TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik, Institut fir Ktnstliche Intelligenz, Professur Computational Logic

THEORETISCHE INFORMATIK UND LOGIK

9. Vorlesung: NP und NP-Vollstandigkeit

Sebastian Rudolph

Folien: © Markus Krotzsch, https://iccl.inf. tu-dresden.de/web/TheolLog2017, CC BY 3.0 DE

TU Dresden, 12. Mai 2025


https://iccl.inf.tu-dresden.de/web/Computational_Logic
https://iccl.inf.tu-dresden.de/web/TheoLog2025
https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch

Rackblick

PTime und LogSpace als mathematische Modelle fir Effizienz:
* PTime als robuste Verallgemeinerung der in linearer Zeit I6sbaren Probleme

® |LogSpace als typische (vermutlich) subpolynomielle Klasse

Wichtige Anwendung: Reduktionen, die ein Problem mit wenig Aufwand auf ein
anderes zurlckfUhren
® Polynomielle (Many-One-)Reduktionen: verbreitetste Form von effizienter
Reduktion; Notation: <,
® | ogSpace-Reduktionen: haufig anzutreffen, aber selten im Detail definiert
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Warum sollten Reduktionen effizient sein?

Intuition: Eine aufwandige Reduktion kann jedes Problem indirekt I6sen, aber dadurch
lernt man nichts interessantes Gber dessen Komplexitat.
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Warum sollten Reduktionen effizient sein?

Intuition: Eine aufwandige Reduktion kann jedes Problem indirekt I6sen, aber dadurch
lernt man nichts interessantes Gber dessen Komplexitat.

Satz: Sei L = {a} eine Sprache Uber dem Alphabet {a}. Falls P entscheidbar ist, dann
gibt es eine Many-One-Reduktion P <,, L.
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Warum sollten Reduktionen effizient sein?

Intuition: Eine aufwandige Reduktion kann jedes Problem indirekt I6sen, aber dadurch
lernt man nichts interessantes Gber dessen Komplexitat.

Satz: Sei L = {a} eine Sprache lUber dem Alphabet {a}. Falls P entscheidbar ist, dann
gibt es eine Many-One-Reduktion P <,, L.

Beweis: Die Reduktion f funktioniert wie folgt:
®* Wenn w € P, dann sei f(w) = a.

® Andernfalls, wenn w ¢ P, dann sei f(w) = aa. |
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Effizient und doch nicht praktikabel

Es gibt Situationen, in denen ein Problem in PTime liegt und dennoch nicht praktisch
algorithmisierbar ist.

Satz: Jede endliche Sprache kann in DTIME(1) erkannt werden und liegt daher insbe-
sondere in PTime und LogSpace.
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Effizient und doch nicht praktikabel

Es gibt Situationen, in denen ein Problem in PTime liegt und dennoch nicht praktisch
algorithmisierbar ist.

Satz: Jede endliche Sprache kann in DTIME(1) erkannt werden und liegt daher insbe-
sondere in PTime und LogSpace.

Beispiel: Sei L die Sprache, die alle wahren Aussagen aus der folgenden Menge ent-
halt: {,P = NP“, ,P # NP“}. Dann ist L € PTime und damit effizient berechenbar.
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Effizient und doch nicht praktikabel

Es gibt Situationen, in denen ein Problem in PTime liegt und dennoch nicht praktisch
algorithmisierbar ist.

Satz: Jede endliche Sprache kann in DTIME(1) erkannt werden und liegt daher insbe-
sondere in PTime und LogSpace.

Beispiel: Sei L die Sprache, die alle wahren Aussagen aus der folgenden Menge ent-
halt: {,P = NP“, ,P # NP“}. Dann ist L € PTime und damit effizient berechenbar.

Erkenntnis: Man kann manchmal die Existenz eines effizienten Algorithmus beweisen,
ohne zu wissen, wie er aussehen muisste.
~» (Nichtkonstruktiver Beweis.)
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NP

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 9 Folie 5 von 26


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Die Faktorisierung von Mg

Frank Nelson Cole
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Die Faktorisierung von Mg

Am 31. Oktober 1903 auf einem Treffen der American Mathematical Society halt Cole
einen Vortrag mit dem Titel ,On the factoring of large numbers®.
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Die Faktorisierung von Mg

Am 31. Oktober 1903 auf einem Treffen der American Mathematical Society halt Cole
einen Vortrag mit dem Titel ,On the factoring of large numbers®.

Zu diesem Zeitpunkt war bereits bekannt, dass die 67. Mersenne-Zahl Mg; = 27 — 1
nicht prim ist, aber niemand kannte ihre Primfaktoren.
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Die Faktorisierung von Mg

Am 31. Oktober 1903 auf einem Treffen der American Mathematical Society halt Cole
einen Vortrag mit dem Titel ,On the factoring of large numbers®.

Zu diesem Zeitpunkt war bereits bekannt, dass die 67. Mersenne-Zahl My; = 257 — 1
nicht prim ist, aber niemand kannte ihre Primfaktoren.

Frank Nelson Cole zeigt in seinem Vortrag, dass

267 1

147573 952589676412927

193707721 - 761 838 257 287

Der Mathematiker, Autor (und Zeitgenosse Coles) Eric Temple Bell behauptete spater, Cole habe bei seinem

Vortrag Uberhaupt nicht gesprochen, dies ist jedoch nicht zweifelsfrei belegt.  https://hsm. stackexchange.com/a/2106
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Ruckblick: Polynomielle Verifikatoren

In der Vorlesung Formale Systeme haben wir die folgende Definition kennengelernt:

Ein polynomieller Verifikator fUr eine Sprache L C X* ist eine polynomiell zeitbe-
schrankte deterministische TM M, fiir die gilt:
® M akzeptiert nur Worter der Form w#z mit:
- wel;
— z € X" ist ein Zertifikat polynomieller Lange
(d.h. fiir M gibt es ein Polynom p mit |z| < p(jw])).

® Fir jedes Wort w € L gibt es ein solches Wort w#z € L(M).

Intuition:

® Das Zertifikat z kodiert die Lésung der Probleminstanz w, die der Verifikator
lediglich nachpruft.

o Zertifikate sollten kurz sein, damit die Prifung selbst nicht Ianger dauert als die
Lésung des Problems.

Zertifikate werden auch Nachweis, Beweis oder Zeuge genannt.
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Ruckblick: Nachweis-polynomielle Sprachen

Daraus ergibt sich die Definition einer Sprachklasse:

Eine Sprache L ist nachweis-polynomiell wenn es fur sie einen polynomiellen Verifika-
tor gibt.
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Ruckblick: Nachweis-polynomielle Sprachen

Daraus ergibt sich die Definition einer Sprachklasse:

Eine Sprache L ist nachweis-polynomiell wenn es fur sie einen polynomiellen Verifika-
tor gibt.

Beispiel: Die Entscheidung, ob ein gegebener Graph einen Hamilton-Pfad zulasst, ist
nachweis-polynomiell. Als Zertifikat dient der entsprechende Pfad.
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NP bedeutet ,nachweis-polynomiell”

Wir hatten sodann gezeigt:

Satz: Eine Sprache L ist genau dann nachweis-polynomiell wenn L € NP.

Beweisidee:

,=" Gibt es einen polynomiellen Verifikator, dann gibt es auch eine polynomiell
zeitbeschrankte NTM, die das Zertifikat rat und anschlieBend verifiziert.

,<" Gibt es eine polynomiell zeitbeschrankte NTM, so gibt es einen polynomiellen
Verifikator, der diese NTM simuliert: Das Zertifikat ist ein akzeptierender Lauf. O
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Weitere Beispiele flr Probleme in NP

SAT (aussagenlogische Erflillbarkeit)
Gegeben: Eine aussagenlogische Formel F

Frage: Gibt es fur F eine erfillende Belegung?
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Weitere Beispiele flr Probleme in NP

SAT (aussagenlogische Erflillbarkeit)
Gegeben: Eine aussagenlogische Formel F

Frage: Gibt es fur F eine erfillende Belegung?

Teilmengen-Summe (subset sum)

Gegeben: Eine Menge von Gegenstanden S = {ay,...,a,}, wobei jedem Gegenstand
a; ein Wert v(a;) zugeordnet ist; eine gewlinschte Zahl z

Frage: Gibt es eine Teilmenge T C S mit 3,y v(a) = z?
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Weitere Beispiele flr Probleme in NP

SAT (aussagenlogische Erflillbarkeit)
Gegeben: Eine aussagenlogische Formel F

Frage: Gibt es fur F eine erfillende Belegung?

Teilmengen-Summe (subset sum)

Gegeben: Eine Menge von Gegenstanden S = {ay,...,a,}, wobei jedem Gegenstand
a; ein Wert v(a;) zugeordnet ist; eine gewlinschte Zahl z

Frage: Gibt es eine Teilmenge T C S mit 3,y v(a) = z?

Zusammengesetzte Zahl (Nicht-Primzahl)
Gegeben: Eine natirliche Zahl z > 1

Frage: Gibt es eine natirliche Zahlen p,g > 1 mitp-¢q = z?
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NP ist nicht symmetrisch

Es ist leicht zu sehen:

Satz: Die Klasse P ist unter Komplement abgeschlossen.

Beweis: Wenn es fir L eine polynomiell-zeitbeschréankte TM M gibt, dann erhéalt man
eine TM fiir L, indem man akzeptierende und nicht-akzeptierende Zustande von M
vertauscht. o

Allgemein gilt: Jede deterministische Komplexitatsklasse ist unter Komplement
abgeschlossen.
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NP ist nicht symmetrisch

Es ist leicht zu sehen:

Satz: Die Klasse P ist unter Komplement abgeschlossen.

Beweis: Wenn es fir L eine polynomiell-zeitbeschréankte TM M gibt, dann erhéalt man
eine TM fiir L, indem man akzeptierende und nicht-akzeptierende Zustande von M
vertauscht. o

Allgemein gilt: Jede deterministische Komplexitatsklasse ist unter Komplement
abgeschlossen.

Fir nichtdeterministische Klassen wie NP ist das nicht so einfach:

Beispiel: Es scheint kein einfaches Zertifikat daflir zu geben, dass ein Graph keinen
Hamiltonpfad hat.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 9 Folie 12 von 26


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

NP ist nicht symmetrisch

Es ist leicht zu sehen:

Satz: Die Klasse P ist unter Komplement abgeschlossen.

Beweis: Wenn es fir L eine polynomiell-zeitbeschréankte TM M gibt, dann erhéalt man
eine TM fiir L, indem man akzeptierende und nicht-akzeptierende Zustande von M
vertauscht. o

Allgemein gilt: Jede deterministische Komplexitatsklasse ist unter Komplement
abgeschlossen.

Fir nichtdeterministische Klassen wie NP ist das nicht so einfach:

Beispiel: Es scheint kein einfaches Zertifikat daflir zu geben, dass ein Graph keinen
Hamiltonpfad hat.

Die Klasse aller Sprachen L, fiir die L € NP gilt, heiBt coNP.

Jede NTM-Klasse kann komplementiert werden: coNL, coNExp, . ..
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In NP oder nicht?

Vermutung: coNP # NP, d.h. Komplemente von ,typischen” Problemen in NP sind nicht
in NP.

Aber: Es gibt viele Probleme in coNP N NP. Zum Beispiel ist P € coNP N NP.
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In NP oder nicht?

Vermutung: coNP # NP, d.h. Komplemente von ,typischen” Problemen in NP sind nicht
in NP.

Aber: Es gibt viele Probleme in coNP N NP. Zum Beispiel ist P € coNP N NP.

Primzahl (= Zusammengesetzte Zahl)
Gegeben: Eine natirliche Zahl z > 1

Frage: Gibt es eine keine natirliche Zahlen p,g > 1 mit p- g = z?
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In NP oder nicht?

Vermutung: coNP # NP, d.h. Komplemente von ,typischen” Problemen in NP sind nicht
in NP.

Aber: Es gibt viele Probleme in coNP N NP. Zum Beispiel ist P € coNP N NP.

Primzahl (= Zusammengesetzte Zahl)
Gegeben: Eine natirliche Zahl z > 1

Frage: Gibt es eine keine natirliche Zahlen p,g > 1 mit p- g = z?

Seit 1975 ist bekannt: Primzahl € NP, also Primzahl € NP N coNP
(Zertifikat: ,Primality certificate*)
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In NP oder nicht?

Vermutung: coNP # NP, d.h. Komplemente von ,typischen” Problemen in NP sind nicht
in NP.

Aber: Es gibt viele Probleme in coNP N NP. Zum Beispiel ist P € coNP N NP.

Primzahl (= Zusammengesetzte Zahl)
Gegeben: Eine natirliche Zahl z > 1

Frage: Gibt es eine keine natirliche Zahlen p,g > 1 mit p- g = z?

Seit 1975 ist bekannt: Primzahl € NP, also Primzahl € NP N coNP
(Zertifikat: ,Primality certificate*)

Seit 2002 ist bekannt: Primzahl € P
(Primzahlentest nach Agrawal, Kayal und Saxena)
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Randbemerkung: Ist Kryptografie sicher?

Das Wirkprinzip asymmetrischer Verschliisselungsverfahren:
e Esist leicht, zwei Zahlen zu multiplizieren.
® Esist schwer, eine Zahl in ihre Faktoren zu zerlegen.

Aber seit 2002 wissen wir:
Man kann in polynomieller Zeit entscheiden, ob es Faktoren mit p - g = z gibt.

Haben Agrawal, Kayal und Saxena die Kryptografie geknackt?
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Randbemerkung: Ist Kryptografie sicher?

Das Wirkprinzip asymmetrischer Verschliisselungsverfahren:
e Esist leicht, zwei Zahlen zu multiplizieren.
® Esist schwer, eine Zahl in ihre Faktoren zu zerlegen.

Aber seit 2002 wissen wir:
Man kann in polynomieller Zeit entscheiden, ob es Faktoren mit p - g = z gibt.

Haben Agrawal, Kayal und Saxena die Kryptografie geknackt?

Nein:
® Es st leicht, zu entscheiden, ob eine Zahl echte Faktoren hat.

® Aber es ist dennoch schwer, die Faktoren zu bestimmen.
(Glauben wir zumindest .. .)
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Faktorisierung

(Nicht)Existenz von Faktoren (Primzahl) erfasst nicht wirklich, wie schwer
Faktorisierung ist.
~» Wie kann man das komplexitatstheoretisch ausdriicken?
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Faktorisierung

(Nicht)Existenz von Faktoren (Primzahl) erfasst nicht wirklich, wie schwer
Faktorisierung ist.
~» Wie kann man das komplexitatstheoretisch ausdriicken?

Faktor-7

Gegeben: Eine natirliche Zahl z > 1

Frage: Hat z einen Primfaktor, der mit der Ziffer 7 endet?
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Faktorisierung

(Nicht)Existenz von Faktoren (Primzahl) erfasst nicht wirklich, wie schwer
Faktorisierung ist.
~» Wie kann man das komplexitatstheoretisch ausdriicken?

Faktor-7

Gegeben: Eine natirliche Zahl z > 1

Frage: Hat z einen Primfaktor, der mit der Ziffer 7 endet?

Ein interessantes Entscheidungsproblem:

® Faktor-7 erfordert (vermutlich) die Kenntnis der Primfaktoren, nicht nur das Wissen
um deren Existenz.
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Faktorisierung

(Nicht)Existenz von Faktoren (Primzahl) erfasst nicht wirklich, wie schwer
Faktorisierung ist.
~» Wie kann man das komplexitatstheoretisch ausdriicken?

Faktor-7

Gegeben: Eine natirliche Zahl z > 1

Frage: Hat z einen Primfaktor, der mit der Ziffer 7 endet?

Ein interessantes Entscheidungsproblem:

® Faktor-7 erfordert (vermutlich) die Kenntnis der Primfaktoren, nicht nur das Wissen
um deren Existenz.

e Faktor-7 € NP
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Faktorisierung

(Nicht)Existenz von Faktoren (Primzahl) erfasst nicht wirklich, wie schwer
Faktorisierung ist.
~» Wie kann man das komplexitatstheoretisch ausdriicken?

Faktor-7

Gegeben: Eine natirliche Zahl z > 1

Frage: Hat z einen Primfaktor, der mit der Ziffer 7 endet?

Ein interessantes Entscheidungsproblem:

® Faktor-7 erfordert (vermutlich) die Kenntnis der Primfaktoren, nicht nur das Wissen
um deren Existenz.

e Faktor-7 € NP: Zertifikat ist die Liste aller Primfaktoren®

* Kontrollfrage: Wieso kann man polynomiell verifizieren, dass dies wirklich (alle) Primfaktoren sind?
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Faktorisierung

(Nicht)Existenz von Faktoren (Primzahl) erfasst nicht wirklich, wie schwer
Faktorisierung ist.
~» Wie kann man das komplexitatstheoretisch ausdriicken?

Faktor-7

Gegeben: Eine natirliche Zahl z > 1

Frage: Hat z einen Primfaktor, der mit der Ziffer 7 endet?

Ein interessantes Entscheidungsproblem:

® Faktor-7 erfordert (vermutlich) die Kenntnis der Primfaktoren, nicht nur das Wissen
um deren Existenz.

e Faktor-7 € NP: Zertifikat ist die Liste aller Primfaktoren®
e Faktor-7 € coNP

* Kontrollfrage: Wieso kann man polynomiell verifizieren, dass dies wirklich (alle) Primfaktoren sind?
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Faktorisierung

(Nicht)Existenz von Faktoren (Primzahl) erfasst nicht wirklich, wie schwer
Faktorisierung ist.
~» Wie kann man das komplexitatstheoretisch ausdriicken?

Faktor-7

Gegeben: Eine natirliche Zahl z > 1

Frage: Hat z einen Primfaktor, der mit der Ziffer 7 endet?

Ein interessantes Entscheidungsproblem:

® Faktor-7 erfordert (vermutlich) die Kenntnis der Primfaktoren, nicht nur das Wissen
um deren Existenz.

e Faktor-7 € NP: Zertifikat ist die Liste aller Primfaktoren®

e Faktor-7 € coNP: Zertifikat ist die Liste aller Primfaktoren*

* Kontrollfrage: Wieso kann man polynomiell verifizieren, dass dies wirklich (alle) Primfaktoren sind?
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Faktorisierung

(Nicht)Existenz von Faktoren (Primzahl) erfasst nicht wirklich, wie schwer
Faktorisierung ist.
~» Wie kann man das komplexitatstheoretisch ausdriicken?

Faktor-7

Gegeben: Eine natirliche Zahl z > 1

Frage: Hat z einen Primfaktor, der mit der Ziffer 7 endet?

Ein interessantes Entscheidungsproblem:

® Faktor-7 erfordert (vermutlich) die Kenntnis der Primfaktoren, nicht nur das Wissen
um deren Existenz.

e Faktor-7 € NP: Zertifikat ist die Liste aller Primfaktoren®
e Faktor-7 € coNP: Zertifikat ist die Liste aller Primfaktoren*
® Aber niemand konnte bisher zeigen, dass Faktor-7 € P; vermutlich gilt Faktor-7 ¢ P.

* Kontrollfrage: Wieso kann man polynomiell verifizieren, dass dies wirklich (alle) Primfaktoren sind?
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Quiz: P vs. NP

Quiz: Welche der folgenden Probleme halten Sie fiir in NP entscheidbar? Welche flir
inP? ...
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NP-Vollstandigkeit
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Probleme vergleichen mit Reduktionen

Intuition:

P<,Q
bedeutet
,P ist hdchstens so schwer wie Q®
also

»Q ist mindestens genauso schwer wie P

e Einordnung in Komplexitatsklassen: obere Schranke (fur P)
(,P ist mit einem bestimmten Aufwand l6sbar (nicht mehr als bei Q))

® Reduktion auf andere Probleme: untere Schranke (fir Q)
(~Q bendtigt mindestens so viel Aufwand wie P)
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NP-Schwere und NP-Vollstandigkeit

Eine Sprache ist genau dann
® NP-schwer, wenn jede Sprache in NP polynomiell darauf reduzierbar ist;
e NP-vollstandig, wenn sie NP-schwer ist und in NP liegt.
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NP-Schwere und NP-Vollstandigkeit

Eine Sprache ist genau dann
® NP-schwer, wenn jede Sprache in NP polynomiell darauf reduzierbar ist;
e NP-vollstandig, wenn sie NP-schwer ist und in NP liegt.

Beispiel: SAT ist NP-vollstandig (Cook & Levin).

Beispiel: Primzahl ist in NP, aber vermutlich nicht NP-schwer. Gleiches gilt fur viele
Probleme in P (bei einigen ist dagegen sicher, dass sie nicht NP-schwer sind).

Beispiel: Das Halteproblem ist NP-schwer, aber sicher nicht in NP. Gleiches gilt flr
jedes unentscheidbare Problem.
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Das erste NP-vollstandige Problem

Der Beweis der NP-Vollstandigkeit von SAT war ein wichtiger Durchbruch. (Siehe auch
Vorlesung Formale Systeme.)

Beweisidee:
® Durch direkte Reduktion von Wortproblemen polynomiell zeitbeschrénkter NTMs.
* Wir verwenden so viele aussagenlogische Variablen, dass sie jeden polynomiellen
Lauf kodieren kdnnen (d.h. alle Speicherstellen, Zustande und Positionen in jedem
Schritt).
* Wir verwenden Formeln um zu garantieren, dass jede erflllende Belegung einen
korrekten, akzeptierenden Lauf kodiert.
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Weitere NP-vollstandige Probleme

Um zu zeigen, dass ein Problem L NP-vollstandig ist, gentigen die folgenden beiden
Schritte:

(1) Zeige, dass L € NP;

(2) finde ein bereits bekanntes NP-vollstdndiges Problem Q
und zeige Q <, L.

Seit Cook und Levin (friihe 1970er) wurden tausende von NP-vollstandigen Problemen
gefunden.

Wir werden jetzt einige Beispiele sehen ...
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Clique

Eine Clique ist ein Graph, bei dem jeder Knoten mit jedem anderen direkt durch eine
Kante verbunden ist.

Clique
Gegeben: Ein Graph G und eine Zahl k.

Frage: Enthélt G eine Clique mit kX Knoten?
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Clique

Eine Clique ist ein Graph, bei dem jeder Knoten mit jedem anderen direkt durch eine
Kante verbunden ist.

Clique
Gegeben: Ein Graph G und eine Zahl k.

Frage: Enthélt G eine Clique mit kX Knoten?

Satz: Clique ist NP-vollstandig.
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Clique

Eine Clique ist ein Graph, bei dem jeder Knoten mit jedem anderen direkt durch eine
Kante verbunden ist.

Clique
Gegeben: Ein Graph G und eine Zahl k.

Frage: Enthélt G eine Clique mit kX Knoten?

Satz: Clique ist NP-vollstandig.

Beweis:
(1) Clique € NP: Die Clique selbst ist ein geeignetes Zertifikat.

(Kontrollfrage: ist dieses Zertifikat wirklich polynomiell? Ist & in Binarkodierung gegeben, dann ist diese Eingabe schlieBlich nur log(k) Zeichen lang ...)
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Clique

Eine Clique ist ein Graph, bei dem jeder Knoten mit jedem anderen direkt durch eine
Kante verbunden ist.

Clique
Gegeben: Ein Graph G und eine Zahl k.

Frage: Enthélt G eine Clique mit kX Knoten?

Satz: Clique ist NP-vollstandig.

Beweis:
(1) Clique € NP: Die Clique selbst ist ein geeignetes Zertifikat.

(Kontrollfrage: ist dieses Zertifikat wirklich polynomiell? Ist & in Binarkodierung gegeben, dann ist diese Eingabe schlieBlich nur log(k) Zeichen lang ...)

(2) Clique ist NP-schwer. Dazu konstruieren wir eine Reduktion von SAT.
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Clique: Schwere (1)

Beweis Teil (2): Clique ist NP-schwer.

® Sei F eine aussagenlogische Formel in KNF:
F:((L} v...vL}ll)/\.../\(Lfv...vL,{,))
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Clique: Schwere (1)

Beweis Teil (2): Clique ist NP-schwer.

® Sei F eine aussagenlogische Formel in KNF:
F:((L} v...vL}ll)/\.../\(Lfv...vL,{())
® Wir definieren einen Graphen Gy, so dass gilt:

Gr hat eine Clique der GréBe ¢ gdw.
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Clique: Schwere (1)

Beweis Teil (2): Clique ist NP-schwer.
® Sei F eine aussagenlogische Formel in KNF:
F:((L} v...vL}ll)/\.../\(Lfv...vL,{())
® Wir definieren einen Graphen Gy, so dass gilt:
Gr hat eine Clique der GréBe ¢  gdw.  F ist erfiillbar
e Knoten von Gr: die Paare (LJ’ﬁ,i), furalleie{l,...,flundje{l,... n;}
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Clique: Schwere (1)

Beweis Teil (2): Clique ist NP-schwer.
® Sei F eine aussagenlogische Formel in KNF:
F:((L} v...vL}ll)/\.../\(Lfv...vL,{())
® Wir definieren einen Graphen Gy, so dass gilt:
Gr hat eine Clique der GréBe ¢  gdw.  Fist erfullbar

e Knoten von Gr: die Paare (LJ’ﬁ,i), furalleie{l,...,flundje{l,... n;}
e Kanten von Gg: alle Paare (L, i) — (L', j), fur die gilt:

(1) i #jund

(2) L AL isterfullbar, d.h. L # =L und L" # —L.

Offensichtlich kann man Gp in polynomieller Zeit berechnen.
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Clique: Schwere (2)

Beispiel: F = (p VgV -r)A(V —q)A(=pVr)

<p71> <Qa1> <_|V,1>
P,2) (=q,2)
(=p,3) (r,3)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 9

Folie 24 von 26


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Clique: Schwere (2)

Beispiel: F = (p VgV -r)A(V —q)A(=pVr)

<p71>\ <Qa1> <_|V,1>

P,2)

(-p,3) (r.3)

Erflillende Belegung: p— 1,g— 0,r > 1
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Clique: Schwere (2)

Beispiel: F = (p VgV -r)A(V —q)A(=pVr)

<P71> <Qa]> <_'r71>
P,2) (=q,2)
(=p,3) (r,3)

Erflillende Belegung: p— 1,g— 0,r > 1

Man sieht leicht, dass unsere Reduktion korrekt ist.
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Unabhéngige Mengen

Eine unabhangige Menge ist eine Teilmenge von Knoten in einem Graph, bei der kein
Knoten mit einem anderen direkt verbunden ist.

Unabhéngige Menge
Gegeben: Ein Graph G und eine Zahl k.

Frage: Enthélt G eine unabhangige Menge mit k Knoten?
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Unabhéngige Mengen

Eine unabhangige Menge ist eine Teilmenge von Knoten in einem Graph, bei der kein
Knoten mit einem anderen direkt verbunden ist.

Unabhéngige Menge
Gegeben: Ein Graph G und eine Zahl k.

Frage: Enthélt G eine unabhangige Menge mit k Knoten?

Satz: Unabhéangige Menge ist NP-vollstéandig.
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Unabhéngige Mengen

Eine unabhangige Menge ist eine Teilmenge von Knoten in einem Graph, bei der kein
Knoten mit einem anderen direkt verbunden ist.

Unabhéngige Menge
Gegeben: Ein Graph G und eine Zahl k.

Frage: Enthélt G eine unabhangige Menge mit k Knoten?

Satz: Unabhéangige Menge ist NP-vollstéandig.

Beweis: Die Reduktion von Clique ist sehr einfach:

Ein Graph G = (V,E) mit E C V x V hat eine Clique der GréBe k
genau dann wenn
sein Komplementgraph G = (V, V x V \ E) eine unabhangige Menge der GréBe k hat.

~> Der Komplementgraph G eines gegeben Graphen G ist polynomiell berechenbar. 0
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Zusammenfassung und Ausblick

NP entspricht der Klasse der nachweis-polynomiellen Probleme.
Die Klasse der Komplemente von NP-Problemen ist coNP.
Polynomielle Reduktionen erlauben uns, die Schwere von Problemen zu vergleichen.

Es gibt sehr viele bekannte NP-vollstandige Probleme.

Was erwartet uns als nachstes?
e Mehr NP
® Pseudopolynomielle Probleme

o Komplexitat jenseits von NP
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