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Rückblick

PTime und LogSpace als mathematische Modelle für Effizienz:

• PTime als robuste Verallgemeinerung der in linearer Zeit lösbaren Probleme

• LogSpace als typische (vermutlich) subpolynomielle Klasse

Wichtige Anwendung: Reduktionen, die ein Problem mit wenig Aufwand auf ein
anderes zurückführen

• Polynomielle (Many-One-)Reduktionen: verbreitetste Form von effizienter
Reduktion; Notation: ≤p

• LogSpace-Reduktionen: häufig anzutreffen, aber selten im Detail definiert
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Warum sollten Reduktionen effizient sein?

Intuition: Eine aufwändige Reduktion kann jedes Problem indirekt lösen, aber dadurch
lernt man nichts interessantes über dessen Komplexität.

Satz: Sei L = {a} eine Sprache über dem Alphabet {a}. Falls P entscheidbar ist, dann
gibt es eine Many-One-Reduktion P ≤m L.

Beweis: Die Reduktion f funktioniert wie folgt:

• Wenn w ∈ P, dann sei f (w) = a.
• Andernfalls, wenn w < P, dann sei f (w) = aa. □
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Effizient und doch nicht praktikabel

Es gibt Situationen, in denen ein Problem in PTime liegt und dennoch nicht praktisch
algorithmisierbar ist.

Satz: Jede endliche Sprache kann in DTIME(1) erkannt werden und liegt daher insbe-
sondere in PTime und LogSpace.

Beispiel: Sei L die Sprache, die alle wahren Aussagen aus der folgenden Menge ent-
hält: {„P = NP“, „P , NP“}. Dann ist L ∈ PTime und damit effizient berechenbar.

Erkenntnis: Man kann manchmal die Existenz eines effizienten Algorithmus beweisen,
ohne zu wissen, wie er aussehen müsste.
{ (Nichtkonstruktiver Beweis.)
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NP
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Die Faktorisierung von M67

Frank Nelson Cole
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Die Faktorisierung von M67

Am 31. Oktober 1903 auf einem Treffen der American Mathematical Society hält Cole
einen Vortrag mit dem Titel „On the factoring of large numbers“.

Zu diesem Zeitpunkt war bereits bekannt, dass die 67. Mersenne-Zahl M67 = 267 − 1
nicht prim ist, aber niemand kannte ihre Primfaktoren.

Frank Nelson Cole zeigt in seinem Vortrag, dass

267 − 1 = . . .

= 147 573 952 589 676 412 927

= . . .

= 193 707 721 · 761 838 257 287

Der Mathematiker, Autor (und Zeitgenosse Coles) Eric Temple Bell behauptete später, Cole habe bei seinem

Vortrag überhaupt nicht gesprochen, dies ist jedoch nicht zweifelsfrei belegt. https://hsm.stackexchange.com/a/2106
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Rückblick: Polynomielle Verifikatoren

In der Vorlesung Formale Systeme haben wir die folgende Definition kennengelernt:

Ein polynomieller Verifikator für eine Sprache L ⊆ Σ∗ ist eine polynomiell zeitbe-
schränkte deterministische TM M, für die gilt:
• M akzeptiert nur Wörter der Form w#z mit:

– w ∈ L;
– z ∈ Σ∗ ist ein Zertifikat polynomieller Länge

(d.h. für M gibt es ein Polynom p mit |z| ≤ p(|w|)).
• Für jedes Wort w ∈ L gibt es ein solches Wort w#z ∈ L(M).

Intuition:

• Das Zertifikat z kodiert die Lösung der Probleminstanz w, die der Verifikator
lediglich nachprüft.

• Zertifikate sollten kurz sein, damit die Prüfung selbst nicht länger dauert als die
Lösung des Problems.

Zertifikate werden auch Nachweis, Beweis oder Zeuge genannt.
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Rückblick: Nachweis-polynomielle Sprachen

Daraus ergibt sich die Definition einer Sprachklasse:

Eine Sprache L ist nachweis-polynomiell wenn es für sie einen polynomiellen Verifika-
tor gibt.

Beispiel: Die Entscheidung, ob ein gegebener Graph einen Hamilton-Pfad zulässt, ist
nachweis-polynomiell. Als Zertifikat dient der entsprechende Pfad.
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NP bedeutet „nachweis-polynomiell“

Wir hatten sodann gezeigt:

Satz: Eine Sprache L ist genau dann nachweis-polynomiell wenn L ∈NP.

Beweisidee:

„⇒“ Gibt es einen polynomiellen Verifikator, dann gibt es auch eine polynomiell
zeitbeschränkte NTM, die das Zertifikat rät und anschließend verifiziert.

„⇐“ Gibt es eine polynomiell zeitbeschränkte NTM, so gibt es einen polynomiellen
Verifikator, der diese NTM simuliert: Das Zertifikat ist ein akzeptierender Lauf. □
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Weitere Beispiele für Probleme in NP

SAT (aussagenlogische Erfüllbarkeit)

Gegeben: Eine aussagenlogische Formel F

Frage: Gibt es für F eine erfüllende Belegung?

Teilmengen-Summe (subset sum)

Gegeben: Eine Menge von Gegenständen S = {a1, . . . , an}, wobei jedem Gegenstand
ai ein Wert v(ai) zugeordnet ist; eine gewünschte Zahl z

Frage: Gibt es eine Teilmenge T ⊆ S mit
∑

a∈T v(a) = z?

Zusammengesetzte Zahl (Nicht-Primzahl)

Gegeben: Eine natürliche Zahl z > 1

Frage: Gibt es eine natürliche Zahlen p, q > 1 mit p · q = z?
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NP ist nicht symmetrisch

Es ist leicht zu sehen:

Satz: Die Klasse P ist unter Komplement abgeschlossen.

Beweis: Wenn es für L eine polynomiell-zeitbeschränkte TMM gibt, dann erhält man
eine TM für L, indem man akzeptierende und nicht-akzeptierende Zustände vonM
vertauscht. □

Allgemein gilt: Jede deterministische Komplexitätsklasse ist unter Komplement
abgeschlossen.

Für nichtdeterministische Klassen wie NP ist das nicht so einfach:

Beispiel: Es scheint kein einfaches Zertifikat dafür zu geben, dass ein Graph keinen
Hamiltonpfad hat.

Die Klasse aller Sprachen L, für die L ∈ NP gilt, heißt coNP.

Jede NTM-Klasse kann komplementiert werden: coNL, coNExp, . . .
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In NP oder nicht?

Vermutung: coNP , NP, d.h. Komplemente von „typischen“ Problemen in NP sind nicht
in NP.

Aber: Es gibt viele Probleme in coNP ∩ NP. Zum Beispiel ist P ⊆ coNP ∩ NP.

Primzahl (= Zusammengesetzte Zahl)

Gegeben: Eine natürliche Zahl z > 1

Frage: Gibt es eine keine natürliche Zahlen p, q > 1 mit p · q = z?

Seit 1975 ist bekannt: Primzahl ∈ NP, also Primzahl ∈ NP ∩ coNP
(Zertifikat: „Primality certificate“)

Seit 2002 ist bekannt: Primzahl ∈ P
(Primzahlentest nach Agrawal, Kayal und Saxena)
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Randbemerkung: Ist Kryptografie sicher?

Das Wirkprinzip asymmetrischer Verschlüsselungsverfahren:

• Es ist leicht, zwei Zahlen zu multiplizieren.

• Es ist schwer, eine Zahl in ihre Faktoren zu zerlegen.

Aber seit 2002 wissen wir:
Man kann in polynomieller Zeit entscheiden, ob es Faktoren mit p · q = z gibt.

Haben Agrawal, Kayal und Saxena die Kryptografie geknackt?

Nein:

• Es ist leicht, zu entscheiden, ob eine Zahl echte Faktoren hat.

• Aber es ist dennoch schwer, die Faktoren zu bestimmen.
(Glauben wir zumindest . . . )
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Faktorisierung

(Nicht)Existenz von Faktoren (Primzahl) erfasst nicht wirklich, wie schwer
Faktorisierung ist.
{Wie kann man das komplexitätstheoretisch ausdrücken?

Faktor-7

Gegeben: Eine natürliche Zahl z > 1

Frage: Hat z einen Primfaktor, der mit der Ziffer 7 endet?

Ein interessantes Entscheidungsproblem:

• Faktor-7 erfordert (vermutlich) die Kenntnis der Primfaktoren, nicht nur das Wissen
um deren Existenz.

• Faktor-7 ∈ NP: Zertifikat ist die Liste aller Primfaktoren∗

• Faktor-7 ∈ coNP

: Zertifikat ist die Liste aller Primfaktoren∗

• Aber niemand konnte bisher zeigen, dass Faktor-7 ∈ P; vermutlich gilt Faktor-7 < P.

∗ Kontrollfrage: Wieso kann man polynomiell verifizieren, dass dies wirklich (alle) Primfaktoren sind?
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Quiz: P vs. NP

Quiz: Welche der folgenden Probleme halten Sie für in NP entscheidbar? Welche für
in P? . . .
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NP-Vollständigkeit
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Probleme vergleichen mit Reduktionen

Intuition:

P ≤p Q

bedeutet

„P ist höchstens so schwer wie Q“

also

„Q ist mindestens genauso schwer wie P“

• Einordnung in Komplexitätsklassen: obere Schranke (für P)
(„P ist mit einem bestimmten Aufwand lösbar (nicht mehr als bei Q)“)

• Reduktion auf andere Probleme: untere Schranke (für Q)
(„Q benötigt mindestens so viel Aufwand wie P“)
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NP-Schwere und NP-Vollständigkeit

Eine Sprache ist genau dann

• NP-schwer, wenn jede Sprache in NP polynomiell darauf reduzierbar ist;

• NP-vollständig, wenn sie NP-schwer ist und in NP liegt.

Beispiel: SAT ist NP-vollständig (Cook & Levin).

Beispiel: Primzahl ist in NP, aber vermutlich nicht NP-schwer. Gleiches gilt für viele
Probleme in P (bei einigen ist dagegen sicher, dass sie nicht NP-schwer sind).

Beispiel: Das Halteproblem ist NP-schwer, aber sicher nicht in NP. Gleiches gilt für
jedes unentscheidbare Problem.
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Das erste NP-vollständige Problem

Der Beweis der NP-Vollständigkeit von SAT war ein wichtiger Durchbruch. (Siehe auch
Vorlesung Formale Systeme.)

Beweisidee:

• Durch direkte Reduktion von Wortproblemen polynomiell zeitbeschränkter NTMs.

• Wir verwenden so viele aussagenlogische Variablen, dass sie jeden polynomiellen
Lauf kodieren können (d.h. alle Speicherstellen, Zustände und Positionen in jedem
Schritt).

• Wir verwenden Formeln um zu garantieren, dass jede erfüllende Belegung einen
korrekten, akzeptierenden Lauf kodiert.
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Weitere NP-vollständige Probleme

Um zu zeigen, dass ein Problem L NP-vollständig ist, genügen die folgenden beiden
Schritte:

(1) Zeige, dass L ∈ NP;

(2) finde ein bereits bekanntes NP-vollständiges Problem Q
und zeige Q ≤p L.

Seit Cook und Levin (frühe 1970er) wurden tausende von NP-vollständigen Problemen
gefunden.

Wir werden jetzt einige Beispiele sehen . . .
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Clique

Eine Clique ist ein Graph, bei dem jeder Knoten mit jedem anderen direkt durch eine
Kante verbunden ist.

Clique

Gegeben: Ein Graph G und eine Zahl k.

Frage: Enthält G eine Clique mit k Knoten?

Satz: Clique ist NP-vollständig.

Beweis:
(1) Clique ∈ NP: Die Clique selbst ist ein geeignetes Zertifikat.
(Kontrollfrage: ist dieses Zertifikat wirklich polynomiell? Ist k in Binärkodierung gegeben, dann ist diese Eingabe schließlich nur log(k) Zeichen lang . . . )

(2) Clique ist NP-schwer. Dazu konstruieren wir eine Reduktion von SAT.
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Clique: Schwere (1)

Beweis Teil (2): Clique ist NP-schwer.

• Sei F eine aussagenlogische Formel in KNF:
F =
(
(L1

1 ∨ . . . ∨ L1
n1

) ∧ . . . ∧ (Lℓ1 ∨ . . . ∨ Lℓnℓ )
)

• Wir definieren einen Graphen GF, so dass gilt:

GF hat eine Clique der Größe ℓ gdw. F ist erfüllbar

• Knoten von GF: die Paare ⟨Li
j, i⟩, für alle i ∈ {1, . . . , ℓ} und j ∈ {1, . . . , ni}

• Kanten von GF: alle Paare ⟨L, i⟩ − ⟨L′, j⟩, für die gilt:
(1) i , j und
(2) L ∧ L′ ist erfüllbar, d.h. L , ¬L′ und L′ , ¬L.

Offensichtlich kann man GF in polynomieller Zeit berechnen.
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Clique: Schwere (2)

Beispiel: F = ((p ∨ q ∨ ¬r) ∧ (p ∨ ¬q) ∧ (¬p ∨ r))

⟨p, 1⟩ ⟨q, 1⟩ ⟨¬r, 1⟩

⟨p, 2⟩ ⟨¬q, 2⟩

⟨¬p, 3⟩ ⟨r, 3⟩

Erfüllende Belegung: p 7→ 1, q 7→ 0, r 7→ 1

Man sieht leicht, dass unsere Reduktion korrekt ist. □
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Unabhängige Mengen

Eine unabhängige Menge ist eine Teilmenge von Knoten in einem Graph, bei der kein
Knoten mit einem anderen direkt verbunden ist.

Unabhängige Menge

Gegeben: Ein Graph G und eine Zahl k.

Frage: Enthält G eine unabhängige Menge mit k Knoten?

Satz: Unabhängige Menge ist NP-vollständig.

Beweis: Die Reduktion von Clique ist sehr einfach:

Ein Graph G = (V, E) mit E ⊆ V × V hat eine Clique der Größe k

genau dann wenn

sein Komplementgraph G = (V, V × V \ E) eine unabhängige Menge der Größe k hat.

{ Der Komplementgraph G eines gegeben Graphen G ist polynomiell berechenbar. □
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Zusammenfassung und Ausblick

NP entspricht der Klasse der nachweis-polynomiellen Probleme.

Die Klasse der Komplemente von NP-Problemen ist coNP.

Polynomielle Reduktionen erlauben uns, die Schwere von Problemen zu vergleichen.

Es gibt sehr viele bekannte NP-vollständige Probleme.

Was erwartet uns als nächstes?

• Mehr NP

• Pseudopolynomielle Probleme

• Komplexität jenseits von NP
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