in F \mid L \in C \}$

$F_L \otimes_L F_{\overline{L}} = \{ C \otimes_L D \mid C \in F_L \text{ and } D \in F_{\overline{L}} \}$

Given a formula F in CNF, variable elimination (or DP resolution) removes a variable X by replacing $F_X \cup F_{\overline{X}}$ by $F_X \otimes_X F_{\overline{X}}$

Example

\[
\begin{array}{c|ccc}
F_{\overline{X}} \setminus F_X & (X \lor c) & (X \lor d) & (X \lor \overline{a} \lor \overline{b}) \\
\hline
(X \lor a) & (a \lor c) & (a \lor d) & (a \lor \overline{a} \lor \overline{b}) \\
(\overline{X} \lor b) & (b \lor c) & (b \lor d) & (b \lor \overline{a} \lor \overline{b}) \\
(\overline{X} \lor \overline{e} \lor f) & (c \lor \overline{e} \lor f) & (d \lor \overline{e} \lor f) & (\overline{a} \lor \overline{b} \lor \overline{e} \lor f) \\
\end{array}
\]

Observe

$|F_X \otimes_X F_{\overline{X}}| > |F_X| + |F_{\overline{X}}|$

Exponential growth of clauses in general
Variable Elimination by Substitution

Idea Detect gates (or definitions) $X \leftrightarrow \text{GATE}(a_1, \ldots, a_n)$ in the formula and use them to reduce the number of added clauses.

Possible gates

<table>
<thead>
<tr>
<th>Gate</th>
<th>G_X</th>
<th>$G_{\bar{X}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND(a_1, \ldots, a_n)</td>
<td>$(X \lor \bar{a}_1 \lor \cdots \lor \bar{a}_n)$</td>
<td>$(X \lor a_1), \ldots, (\bar{x} \lor a_n)$</td>
</tr>
<tr>
<td>OR(a_1, \ldots, a_n)</td>
<td>$(X \lor \bar{a}_1), \ldots, (X \lor \bar{a}_n)$</td>
<td>$(\bar{X} \lor a_1 \lor \cdots \lor a_n)$</td>
</tr>
<tr>
<td>ITE(c, t, f)</td>
<td>$(X \lor \bar{c} \lor \bar{t}), (X \lor c \lor \bar{f})$</td>
<td>$(\bar{X} \lor \bar{c} \lor t), (\bar{X} \lor c \lor f)$</td>
</tr>
</tbody>
</table>

Variable elimination by substitution

- Let $R_X = F_X \setminus G_X$ and $R_{\bar{X}} = F_{\bar{X}} \setminus G_{\bar{X}}$
- Replace $F_X \cup F_{\bar{X}}$ by $G_X \otimes R_X \cup G_{\bar{X}} \otimes R_X$

Always less than $F_X \otimes F_{\bar{X}}$
Variable Elimination by Substitution

Example of gate extraction: $X \leftrightarrow \text{AND}(a, b)$

- $F_X = (X \lor c) \land (X \lor \bar{d}) \land (X \lor \bar{a} \lor \bar{b})$
- $F_{\bar{X}} = (\bar{X} \lor a) \land (\bar{X} \lor b) \land (\bar{X} \lor \bar{e} \lor f)$

Example of substitution

\[
\begin{array}{c|c|c|c}
& R_X & G_X \\
\hline
G_{\bar{X}} & (X \lor a) & (X \lor \bar{d}) & (X \lor \bar{a} \lor \bar{b}) \\
\hline
R_{\bar{X}} & (\bar{X} \lor b) & (a \lor c) & (a \lor d) \\
& (\bar{X} \lor \bar{e} \lor f) & (b \lor c) & (b \lor \bar{d}) \\
\end{array}
\]

- Observe $|F_X \otimes F_{\bar{X}}| < |F_X| + |F_{\bar{X}}|$
Variable Elimination

- How can the model be reconstructed?
- Given F, we picked literal X, removed F_X and $F_{\bar{X}}$, and added $F_X \otimes_X F_{\bar{X}}$
- A model J does not contain a value for X
- How does it work?
Bounded Variable Addition

- Given a CNF formula F
- **Idea** Can we construct a logically equivalent or equisatisfiable formula F' by introducing a new variable $X \notin VAR(F)$ such that $|F'| < |F|?$
- **Challenge** How to find suitable patterns for replacement?

Reverse of variable elimination

Example Replace the clauses

$$(a \lor c) \quad (a \lor d)$$
$$(b \lor c) \quad (b \lor d)$$
$$(c \lor \overline{e} \lor f) \quad (d \lor \overline{e} \lor f) \quad (\overline{a} \lor \overline{b} \lor \overline{e} \lor f)$$

by

$$(\overline{X} \lor a) \quad (\overline{X} \lor b) \quad (\overline{X} \lor \overline{e} \lor f)$$
$$(X \lor c) \quad (X \lor d) \quad (X \lor \overline{a} \lor \overline{b})$$
Factoring Out Subclauses

Example Replace

\[(a \lor b \lor c \lor d) \quad (a \lor b \lor c \lor e) \quad (a \lor b \lor c \lor f)\]

by

\[(X \lor d) \quad (X \lor e) \quad (X \lor f) \quad (\bar{X} \lor a \lor b \lor c)\]

Add 1 variable and 1 clause

Reduces number of occurrences of literals by 2

Not compatible with variable elimination, which would eliminate \(X\) immediately

So this does not work . . .
Bounded Variable Addition

Example Smallest pattern that is compatible: replace

\[(a \lor d) (a \lor e)\]
\[(b \lor d) (b \lor e)\]
\[(c \lor d) (c \lor e)\]

by

\[(\overline{X} \lor a) (\overline{X} \lor b) (\overline{X} \lor c)\]
\[(X \lor d) (X \lor e)\]

- Adds 1 variable
- Removes 1 clause
Bounded Variable Addition

- **Possible Patterns**

\[
\begin{align*}
(X_1 \lor L_1) & \quad \ldots \quad (X_1 \lor L_k) \\
\vdots & \quad \vdots \\
(X_n \lor L_1) & \quad \ldots \quad (X_n \lor L_k)
\end{align*}
\]

\[\equiv \bigwedge_{i=1}^{n} \bigwedge_{j=1}^{k} (X_i \lor L_j)\]

- **Replaced by**

\[
\bigwedge_{i=1}^{n} (Y \lor X_i) \quad \land \quad \bigwedge_{j=1}^{k} (\overbar{Y} \lor L_j)
\]

where \(Y\) is a new variable

- Suppose, \(k\) clauses share a literal \(L_j\)
- Suppose, \(n\) literals \(X_i\) appear in the clauses
- Then, \(nk - n - k\) clauses are removed
Bounded Variable Addition on AtMostOneZero (1)

Example Encoding of AtMostOneZero(x_1, \ldots, x_n)

\[(x_1 \vee x_2) \land (x_9 \vee x_{10}) \land (x_8 \vee x_{10}) \land (x_7 \vee x_{10}) \land (x_6 \vee x_{10}) \land \]
\[(x_1 \vee x_3) \land (x_2 \vee x_3) \land (x_8 \vee x_9) \land (x_7 \vee x_9) \land (x_6 \vee x_9) \land \]
\[(x_1 \vee x_4) \land (x_2 \vee x_4) \land (x_3 \vee x_4) \land (x_7 \vee x_8) \land (x_6 \vee x_8) \land \]
\[(x_1 \vee x_5) \land (x_2 \vee x_5) \land (x_3 \vee x_5) \land (x_4 \vee x_5) \land (x_6 \vee x_7) \land \]
\[(x_1 \vee x_6) \land (x_2 \vee x_6) \land (x_3 \vee x_6) \land (x_4 \vee x_6) \land (x_5 \vee x_6) \land \]
\[(x_1 \vee x_7) \land (x_2 \vee x_7) \land (x_3 \vee x_7) \land (x_4 \vee x_7) \land (x_5 \vee x_7) \land \]
\[(x_1 \vee x_8) \land (x_2 \vee x_8) \land (x_3 \vee x_8) \land (x_4 \vee x_8) \land (x_5 \vee x_8) \land \]
\[(x_1 \vee x_9) \land (x_2 \vee x_9) \land (x_3 \vee x_9) \land (x_4 \vee x_9) \land (x_5 \vee x_9) \land \]
\[(x_1 \vee x_{10}) \land (x_2 \vee x_{10}) \land (x_3 \vee x_{10}) \land (x_4 \vee x_{10}) \land (x_5 \vee x_{10}) \land \]

Replace \((x_i \vee x_j)\) with \(i \in \{1..5\}, j \in \{6..10\}\) by \((x_i \vee y), (x_j \vee \bar{y})\)
Example Encoding of AtMostOneZero(x_1, \ldots, x_n)

\[
(x_1 \lor x_2) \land (x_9 \lor x_{10}) \land (x_8 \lor x_{10}) \land (x_7 \lor x_{10}) \land (x_6 \lor x_{10}) \land \\
(x_1 \lor x_3) \land (x_2 \lor x_3) \land (x_8 \lor x_9) \land (x_7 \lor x_9) \land (x_6 \lor x_9) \land \\
(x_1 \lor x_4) \land (x_2 \lor x_4) \land (x_3 \lor x_4) \land (x_7 \lor x_8) \land (x_6 \lor x_8) \land \\
(x_1 \lor x_5) \land (x_2 \lor x_5) \land (x_3 \lor x_5) \land (x_4 \lor x_5) \land (x_6 \lor x_7) \land \\
(x_1 \lor y) \land (x_2 \lor y) \land (x_3 \lor y) \land (x_4 \lor y) \land (x_5 \lor y) \land \\
(x_6 \lor \bar{y}) \land (x_7 \lor \bar{y}) \land (x_8 \lor \bar{y}) \land (x_9 \lor \bar{y}) \land (x_{10} \lor \bar{y})
\]

Replace matched pattern by

\[
(x_1 \lor z) \land (x_2 \lor z) \land (x_3 \lor z) \land (x_4 \lor \bar{z}) \land (x_5 \lor \bar{z}) \land (y \lor \bar{z})
\]
Example Encoding of AtMostOneZero(x_1, \ldots, x_n)

\[(x_1 \lor x_2) \land (x_9 \lor x_{10}) \land (x_8 \lor x_{10}) \land (x_7 \lor x_{10}) \land (x_6 \lor x_{10}) \land \]
\[(x_1 \lor x_3) \land (x_2 \lor x_3) \land (x_8 \lor x_9) \land (x_7 \lor x_9) \land (x_6 \lor x_9) \land \]
\[(x_1 \lor z) \land (x_2 \lor z) \land (x_3 \lor z) \land (x_7 \lor x_8) \land (x_6 \lor x_8) \land \]
\[(x_4 \lor \bar{z}) \land (x_5 \lor \bar{z}) \land (y \lor \bar{z}) \land (x_4 \lor x_5) \land (x_6 \lor x_7) \land \]
\[(x_4 \lor y) \land (x_5 \lor y) \land (x_6 \lor \bar{y}) \land (x_7 \lor \bar{y}) \land (x_8 \lor \bar{y}) \land \]
\[(x_9 \lor \bar{y}) \land (x_{10} \lor \bar{y}) \land \]

Replace matched pattern by

\[(x_6 \lor w) \land (x_7 \lor w) \land (x_8 \lor w) \land (x_9 \lor \bar{w}) \land (x_{10} \lor \bar{w}) \land (\bar{y} \lor \bar{w}) \]
Bounded Variable Addition

▶ How can the model be reconstructed?
Blocked Clauses

- A literal \(L \) in a clause \(C \) of a CNF \(F \) blocks \(C \) in \(F \) if for every clause \(D \in F_L \), the resolvent \((C \setminus \{L\}) \cup (D \setminus \{\bar{L}\}) \) obtained from resolving \(C \) and \(D \) on \(L \) is a tautology.

- A clause is blocked if it contains a literal that blocks it.

- Example: Consider the formula \((a \lor b) \land (a \lor \bar{b} \lor \bar{c}) \land (\bar{a} \lor c)\)

 - First clause is not blocked.
 - Second clause is blocked by both \(a \) and \(\bar{c} \).
 - Third clause is blocked by \(c \).

- Proposition: Removal of an arbitrary blocked clause preserves satisfiability.
Blocked Clause Elimination (BCE)

- **BCE** While there is a blocked clause C in a CNF F, remove C from F

- **Example** Consider $(a \lor b) \land (a \lor \bar{b} \lor \bar{c}) \land (\bar{a} \lor c)$

 - After removing either $(a \lor \bar{b} \lor \bar{c})$ or $(\bar{a} \lor c)$, the clause $(a \lor b)$ becomes blocked

 - no clause with either \bar{b} or \bar{a}

 - An extreme case in which BCE removes all clauses

- **Proposition** BCE is confluent
How can a model be reconstructed?

Given F, we picked clause C with blocking literal L

C was blocked with respect to F_L

A model J might falsify C

How can it work?
Simplification Techniques – The Bad and Powerful

▶ Equisatisfiability Preserving Techniques
 ▶ (Bounded) variable elimination
 ▶ Bounded variable addition
 ▶ Blocked clause elimination
 ▶ Covered clause elimination
 ▶ Equivalent literal substitution
 ▶ based on SCCs in binary implication graphs
 ▶ based on structural hashing
 ▶ based on Probing
 ▶ Resolution asymmetric tautology elimination

▶ Need to store extra information to construct the model

▶ Not discussed here
 ▶ Adding redundant clauses
 ▶ Minimizing redundant clauses
Solving a Problem with SAT

- Research topics:
 - encode problems into CNF
 - simplify the problem
 - and search for a solution or prove there does not exist one
 - simplification during search
 - automatically translate naive encodings into sophisticated encodings