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Review: Hierarchies and Gaps

Hierarchy theorems tell us that more time/space leads to more power:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace ⊆ ExpTime ⊆ NExpTime ⊆ ExpSpace

,

,

,

,

Gap theorems tell us that, for non-constructible functions as time/space bounds,
arbitrary (constructible or not) boosts in resources may not lead to more power
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Any natural problems in the hierarchy?

To show that complexity classes are different

• we have defined concrete diagonalisation languages that can show the difference
(i.e., our argument was constructive),

• but these diagonalisation languages are rather artificial (i.e., not natural).

Are there, e.g., any natural ExpTime problems that are not in P?

Yes, many:

Theorem 14.1: If L is ExpTime-hard, then L < P.

Proof: We have shown that there is a language D ∈ ExpTime \ P. If L is ExpTime-hard,
then there is a polynomial many-one reduction D ≤p L. Therefore, if L were in P, then so
would D – contradiction. □

Similar results hold for other classes we separated: A problem that is hard for the larger
class cannot be included in the smaller.
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Ladner’s Theorem
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P vs. NP revisited

We have seen that a great variety of difficult problems in NP turn out to be NP-complete.

A natural question to ask is whether this apparent dichotomy is a law of nature:

Hypothesis: Every problem in NP is either in P or NP-complete.

In 1975, Richard E. Ladner showed that this is wrong, unless P = NP
(in the latter case, uninterestingly, the non-trivial problems in P would turn out to be exactly the set of NP-complete problems)

Theorem 14.2 (Ladner, 1975): If P , NP, then there are problems in NP that are
neither in P nor NP-complete.

Such problems are called NP-intermediate.
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Illustration

Theorem 14.2 (Ladner, 1975): If P , NP, then there are problems in NP that are
neither in P nor NP-complete.

In other words, given the following illustrations of the possible relationships between P
and NP:

Ladner tells us that the middle cannot be correct.
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Proving the Theorem

Theorem 14.2 (Ladner, 1975): If P , NP, then there are problems in NP that are
neither in P nor NP-complete.

Proof idea: We will directly define an NP-intermediate language by defining an NTM K
that recognises it.

We want to construct L(K) to be:
(1) different from all problems in P
(2) different from all problems that SAT can be reduced to

Observation: This is similar to two concurrent diagonalisation arguments

Moreover, the sets we diagonalise against are effectively enumerable:
• There is an effective enumerationM0,M1,M2, . . . of all polynomially

time-bounded DTMs, each together with a suitable bounding function
For example, enumerate all pairs of TMs and polynomials, and make the enumeration consist of the TMs obtained by artificially restricting
the run of a TM with a suitable countdown.

• There is an effective enumeration R0,R1,R2, . . . of all polynomial many-one
reductions, each together with a suitable bounding function
This is similar to enumerating polytime TMs; we can restrict to one input alphabet that we also use for SAT
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The problem with diagonalisation

How can we do two diagonalisations at once?

— Simply interleave the enumerations:

• In each even “step” 2i, show that the ith polytime TMMi is not equivalent to K :
there is w such thatMi(w) , K(w)

• In each odd “step” 2i + 1, show that the ith reduction Ri does not reduce Sat to K :
there is w such that K(Ri(w)) , Sat(w)

Nevertheless, there is a problem: How can we flip the output of Sat?

• K is required to run in NP

• Computing the actual result of Sat is NP-hard

• To show K(Ri(w)) , Sat(w), one might have to show w < Sat, which is presumably
not in NP

{ the required computation seems too hard!
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Solution: Lazy diagonalisation

Idea: Do not attempt to show too much on small inputs, but wait patiently until inputs are
large enough to show the required differences

Main ingredients:

• A very slow growing but polynomially computable function f

• A problem in NP that is NP-hard: Sat

• A problem in NP that is not NP-hard:

∅

We will define a TM K that does the following on input w:

(1) Compute the value f (|w|)

(2) If f (|w|) is even: return whether w ∈ Sat

(3) If f (|w|) is odd: return whether w ∈ ∅, i.e., reject

Intuition: the NP-intermediate language L(K) is Sat with “holes punched out of it”
(namely for all inputs where f is odd)
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Illustration of K ’s behaviour

We can sketch the behaviour of K as follows:

|w|

f (|w|)

0

1

2

3

4

K : SAT reject SAT reject
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What is f ?
Reminder: K(w) is Sat(w) if f (|w|) is even, and false if f (|w|) is odd.

The key to the proof is the definition of f – this is where the diagonalisation happens.

Intuition: Keep the current value of f until progress has been made in diagonalisation
• Keep an even value f (|w|) = 2i until you can show in polynomial time (in |w|) that

there is v such thatMi(v) , K(v)
• Keep an odd value f (|w|) = 2i + 1 until you can show in polynomial time (in |w|) that

there is v such that K(Ri(v)) , Sat(v)

If we can do this in NP, it will be enough already:
• If K were equivalent to anyMi, then f would eventually become an even constant,

and K would solve Sat on all but finitely many instances
{ K would be NP-hard, and equivalent to a polytime TM{ P = NP

• If K would allow Sat to be reduced to it by some reduction Ri, then f would
eventually become an odd constant, and L(K) would be a finite language
{ K would be in P, and Sat would reduce to it{ P = NP

In either case, this contradicts our assumption that P , NP
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What is f ?

We consider some fixed deterministic TM S with L(S) = Sat, and an enumeration
v0, v1, . . . of all words ordered by length, and lexicographic for words of equal length.

Reminder: K(w) is S(w) if f (|w|) is even, and false if f (|w|) is odd.

Definition: The value of f on input w with |w| = n is defined recursively

(1) Perform the computations of f (0), f (1), f (2), . . . in order until n computing steps
have been performed in total. Store the largest value f (ℓ) = k that could be
computed in this time (set k = 0 if no value was computed).

(2) Determine if f (n) should remain k or increase to k + 1:
(2.a) If k = 2i is even: Iterate over all words v, simulateMi(v), S(v), and

(recursively) compute f (|v|). Terminate this effort after n steps. If a word is
found such that K(v) ,Mi(v), then return k + 1; else return k

(2.b) If k = 2i + 1 is odd: Iterate over all words v, simulate Ri(v) (this produces a
word), S(v), S(Ri(v)), and (recursively) compute f (|Ri(v)|). Terminate this
effort after n steps. If a word is found such that K(Ri(v)) , S(v), then return
k + 1; else return k.
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Is f well-defined?

Our definition of f computes values for f recursively. Is this ok?

• Yes, the computation that needs to be done for each f (n) is fully defined

• All the simulated TMs are known or computable

• Since computation is time-limited to the input value n, there is no danger of endless
recursion

• For example, f (0) = 0: nothing will be achieved in 0 steps

Indeed, f grows very slowly!

• A large input n might be needed to find the next counterexample word v needed in
diagonalisation

• Even if such v was found in n steps (making progress from n to n + 1), it will be only
much later that f (n) can be computed in step (1) and f will even start to look for a
way of getting to n + 2.

• In fact, already the requirement to recompute all previous values of f before
considering an increase ensures that f ∈ O(log log n).
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Concluding the Proof

Theorem 14.2 (Ladner, 1975): If P , NP, then there are problems in NP that are
neither in P nor NP-complete.

Proof: Let K be defined as before.

K runs in nondeterministic polynomial time:

• The computation of f is in polynomial deterministic time (since it is artificially
bounded to a short time)

• The computation of Sat for the cases where f (|w|) is even is possible in NP

L(K) is not in P: As argued before: if it were in P, it would be equivalent to some
polytime TMMi, and f would eventually be constant at 2i, making K equivalent to Sat
(up to finite variations), which contradicts P , NP.

L(K) is not NP-hard: As argued before: if it were NP-hard, there would be a polynomial
many-one reduction Ri from Sat, and f would eventually be constant at 2i + 1, making K
equivalent to ∅ (up to finite variations), which contradicts P , NP. □
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Discussion: Proof of Ladner’s Theorem
Note 1: It is interesting to meditate on the following facts:
• We have defined a rather “busy” computation of f that checks that diagonalisation

(over two different sets) must happen
• This definition of computation is essential to prove the result
• Nevertheless, diagonalisation remained “internal”: from the outside, K is just a TM

that sometimes solves Sat (for a long range of inputs), and at other times just
rejects every input (again for very long ranges of inputs)

Note 2: The constructed language is very artificial
• It is very “non-uniform” in terms of how hard it is, alternating between long

stretches of NP-hardness and long stretches of triviality

Note 3: Are there any natural problems that are known to be NP-intermediate?
• No: finding one would prove P , NP
• Candidate problems (link) include, e.g., Graph Isomorphism and Factoring

Beware: the latter is not about deciding if a number is prime, but about checking something specific about its factors, e.g., whether the
largest factor contains at least one 7 when written in decimal
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Summary and Outlook

Ladner’s theorem tells us that, in the intuitive case that P , NP,
there must (counterintuitively?) be many problems in NP that are
neither polynomially solvable nor NP-complete

The proof is based on a technique of lazy diagonalisation

What’s next?

• Generalising Ladner’s Theorem

• Computing with oracles (reprise)

• The limits of diagonalisation, proved by diagonalisation

Markus Krötzsch; 3 Dec 2024 Complexity Theory slide 17 of 17


	P vs. NP: Ladner's Theorem
	Review
	Ladner's Theorem


