

Science of Computational Logic

Steffen Hölldobler, Emmanuelle-Anna Dietz Saldanha

European Master's Program in Computational Logic — winter semester 2017/2018

Problem 5.1

In the lectures, $\approx_{\mathcal{E}}$ was defined to be the *least congruence relation generated by \mathcal{E}* . What does it mean?

Problem 5.2

Consider the set of clauses

$$\mathcal{F} = \{ [p(f(Y)), q(Y), r(b)], [\neg p(b)], [\neg q(a)], [\neg r(a)] \}$$

and the equational system

$$\mathcal{E} = \{(\forall X)f(X) \approx X, a \approx b\}.$$

Show by paramodulation, resolution and factoring that $\mathcal{F} \cup \mathcal{E} \cup \mathcal{E}_{\approx}$ is unsatisfiable. Also give the mgu θ used in every step.

Problem 5.3

Let \mathcal{R} be a term rewriting system and let s and t be terms. Prove that:

1. $s \rightarrow_{\mathcal{R}} t$ implies $s \approx_{\mathcal{E}_{\mathcal{R}}} t$.
2. $s \leftrightarrow_{\mathcal{R}}^* t$ implies $s \approx_{\mathcal{E}_{\mathcal{R}}} t$.

Problem 5.4

A non terminating term rewriting system can be confluent. True or false? Prove it.

Problem 5.5

Prove that a term rewriting system \mathcal{R} is Church-Rosser if and only if it is confluent.

Problem 5.6

Consider the following term rewriting system:

$$\begin{aligned} f(f(X, Y), Z) &\rightarrow f(X, f(Y, Z)); \\ f(X, 1) &\rightarrow X. \end{aligned}$$

1. Is it terminating? Justify your answer.
2. Compute all the critical pairs, and show how you got them.
3. Can you orientate the critical pairs, i.e., add a rule $s \rightarrow t$ or $t \rightarrow s$ for each critical pair $\langle s, t \rangle$, such that termination is preserved? (If it is possible, do it ...)

Note: When executing the completion algorithm you have to go on trying to build critical pairs with the iteratively added rules.

Problem 5.7

Let \mathcal{R} be a term rewriting system and $>/2$ a termination ordering.

If for all rules $l \rightarrow r \in \mathcal{R}$ the relation $l > r$ holds, then \mathcal{R} is terminating.

Problem 5.8

Consider the term rewriting system

$$\mathcal{R} = \{ f(g(X)) \rightarrow g(X), \tag{1}$$

$$g(h(X)) \rightarrow g(X) \} \tag{2}$$

Show that \mathcal{R} is canonical.