

# **SAT Solving – Extensions**

#### Steffen Hölldobler

International Center for Computational Logic Technische Universität Dresden Germany

- Heuristics
- Polynomial Sub-Classes
- Backdoors
- Simplification
- Implementation
- Combining Systematic and Stochastic Solvers
- Parallelization





#### Variable Selection Heuristics – VSIDS

- Variable State Independent Decay Sum Moskewicz, Madigan, Zhao, Zhang, Malik: Chaff: Engineering an Efficient SAT Solver. In: Proceedings of the 38th Design Automation Conference: 2001
- ▶ To each variable A an activity activity (A) is assigned
- Initialization
  - > random, frequency of occurrence in given formula, or 1
- Parameter  $decay \ge 1$  (often decay := 1/0.95)
- Increment value inc (initially set to inc := 1)
- At each conflict do
  - activity(A) := activity(A) × inc for each A occurring in the derivation of the learned clause
  - $\triangleright$  inc = inc  $\times$  decay
- Pick the variable with the highest activity

### Variable Selection Heuristics - VMTF

#### Variable Move to Front

Ryan: Efficient algorithms for clause-learning SAT solvers. Master's thesis, Simon Fraser University: 2004

- Like VSIDS except the following
  - At each conflict do
    - activity(A) := inc for each A occurring in the derivation of the learned clause
    - ▶ inc := inc × decay

#### Variable Selection Heuristics – BerkMin

#### Berkeley-Minsk SAT solver

Goldberg, Novikov: BerkMin: A Fast and Robust SAT Solver. In: Proceedings of the Conference on Design, Automation and Test in Europe: 2002

- Store conflict clauses in a stack
- ► For each variable A
  - → activity(A) counts the number of conflict clauses in which A occurs
  - activity(A) is periodically divided by a small constant ≥ 1
- Selection
  - Select a variable with the highest activity occurring in the top-most unsatisfied clause of the stack
  - ▶ If no such clause exists, select a variable with the highest activity

#### Variable Selection Heuristics – MOMS

- Maximum number of Occurrences on clauses of Minimum Size Buro, Kleine-Büning: Report on a SAT competition. Technical report, University of Paderborn: 1992
- Let m be the minimum clause length of formula F
- For each literal L let h(L) be the number of occurrences of L in clauses of length m
- ▶ Pick a literal with highest h-value

# **Polarity Selection Heuristics**

- Random
  - Pick a random polarity
- Ratio Heuristics
  - Pick the polarity according to a predefined ratio between positive and negative literals
- Jeroslaw-Wang Heuristics
  - ▶ For any literal L occurring in F let  $h(L) = \sum_{C \in F, L \in C} 2^{-|C|}$
  - ▶ Select polarity which leads to higher h-value
  - Jeroslaw, Wang: Solving Propositional Satisfiability Problems. Annals of Mathematics and Artificial Intelligence 1, 167-187: 1990
- Phase Saving / Progress Saving
  - Use the last polarity the variable had before it was backtracked
  - Use any other heuristics if the variable was not assigned before
  - Pipatsrisawat, Darwiche: A Lightweight Component Caching Schema for Satisfiability Solvers. In: Proc. SAT, 294-299: 2007

#### Restart-Schedule Heuristics – Geometric Series

#### Geometric series

- ▶ Let decay ≥ 1
- ▶ Let c be a counter (usually initialized with a value in [100, 1000])
- Schedule a restart after the next c conflicts
- $\triangleright$  When a restart is scheduled set  $c := c \times decay$
- Eén, Sörensson: MiniSAT v1.13: A SAT Solver with Conflict Clause Minimization. In: Proc. SAT Competition: Solver Descriptions: 2005

#### Nested Geometric Series

- ▶ Use two geometric series, where the outer is used as limit for the inner one
- Use the inner series as above until it exceeds the current value of the outer
- Reset the inner and increase the limit of the outer series
- ▶ Biere: Picosat Essentials. JSAT 4, 75-97: 2008

# Restart-Schedule Heuristics - Luby Series

Consider the Luby series

- ▶ Let f be a factor (usually set to a value in [1, 512])
- ▶ Let c be a counter (initially set to 0)
- ▶ Let r be a couter (initially set to 1)
- At each conflict do
  - c := c + 1
  - $restart if c > f \times Luby[r]$
- At each restart do
  - r := r + 1
- Huang: The Effect of Restarts on the Efficiency of Clause Learning In: Proc. IJCAI, 2318-2323: 2007

8

### **Remove Heuristics**

- Usually, short clauses are not removed at all
  - ▶ Let C be a clause.
  - $\triangleright$  *C* is not removed if |C| < n, where  $n \in \mathbb{N}$
  - ▶ Often n = 3
- ► Eén, Sörensson: MiniSAT v1.13: A SAT Solver with Conflict Clause Minimization. In: Proc. SAT Competition: Solver Descriptions: 2005

## Remove Heuristics - Activity Removal

- Like VSIDS except the following
  - b to each clause an activity is assigned
  - the activity is updated whenever the clause is used in a linear resolution derivation of a learnt clause
- ► Eén, Sörensson: MiniSAT v1.13: A SAT Solver with Conflict Clause Minimization. In: Proc. SAT Competition: Solver Descriptions: 2005

### Remove Heuristics - Literal Block Distance

- ▶ Let C be a learned clause.
- ▶ Let  $L(C) = \{\ell \mid \ell \text{ is the level of some literal occurring in } C\}$
- ▶ Let  $n \in \mathbb{N}$
- ▶ Clause C is removed if  $|L(C)| \ge n$
- Audemard, Simon: Glucose: A Solver that Predicts Learnt Clause Quality. In: SAT Competitive Event Booklet: 2009

## Remove Heuristics - Progress Saving Measure

- Is based on the phase saving polarity heuristics
- ► Let C be a clause
- ▶ Let  $\mathcal{P}$  be the set of saved literal polarities, ie. for each atom  $\mathbf{A}$  we find  $\mathbf{A} \in \mathcal{P}$  if the last used polarity of  $\mathbf{A}$  was positive and  $\overline{\mathbf{A}} \in \mathcal{P}$  otherwise
- ▶ Let  $psm_{\mathcal{P}}(C) = |\mathcal{P} \cap C|$
- Remove clauses with a high psm-value
- Audemard, Lagniez, Mazure, Sais: On Freezing and Reactivating Learnt Clauses. In Proc. SAT, 188-200: 2011

### **Heuristics – Parameter Selection**

- ► Hutter, Hoos, Leyton-Brown, Stützle: Automatic Algorithm Configuration Framework. Journal of Artificial Intelligence Research 36, 267-306: 2009
- Idea Use a stochastic local search algorithm on the parameter space of a SAT-solver to find a good parameter setting

### **Polynomial Sub-Classes**

- ▶ 2SAT F is in 2SAT iff each clause occurring in F has at most two literals
- ▶ Horn F is in Horn iff each clause has at most one positive literal
- ► AHorn

  F is in AHorn (anti Horn) iff each clause has at most one negative literal
- RHorn F is in RHorn (renamable Horn) iff there is a mapping Φ from variables to literals such that after applying Φ and modulo double negation F is in Horn
  - ▶ Let  $F = \langle [1, 2], [\overline{3}, \overline{4}] \rangle$ ▶ Let  $\Phi = \{1 \mapsto \overline{5}, 3 \mapsto \overline{6}\}$
  - ▶ After applying  $\Phi$  and modulo double negation we obtain  $F = \langle [\overline{5}, 2], [6, \overline{4}] \rangle$
- ▶ UP+PL F is in UP+PL iff it can be solved by applying only UNIT and PURE

#### 2SAT - Backtrack Once

- ▶ del Val: On 2-SAT and Renamable Horn. In: Proc. AAAI, 279-284: 2000
- Let F be a 2SAT-formula and J a partial interpretation
- ► Procedure unitPropagate(F:: J)
  - computes the closure of F:: J under UNIT
- ► Procedure BTOSAT(F::J)

while [] 
$$\not\in F|_J$$
 and  $F|_J \neq \langle \rangle$  do

- choose an unassigned literal L
- $\triangleright F :: J' := unitPropagate(F :: J, \dot{L})$
- ▶ if  $[] \in F|_{J'}$  then  $F :: J := unitPropagate(F :: J, <math>\overline{L}$ ) else F :: J := F :: J'
- if  $[] \in F|_J$  then return *unsatisfiable* else return J

### **BTOSAT – Examples**

- Suppose literals are assigned in their natural order
- Suppose positive literals are prefered
- ▶ What happens if BTOSAT is applied to
  - $\triangleright F = \langle [\overline{1}, 2], [1, 3], [\overline{2}, \overline{4}], [4, \overline{3}] ?$

  - $F = \langle [\overline{1}, 2], [\overline{2}, 3], \dots, [\overline{9}, 10], [\overline{10}, 11], \dots, [\overline{18}, 19], \\ [\overline{1}, 20], [\overline{1}, \overline{20}], \dots, [\overline{9}, 20], [\overline{9}, \overline{20}] \rangle? \longrightarrow \text{Exercise}$
- ▶ The worst-case complexity of BTOSAT is O(nm), where
  - n is the number of variables and
  - m is the number of clauses in F

### BTOSAT – A Derivation

- ▶ Let  $F = \langle [\overline{1}, 2], [\overline{2}, 3], \dots, [\overline{8}, 9], [\overline{8}, \overline{9}], [\overline{8}, \overline{9}], [\overline{8}, 9] \rangle$  and J = ()
- ▶ We obtain F::()

 $\sim$ IINSAT

### 2SAT - BinSAT - Preliminaries

- ▶ Let F be a 2SAT-formula
- We distinguish between permanent and temporary partial interpretations
- F|permVal denotes the reduct of F wrt a permanent partial interpretation
- F | tempVal | permVal | denotes the reduct of F wrt a permanent and a temporary partial interpretation, where the permanent interpretation overrules the partial one

### 2SAT - BinSAT

- ▶ Procedure unitPropagate(F) computes the closure of F under UNIT with respect to and setting permVal(A) and permVal(A) accordingly
- ► Procedure BinSAT(F)

for each atom A occurring in F do

 $\triangleright$  tempVal(A), tempVal( $\overline{A}$ ), permVal(A), permVal( $\overline{A}$ ) := nil

F := unitPropagate(F)

while  $[] \not\in F|_{permVal}$  and  $(\exists L) permVal(L) = tempVal(L) = nil$  do

tempUnitPropagate(L)

If  $[] \in F|_{permVal}^{tempVal}$  then return *unsatisfiable* else return *satisfiable* 

### 2SAT - BinSAT - TempUnitPropagate

- Let F be a 2SAT-formula
- ▶ Let L be an unassigned or a temporarily assigned literal
- ► Procedure tempUnitPropagate(L)

```
if tempVal(L) = \bot (a conflict has occurred) then do
```

- $ightharpoonup F := unitPropagate(F \land [L])$
- return

```
tempVal(L) := \top; tempVal(\overline{L}) = \bot for each [\overline{L}, L'] \in F do
```

- $\triangleright$  if  $[] \in F|_{permVal}$  then return
- ▶ if  $tempVal(L') \neq T$  then tempUnitPropagate(L')

### 2SAT - BinSAT - Model Generation

- ► BinSAT returns only satisfiable
- In this case, a model can be generated as follows
- For each A do
  - $\triangleright$  if  $permVal(A) \neq nil$  then A is assigned permVal(A)
  - otherwise, A is assigned tempVal(A)

### 2SAT - BinSAT - Examples

- Suppose literals assigned in their natural order.
- Suppose positive literals are prefered.
- What happens if BinSAT is applied to

```
▷ F = \langle [\overline{1}, 2], [1, 3], [\overline{2}, \overline{4}], [4, \overline{3}] ? ··· next slide
▷ F = \langle [\overline{1}, 2], [\overline{2}, 3], \dots, [\overline{8}, 9], [\overline{8}, \overline{9}], [\overline{8}, \overline{9}], [\overline{8}, 9] \rangle? ··· next but one slide
▷ F = \langle [\overline{1}, 2], [\overline{2}, 3], \dots, [\overline{9}, 10], [\overline{10}, 11], \dots, [\overline{18}, 19],
[\overline{1}, 20], [\overline{1}, \overline{20}], \dots, [\overline{9}, 20], [\overline{9}, \overline{20}] \rangle? ··· Exercise
```

- ► The worst-case complexity of BinSAT is O(m), where
  - m is the number of clauses in F

### 2SAT - BinSAT - A Derivation

- Notation
  - ▶ F:: permVal:: tempVal denotes a formula with a permanent and a temporary partial interpretation
- ▶ Let  $F = \langle [\overline{1}, 2], [1, 3], [\overline{2}, \overline{4}], [4, \overline{3}].$
- We obtain

$$\begin{array}{lll} F::()::() & \\ & \leadsto_{\textit{tempDECIDE}} & F::()::(\dot{1}) & \{[\bar{1},2]\} \\ & \leadsto_{\textit{tempUNIT}} & F::()::(\dot{1},2) & \{[\bar{2},\bar{4}]\} \\ & \leadsto_{\textit{tempUNIT}} & F::()::(\dot{1},2,\bar{4}) & \{[4,\bar{3}]\} \\ & \leadsto_{\textit{tempUNIT}} & F::()::(\dot{1},2,\bar{4},\bar{3}) & \emptyset \\ & \leadsto_{\textit{SAT}} & F::SAT \end{array}$$

### 2SAT - BinSAT - Another Derivation

- ▶ Let  $F = \langle [\overline{1}, 2], [\overline{2}, 3], \dots, [\overline{8}, 9], [\overline{8}, \overline{9}], [8, \overline{9}], [8, 9] \rangle$
- ▶ We obtain F::()::()

#### Note

- > \to denotes the call of unitPropagate within tempUnitPropagate
- In general, temporary partial interpretations are kept but they may be overwritten by the permanent ones

#### **Backdoors**

- Williams, Gomes, Selman: Backdoors to Typical Case Complexity. In: Proc. IJCAI, 1173-1178: 2003
- Why show SAT solvers such a good scaling behavior although SAT is in NP?
  - Practical combinatorial problem instances have a substantial amout of (hidden) tractable sub-structure
  - ▶ New algorithmic techniques exploit such tractable structure

#### **Sub-Solver**

- ▶ Let F be a SAT-instance.
- A sub-solver S given F as input satisfies the following
  - ▶ Trichotomy S either rejects F or determines F correctly
  - ▶ Efficiency S runs in polynomial time
  - ▶ Trivial solvability S can determine if F is trivially true (i.e. is empty) or trivially false (i.e. contains the empty clause)
  - ightharpoonup Self-reducibility If S determines F, then it determines  $F|_J$  for any (partial) interpretation J

## Sub-Solver - Example

- ▶ 2SAT
  - ▶ Trichotomy S must reject a formula F if it is not 2SAT, i.e. if F contains a clause with more than 2 literals
  - ▶ Efficiency S must solve 2SAT in polynomial time like eg. BTOSAT or BinSAT
  - > Trivial Solvability obvious
  - $\triangleright$  Self-reducibility If F is in 2SAT, then  $F|_J$  is also in 2SAT

### **Backdoors**

- Let S be a sub-solver and F a SAT-instance
- ▶ A non-empty subset  $\mathcal{B} \subseteq \operatorname{atoms}(F)$  is a weak backdoor in F for S if for some  $J: \mathcal{B} \to \{\top, \bot\}$ , S returns a satisfying assignment for  $F|_J$
- ▶ A non-empty subset  $\mathcal{B} \subseteq \operatorname{atoms}(F)$  is a strong backdoor in F for S if for all  $J: \mathcal{B} \to \{\top, \bot\}$ , S returns a satisfying assignment for  $F|_J$

## **Backdoors - Example 1**

- ▶ Consider  $F = \langle [\overline{2}, 3], [1, \overline{3}, \overline{4}], [\overline{1}, 6], [\overline{1}, 5, \overline{6}], [4, \overline{5}], [2, \overline{5}, \overline{6}] \rangle$
- $ightharpoonup \mathcal{B} = \{1\}$  is a weak backdoor in F for UP+PL
  - ▶ Let  $F' = F|_1 = \langle [\overline{2}, 3], [6], [5, \overline{6}], [4, \overline{5}], [2, \overline{5}, \overline{6}] \rangle$
  - We obtain

## **Backdoors - Example 2**

- ▶ Reconsider  $F = \langle [\overline{2}, 3], [1, \overline{3}, \overline{4}], [\overline{1}, 6], [\overline{1}, 5, \overline{6}], [4, \overline{5}], [2, \overline{5}, \overline{6}] \rangle$
- ightarrow  $\mathcal{B} = \{1,2\}$  is a strong backdoor in F for 2SAT because

$$ightharpoonup F_1 = F|_{1,2} = \langle [3], [6], [5, \overline{6}], [4, \overline{5}] \rangle$$
 and  $(4, 5, 6, 3) \models F_1$ 

$$ightharpoonup |F_2| = F|_{\overline{1},2} = \langle [3], [\overline{3}, \overline{4}], [4, \overline{5}] \rangle \text{ and } (\overline{5}, \overline{4}, 3) \models F_2$$

$$ightharpoonup |F_3| = F|_{1,\overline{2}} = \langle [6], [5,\overline{6}], [4,\overline{5}] \rangle \text{ and } (4,5,6) \models F_3$$

$$ightharpoonup F_4 = F|_{\overline{1},\overline{2}} = \langle [\overline{3},\overline{4}], [4,\overline{5}], [\overline{5},\overline{6}] \rangle \text{ and } (\overline{5},\overline{4},\dot{3}) \models F_4$$

### **Minimal and Smallest Backdoors**

- ▶ Let S be a sub-solver and F a SAT-instance
- A (weak/strong) backdoor B in F for S is said to be minimal iff no proper subset of B is a (weak/strong) backdoor in F for S
- A (weak/strong) backdoor  $\mathcal{B}$  in F for S is said to be smallest iff it is minimal and  $|\mathcal{B}| \leq |\mathcal{B}'|$  for any minimal (weak/strong) backdoor  $\mathcal{B}'$  in F for S

# Minimal and Smallest Backdoors – Examples

- Let  $G = \langle [\overline{1}, \overline{2}, 4], [\overline{4}, 6], [\overline{4}, \overline{6}, 7], [\overline{4}, \overline{6}, \overline{7}], [\overline{5}, 6], [\overline{5}, \overline{6}, 7], [\overline{5}, \overline{6}, \overline{7}] \rangle$   $F = \langle [1, 3], [2, 3], [\overline{3}, 4, 5] \rangle \wedge G$ 
  - ▶ G can be solved by a Horn sub-solver
  - $\triangleright (\overline{1}, \overline{4}, \overline{5}) \models G$
- ▶  $\mathcal{B}_1 = \{3,4\}$  is a strong backdoor in F for Horn  $\longrightarrow$  Exercise
  - ▶ Neither {3} nor {4} are strong backdoors in F for Horn
  - $ightarrow \mathcal{B}_1 = \{3,4\}$  is a minimal strong backdoor in  $\emph{F}$  for Horn
- $\blacktriangleright \ \mathcal{B}_2 = \{1,3,4\}$  is another strong backdoor in F for Horn
  - $\triangleright \mathcal{B}_2$  is not a minimal strong backdoor in F for Horn
- ▶  $\mathcal{B}_3 = \{1, 2, 4\}$  is yet another strong backdoor in F for Horn.  $\longrightarrow$  Exercise
  - $\triangleright$   $\mathcal{B}_3$  is not a smallest strong backdoor in F for Horn
  - $\triangleright \mathcal{B}_1$  is a smallest strong backdoor in F for Horn  $\longrightarrow$  Exercise
- $\triangleright$   $\mathcal{B}_4 = \{3,5\}$  is another smallest strong backdoor in F for Horn  $\rightarrow$  Exercise

#### Backdoors - Remarks

- Backdoors exist for each F
- ▶ Given a weak backdoor B in F
  - ▶ The search cost for solving F is of order 2<sup>|B|</sup>
- ▶ The size of backdoors in practical problem instances may be surprisingly small

| instance   | # vars | # clauses | backdoor | fraction |
|------------|--------|-----------|----------|----------|
| logstics.c | 6783   | 437431    | 12       | 0.0018   |
| 3bitadd_32 | 8704   | 32316     | 53       | 0.0061   |
| pipe_01    | 7736   | 26087     | 23       | 0.0030   |
| qg_30_1    | 1235   | 8523      | 14       | 0.0113   |
| qg_35_1    | 1597   | 10658     | 15       | 0.0094   |

▶ Given F with |var(F)| = n,  $k \ge 0$ , and sub-solver S. The problem whether there exists a (weak/strong) backdoor in F for S of size k is  $\mathcal{NP}$ -hard

## **Backdoors and Parameterized Complexity**

- Gario: Backdoors for SAT, EMCL Master Thesis, TU Dresden: 2011
- de Haan: Parameterized Complexity in the Polynomial Hierarchy. PhD Thesis TU Wien: 2016

# Simplification - Warm Up (1)

- ▶ When are two formulas F and G semantically equivalent ( $F \equiv G$ )?
- ▶ Let *G* = *F* \ {*C*}
  - $\triangleright$  Is G = F?
  - ▶ Under which condition is  $G \equiv F$ ?
  - How is the check performed?
  - ▶ How complex is this check?
- ▶ How is  $F \equiv_{SAT} G$  defined?
- Are there other redundancies which can be eliminated?

# Simplification - Warm Up (2)

- Which of the following statements is true?
  - $ightharpoonup F \wedge L \equiv F|_{(L)}$
  - $ightharpoonup F \wedge L \equiv_{SAT} F|_{(L)}$
  - $ightharpoonup F \wedge L \models F|_{(L)}$
  - ▶ Let C and D be clauses with  $C \subset D$  in  $F \land D \models F \land C$
  - ▶ Let C and D be clauses with  $C \subset D$  in  $F \land C \models F \land D$

### Simplification – Warm Up (3)

- ▶ How many models has the formula  $F = (a \lor \bar{b}) \land (\bar{a} \lor b)$ ?
- Enumerate the models!
- ▶ How many models has the formula  $F = (a \lor \bar{a}) \land (\bar{a} \lor a)$ ?
- Enumerate the models!
- Do you see a connection?

# **Equivalence Preserving Techniques**

- ▶ A clause C is a tautology iff it contains a complementary pair of literals
  - $\triangleright (a \lor b \lor \bar{b})$
  - > Tautologies can be removed
- ▶ Clause C subsumes clause D iff  $C \subseteq D$ 
  - $\triangleright$   $(a \lor b)$  subsumes  $(a \lor b \lor \bar{c})$
  - Subsumed clauses can be removed

#### Resolution

▶ Remember Let  $C_1$  be a clause containing L and  $C_2$  be a clause containing  $\overline{L}$  The (propositional) resolvent of  $C_1$  and  $C_2$  with respect to L is the clause

$$(C_1 \setminus \{L\}) \cup (C_2 \setminus \{\overline{L}\})$$

C is said to be a resolvent of  $C_1$  and  $C_2$  iff there exists a literal L such that C is the resolvent of  $C_1$  and  $C_2$  wrt L

- $\triangleright$  We will write  $C_1 \otimes_L C_2$  to denote the resolvent of  $C_1$  and  $C_2$  wrt L
- ▶ Is the addition of resolvents an equivalence preserving technique?
- Shall we apply it?

# **Self-Subsuming Resolution**

- ▶ Suppose  $C \lor L ⊗_L D \lor \overline{L} = D$
- ► Example  $(a \lor b \lor d) \otimes_d (a \lor b \lor c \lor \bar{d}) = (a \lor b \lor c)$
- Observe the resolvent subsumes one of its parent clauses
- ► Example (continued) Suppose, a CNF contains both parent clauses

$$\dots (a \lor b \lor d), (a \lor b \lor c \lor \bar{d}) \dots$$

- ▶ If *D* is added, then  $D \vee \bar{L}$  can be removed
- ightharpoonup which in essence removes  $\bar{L}$  from  $D \vee \bar{L}$

$$\dots (a \lor b \lor d), (a \lor b \lor c) \dots$$

- Initially in the SATeLite preprocessor
  - now common in most solvers (i.e., as pre- and inprocessing)

# **Self-Subsuming Resolution – Example**

- ▶ Self-Subsuming Resolution  $C \lor L \bigotimes_L D \lor \overline{L} = D$
- **▶** Example

# Probing (1)

- Idea use unit propagation do derive extra information
- ▶ Vivification of a clause  $C = (L_1 \lor \cdots \lor L_n), C \in F$ 
  - Unit propagation results in the empty clause

1 
$$F :: (\overline{L_1}, \dots, \overline{L_i}) \sim_{\mathit{UNIT}}^* F :: J$$
, where  $[] \in F|_J, i < n$ 

- Unit propagation implies another literal of the clause C
  - 2  $F :: (\overline{L_1}, \dots, \overline{L_i}) \sim^*_{UNIT} F :: J$ , where  $L_j \in J$ ,  $i < j \le n$
- ▶ Unit propagation implies another negated literal of the clause C
  - 3  $F :: (\overline{L_1}, \dots, \overline{L_i}) \sim^*_{\mathit{UNIT}} F :: J$ , where  $\overline{L_j} \in J$ ,  $i < j \le n$
- ▶ Exploit  $F \models ((\bar{L}_1 \land \cdots \land \bar{L}_i) \rightarrow L)$  and, hence,  $F \equiv F \land (L_1 \lor \cdots \lor L_i \lor L)$ 
  - ▶ By the above statements and self-subsuming resolution, replace C with
    - 1  $(L_1 \vee \cdots \vee L_i)$
    - $(L_1 \vee \cdots \vee L_i \vee L_j)$
    - $3 C \setminus \{L_i\}$

## Probing (2)

- ► Failed Literal test for some literal L
  - ho  $F:: L 
    ightharpoonup ^*_{UNIT} F:: J$ , where  $[] \in F|_J$ , then add the unit clause  $\bar{L}$
  - Could also apply conflict analysis
  - Then: learn all UIP clauses (have to be units)
- Test for entailed literals (also backbones, necessary assignments), and equivalent literals wrt F
  - $ightharpoonup F :: L 
    ightharpoonup ^*_{UNIT} F :: J_L$  where  $J_L$  is the set of all implied literals of L
  - $ightharpoonup F :: \bar{L} \leadsto_{UNIT}^* F :: J_{\bar{L}}$  where  $J_{\bar{L}}$  is the set of all implied literals of  $\bar{L}$
  - $\triangleright L'$  is an entailed literal if  $L' \in J_L \cap J_{\bar{L}}$ ,
  - ightharpoonup L' and L are equivalent if  $L' \in J_L$  and  $\bar{L'} \in J_{\bar{L}}$

# **Simplification – Equivalence Preserving Techniques**

- Unit propagation
- Subsumption
- Resolution, hyper binary resolution
- Self-subsuming resolution
- Hidden tautology elimination
- Asymmetric tautology elimination
- Probing
  - Clause vivification
  - Necessary assignments
  - Failed literals
- Adding and removing transitive implications (binary clauses)
- ▶ Higher reasoning: Gaussian elimination, Fourier-Motzkin method
- ▶ No need to construct a model, the found model can be used

### Simplification - Equisatisfiability Preserving Techniques

- Model needs to be constructed
- Information required for model construction can be stored on a stack
- ▶ Reason  $F \sim_{bad} F' \sim_{bad} F'' \sim_{bad} F''' \dots$
- ▶ Reconstruction processes this chain in the opposite direction
- $\blacktriangleright \ldots J''' \to J'' \to J' \to J$
- ▶ Thus, techniques can be run in any order, and mixed with the good ones
- For all currently used techniques, this process is polynomial (linear in the stack)

# **Equivalent Literal Substitution**

- ▶ Given a formula F such that  $F \models (L_1 \leftrightarrow L_2)$ 
  - ▶ then replace each occurrence of  $L_1$  and  $\overline{L_1}$  in F by  $L_2$  and  $\overline{L_2}$ , respectively
  - remove double negation
- How to find equivalent literals?
  - **b** By probing
  - By analyzing the binary implication graph (each SCC is an equivalence)

$$ightharpoonup F \models (a \rightarrow b) \land (b \rightarrow c) \land (c \rightarrow a)$$
, then  $F \models a \leftrightarrow b \leftrightarrow c$ 

By structural hashing

$$ightharpoonup F \models (L_1 \leftrightarrow (a \land b)) \land (L_2 \leftrightarrow (a \land b), \text{ then } F \models (L_1 \leftrightarrow L_2)$$

- Works for many other gate types and variable definitions
- Weakness definitions have to be found (structurally or semantically)
- ► How to construct the model J from J'?
  - ▶ If  $L_2 \in J'$ , then  $J := (J' \setminus \{L_1, \bar{L_1}\}) \cup \{L_1\}$
  - $\triangleright \text{ If } \bar{L_2} \in J', \text{ then } J := (J' \setminus \{L_1, \bar{L_1}\}) \cup \{\bar{L_1}\}$

### **Variable Elimination by Clause Distribution**

Given a formula F in CNF and a literal L

$$\triangleright F_L = \{C \in F \mid L \in C\}$$

$$\triangleright F_L \otimes_L F_{\overline{I}} = \{C \otimes_L D \mid C \in F_L \text{ and } D \in F_{\overline{I}}\}$$

- ► Given a formula F in CNF, variable elimination (or DP resolution) removes a variable X by replacing F<sub>X</sub> ∪ F<sub>X̄</sub> by F<sub>X</sub> ⊗<sub>X</sub> F<sub>X̄</sub>
- **▶** Example

$$\begin{array}{c|ccccc} F_{\bar{X}} \backslash F_X & (X \vee c) & (X \vee \bar{d}) & (X \vee \bar{a} \vee \bar{b}) \\ \hline (\bar{X} \vee a) & (a \vee c) & (a \vee d) & (a \vee \bar{a} \vee \bar{b}) \\ (\bar{X} \vee b) & (b \vee c) & (b \vee d) & (b \vee \bar{a} \vee \bar{b}) \\ (\bar{X} \vee \bar{e} \vee f) & (c \vee \bar{e} \vee f) & (d \vee \bar{e} \vee f) & (\bar{a} \vee \bar{b} \vee \bar{e} \vee f) \end{array}$$

- ightharpoonup Observe  $|F_X \otimes_X F_{\bar{X}}| > |F_X| + |F_{\bar{X}}|$
- Exponential growth of clauses in general

# Variable Elimination by Substitution

- ▶ Idea Detect gates (or definitions) X ↔ GATE(a<sub>1</sub>,..., a<sub>n</sub>) in the formula and use them to reduce the number of added clauses
- ▶ Possible gates

$$\begin{array}{c|c} \text{gate} & \textbf{\textit{G}}_{X} & \textbf{\textit{G}}_{\bar{X}} \\ \hline \text{AND}(\textbf{\textit{a}}_{1},\ldots,\textbf{\textit{a}}_{n}) & (\textbf{\textit{X}}\vee\bar{\textbf{\textit{a}}}_{1}\vee\cdots\vee\bar{\textbf{\textit{a}}}_{n}) & (\bar{\textbf{\textit{X}}}\vee\textbf{\textit{a}}_{1}),\ldots,(\bar{\textbf{\textit{X}}}\vee\textbf{\textit{a}}_{n}) \\ \text{OR}(\textbf{\textit{a}}_{1},\ldots,\textbf{\textit{a}}_{n}) & (\textbf{\textit{X}}\vee\bar{\textbf{\textit{a}}}_{1}),\ldots,(\textbf{\textit{X}}\vee\bar{\textbf{\textit{a}}}_{n}) & (\bar{\textbf{\textit{X}}}\vee\textbf{\textit{a}}_{1}\vee\cdots\vee\textbf{\textit{a}}_{n}) \\ \text{ITE}(\textbf{\textit{c}},t,f) & (\textbf{\textit{X}}\vee\bar{\textbf{\textit{c}}}\vee\bar{\textbf{\textit{t}}}),(\textbf{\textit{X}}\vee\textbf{\textit{c}}\vee\bar{\textbf{\textit{f}}}) & (\bar{\textbf{\textit{X}}}\vee\bar{\textbf{\textit{c}}}\vee t),(\bar{\textbf{\textit{X}}}\vee\textbf{\textit{c}}\vee f) \end{array}$$

- Variable elimination by substitution
  - ightharpoonup Let  $R_X = F_X \setminus G_X$  and  $R_{ar{X}} = F_{ar{X}} \setminus G_{ar{X}}$
  - ightharpoonup Replace  $F_X \cup F_{\bar{X}}$  by  $G_X \otimes_X R_{\bar{X}} \cup G_{\bar{X}} \otimes_X R_X$
- ▶ Always less than  $F_X \otimes_X F_{\bar{X}}$

# Variable Elimination by Substitution

**Example of gate extraction:**  $X \leftrightarrow AND(a, b)$ 

$$\triangleright F_X = (X \vee c) \wedge (X \vee \bar{d}) \wedge (X \vee \bar{a} \vee \bar{b})$$

$$\triangleright F_{\bar{X}} = (\bar{X} \vee a) \wedge (\bar{X} \vee b) \wedge (\bar{X} \vee \bar{e} \vee f)$$

► Example of substitution

|             |                                                                            | R <sub>X</sub>          |                         | $G_X$                                        |
|-------------|----------------------------------------------------------------------------|-------------------------|-------------------------|----------------------------------------------|
|             |                                                                            | $(X \lor c)$            | $(X \vee \bar{d})$      | $(X \vee \bar{a} \vee \bar{b})$              |
| $G_{ar{X}}$ | $(\bar{X} \vee a)$                                                         | (a ∨ c)                 | $(a \lor \overline{d})$ |                                              |
| $R_{ar{X}}$ | $\begin{array}{c} (\bar{X}\vee b)\\ (\bar{X}\vee\bar{e}\vee f)\end{array}$ | ( <i>b</i> ∨ <i>c</i> ) | $(b \vee \bar{d})$      | $(\bar{a} \lor \bar{b} \lor \bar{e} \lor f)$ |

 $\triangleright$  Observe  $|F_X \otimes F_{\bar{Y}}| < |F_X| + |F_{\bar{Y}}|$ 

#### Variable Elimination

- How can the model be reconstructed?
- ▶ Given F, we picked literal X, removed  $F_X$  and  $F_{\bar{X}}$ , and added  $F_X \otimes_X F_{\bar{X}}$
- A model J does not contain a value for X
- ▶ How does it work?

#### **Bounded Variable Addition**

- Given a CNF formula F
- ▶ Idea Can we construct a logically equivalent or equisatisfiable formula F' by introducing a new variable  $X \notin VAR(F)$  such that |F'| < |F|?
  - Reverse of variable elimination
- ► Example Replace the clauses

$$\begin{array}{cccc} (a \lor c) & (a \lor d) \\ (b \lor c) & (b \lor d) \\ (c \lor \bar{e} \lor f) & (d \lor \bar{e} \lor f) & (\bar{a} \lor \bar{b} \lor \bar{e} \lor f) \\ \hline (\bar{X} \lor a) & (\bar{X} \lor b) & (\bar{X} \lor \bar{e} \lor f) \\ (X \lor c) & (X \lor d) & (X \lor \bar{a} \lor \bar{b}) \end{array}$$

▶ Challenge How to find suitable patterns for replacement?

by

## **Factoring Out Subclauses**

► Example Replace

$$(a \lor b \lor c \lor d)$$
  $(a \lor b \lor c \lor e)$   $(a \lor b \lor c \lor f)$ 

by

$$(X \lor d)$$
  $(X \lor e)$   $(X \lor f)$   $(\bar{X} \lor a \lor b \lor c)$ 

- Adds 1 variable and 1 clause
- Reduces number of occurrences of literals by 2
- Not compatible with variable elimination, which would eliminate X immediately
- ▶ So this does not work . . .

#### **Bounded Variable Addition**

▶ Example Smallest pattern that is compatible: replace

$$(a \lor d)$$
  $(a \lor e)$   
 $(b \lor d)$   $(b \lor e)$   
 $(c \lor d)$   $(c \lor e)$ 

by

$$\begin{array}{ll} (\bar{\textbf{\textit{X}}} \vee \textbf{\textit{a}}) & (\bar{\textbf{\textit{X}}} \vee \textbf{\textit{b}}) & (\bar{\textbf{\textit{X}}} \vee \textbf{\textit{c}}) \\ (\textbf{\textit{X}} \vee \textbf{\textit{d}}) & (\textbf{\textit{X}} \vee \textbf{\textit{e}}) \end{array}$$

- Adds 1 variable
- Removes 1 clause

#### **Bounded Variable Addition**

Possible Patterns

$$\begin{array}{cccc} (X_1 \vee L_1) & \dots & (X_1 \vee L_k) \\ \vdots & & \vdots & & & & & \\ (X_n \vee L_1) & \dots & (X_n \vee L_k) \end{array} \equiv \begin{array}{c} \bigcap_{i=1}^n \bigcap_{j=1}^k (X_i \vee L_j) \\ \bigcap_{i=1}^n \bigcap_{j=1}^k (X_i \vee L_j) \end{array}$$

Replaced by

$$\bigwedge_{i=1}^{n} (Y \vee X_{i}) \wedge \bigwedge_{j=1}^{k} (\bar{Y} \vee L_{j})$$

where Y is a new variable

- ▶ Suppose, k clauses share a literal L<sub>i</sub>
- Suppose, n literals X₁ appear in the clauses
- $\triangleright$  Then, nk n k clauses are removed

#### Bounded Variable Addition on AtMostOneZero (1)

**Example** Encoding of AtMostOneZero( $x_1, \ldots, x_n$ )

$$\begin{array}{c} (x_1 \vee x_2) \wedge (x_9 \vee x_{10}) \wedge (x_8 \vee x_{10}) \wedge (x_7 \vee x_{10}) \wedge (x_6 \vee x_{10}) \wedge \\ (x_1 \vee x_3) \wedge (x_2 \vee x_3) \wedge (x_8 \vee x_9) \wedge (x_7 \vee x_9) \wedge (x_6 \vee x_9) \wedge \\ (x_1 \vee x_4) \wedge (x_2 \vee x_4) \wedge (x_3 \vee x_4) \wedge (x_7 \vee x_8) \wedge (x_6 \vee x_8) \wedge \\ (x_1 \vee x_5) \wedge (x_2 \vee x_5) \wedge (x_3 \vee x_5) \wedge (x_4 \vee x_5) \wedge (x_6 \vee x_7) \wedge \\ (x_1 \vee x_6) \wedge (x_2 \vee x_6) \wedge (x_3 \vee x_6) \wedge (x_4 \vee x_6) \wedge (x_5 \vee x_6) \wedge \\ (x_1 \vee x_7) \wedge (x_2 \vee x_7) \wedge (x_3 \vee x_7) \wedge (x_4 \vee x_7) \wedge (x_5 \vee x_7) \wedge \\ (x_1 \vee x_8) \wedge (x_2 \vee x_8) \wedge (x_3 \vee x_8) \wedge (x_4 \vee x_8) \wedge (x_5 \vee x_8) \wedge \\ (x_1 \vee x_9) \wedge (x_2 \vee x_9) \wedge (x_3 \vee x_9) \wedge (x_4 \vee x_9) \wedge (x_5 \vee x_9) \wedge \\ (x_1 \vee x_{10}) \wedge (x_2 \vee x_{10}) \wedge (x_3 \vee x_{10}) \wedge (x_4 \vee x_{10}) \wedge (x_5 \vee x_{10}) \end{array}$$

▶ Replace  $(x_i \lor x_j)$  with  $i \in \{1...5\}, j \in \{6...10\}$  by  $(x_i \lor y), (x_j \lor \bar{y})$ 

#### Bounded Variable Addition on AtMostOneZero (2)

**Example** Encoding of AtMostOneZero( $x_1, \ldots, x_n$ )

$$\begin{array}{c} (x_1 \vee x_2) \wedge (x_9 \vee x_{10}) \wedge (x_8 \vee x_{10}) \wedge (x_7 \vee x_{10}) \wedge (x_6 \vee x_{10}) \wedge \\ (x_1 \vee x_3) \wedge (x_2 \vee x_3) \wedge (x_8 \vee x_9) \wedge (x_7 \vee x_9) \wedge (x_6 \vee x_9) \wedge \\ (x_1 \vee x_4) \wedge (x_2 \vee x_4) \wedge (x_3 \vee x_4) \wedge (x_7 \vee x_8) \wedge (x_6 \vee x_8) \wedge \\ (x_1 \vee x_5) \wedge (x_2 \vee x_5) \wedge (x_3 \vee x_5) \wedge (x_4 \vee x_5) \wedge (x_6 \vee x_7) \wedge \\ (x_1 \vee y) \wedge (x_2 \vee y) \wedge (x_3 \vee y) \wedge (x_4 \vee y) \wedge (x_5 \vee y) \wedge \\ (x_6 \vee \bar{y}) \wedge (x_7 \vee \bar{y}) \wedge (x_8 \vee \bar{y}) \wedge (x_9 \vee \bar{y}) \wedge (x_{10} \vee \bar{y}) \end{array}$$

Replace matched pattern by

$$(x_1 \lor z) \land (x_2 \lor z) \land (x_3 \lor z) \land (x_4 \lor \overline{z}) \land (x_5 \lor \overline{z}) \land (y \lor \overline{z})$$

#### Bounded Variable Addition on AtMostOneZero (3)

**Example** Encoding of AtMostOneZero( $x_1, \ldots, x_n$ )

$$\begin{array}{c} (x_{1} \lor x_{2}) \land (x_{9} \lor x_{10}) \land (x_{8} \lor x_{10}) \land (x_{7} \lor x_{10}) \land (x_{6} \lor x_{10}) \land \\ (x_{1} \lor x_{3}) \land (x_{2} \lor x_{3}) \land (x_{8} \lor x_{9}) \land (x_{7} \lor x_{9}) \land (x_{6} \lor x_{9}) \land \\ (x_{1} \lor z) \land (x_{2} \lor z) \land (x_{3} \lor z) \land (x_{7} \lor x_{8}) \land (x_{6} \lor x_{8}) \land \\ (x_{4} \lor \bar{z}) \land (x_{5} \lor \bar{z}) \land (y \lor \bar{z}) \land (x_{4} \lor x_{5}) \land (x_{6} \lor x_{7}) \land \\ (x_{4} \lor y) \land (x_{5} \lor y) \land (x_{6} \lor \bar{y}) \land (x_{7} \lor \bar{y}) \land (x_{8} \lor \bar{y}) \\ (x_{9} \lor \bar{y}) \land (x_{10} \lor \bar{y}) \end{array}$$

Replace matched pattern by

$$(\mathbf{x}_6 \vee \mathbf{w}) \wedge (\mathbf{x}_7 \vee \mathbf{w}) \wedge (\mathbf{x}_8 \vee \mathbf{w}) \wedge (\mathbf{x}_9 \vee \bar{\mathbf{w}}) \wedge (\mathbf{x}_{10} \vee \bar{\mathbf{w}}) \wedge (\bar{\mathbf{y}} \vee \bar{\mathbf{w}})$$

#### **Bounded Variable Addition**

How can the model be reconstructed?

#### **Blocked Clauses**

- ▶ A literal L in a clause C of a CNF F blocks C in F if for every clause  $D \in F_{\bar{L}}$ , the resolvent  $(C \setminus \{L\}) \cup (D \setminus \{\bar{L}\})$  obtained from resolving C and D on L is a tautology
- A clause is blocked if it contains a literal that blocks it
- **Example** Consider the formula  $(a \lor b) \land (a \lor \bar{b} \lor \bar{c}) \land (\bar{a} \lor c)$ 
  - First clause is not blocked
  - Second clause is blocked by both a and c̄
  - Third clause is blocked by c
- Proposition Removal of an arbitrary blocked clause preserves satisfiability

## **Blocked Clause Elimination (BCE)**

- ▶ BCE While there is a blocked clause C in a CNF F, remove C from F
- **Example** Consider  $(a \lor b) \land (a \lor \bar{b} \lor \bar{c}) \land (\bar{a} \lor c)$ 
  - ▶ After removing either  $(a \lor \bar{b} \lor \bar{c})$  or  $(\bar{a} \lor c)$ , the clause  $(a \lor b)$  becomes blocked
    - $\rightarrow$  no clause with either  $\bar{b}$  or  $\bar{a}$
  - An extreme case in which BCE removes all clauses
- Proposition BCE is confluent

#### **Blocked Clause Elimination**

- How can a model be reconstructed?
- Given F, we picked clause C with blocking literal L
- C was blocked with respect to F<sub>L</sub>
- A model J might falsify C
- How can it work?

## Simplification Techniques - The Bad and Powerful

- ▶ Equisatisfiability Preserving Techniques
  - (Bounded) variable elimination
  - Bounded variable addition
  - Blocked clause elimination
  - Covered clause elimination
  - Equivalent literal substitution
    - based on SCCs in binary implication graphs
    - based on structural hashing
    - based on Probing
  - Resolution asymmetric tautology elimination
- Need to store extra information to construct the model
- Not discussed here
  - Adding redundant clauses
  - Minimizing redundant clauses

### Solving a Problem with SAT



#### Research topics:

- encode problems into CNF
- simplify the problem
- > and search for a solution or prove there does not exist one
- simplification during search
- automatically translate naive encodings into sophisticated encodings