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Abstract

The sequent calculus does not seem to be capable of supporting cut-admissible
formulations for S5. Through a survey on existing cut-admissible systems for this logic,
we investigate the solutions proposed to overcome this defect. Accordingly, the systems
can be divided into two categories: in those which allow semantic-oriented formulae
and those which allow formulae in positions not reachable by the usual systems in the
sequent calculus. The first solution is not desirable because it is conceptually impure,
that is, these systems express concepts of frame semantics in the language of the logic.

Consequently, we focus on the systems of the second group for which we define
notions related to deep inference - the ability to apply rules deep inside structures
- as well as other desirable properties good systems should enjoy. We classify these
systems accordingly and examine how these properties are affected in the presence
of deep inference. Finally, we present a cut-admissible system for S5 in a formalism
which makes explicit use of deep inference, the calculus of structures, and give reasons
for its effectiveness in providing good modal formulations.
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1 Introduction

Modal logic has been widely applied in computer science as it provides a simple and
intuitive language that has proven effective at capturing important concepts treated in such
fields as knowledge representation and requirements engineering, especially of concurrent
systems, and capturing these concepts in a computationally tractable manner. Moreover,
the semantics of the elementary normal modal logic, as given in terms of Kripke frames,
are characterized by simplicity and they are in a straightforward correspondence with the
Hilbert-style axiomatization of its logics. However, its structural proof theory is more
complex and less systematic. As a consequence, proof systems for its logics are provided
in a wide variety of calculi. A study on the modal proof theory will benefit the current
situation and provide more proof theoretical results. An important result is, for instance,
a deeper understanding of the modal proof analysis, with positive consequences on existing
decision procedures for modal logic, which are mainly given via tableau methods. Although
in general proof theory underlies the design of tableau methods, modal tableau are instead
usually guided by the frame semantics.

Many systems have been developed for the purpose of modal proof theory: systems
in the sequent calculus, extended systems and systems in other sequential calculi. A
presentation of most of these can be found in Wansing [27]. Their main concern is to
provide formulations for some modal logics in a general enough framework, capable to
handle a substantial number of logics. Since cut admissibility is essential for good proof
theory and the sequent calculus fails to give cut-admissible formulations for two important
modal logics, S5 and B, we concentrate in the cut-admissible systems so far proposed for
those logics1. These are:

− eight systems for S5 andB in calculi that allow indices or labels on formulae presented
by Kanger [16], Mints [19], Orlowska [22], Simpson [26] and Braüner [6],

− one system for S5 in the higher arity sequent calculus presented by Sato [24],

− two systems for S5 and B in the multiple sequent calculus presented by Indrze-
jczak [14, 15],

− one system for S5 in hypersequents presented by Avron [1] and two systems in calculi
essentially analogous to hypersequents presented by Mints [20] and Pottinger [23],

− two systems for S5 and B in display logic presented by Wansing [27] and

− two systems for S5 presented by Braüner [5] and Sato [25] which, though they are
given in a sequent-style, they violate essential properties systems in the sequent
calculus should enjoy. For this reason we call them extended sequent systems.

Observing how these systems allow cut-free proofs for the theorems of S5, we notice that
nine of them use additional information on formulae other than their syntactic one. This
information is related to Kripke-frame semantics - the semantics applied on normal modal
logic - and denotes in which state (of a frame) the given formula holds. Such formulations

1The lack of a cut-admissible formulation in the literature does not prove that one could not be devised.
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are obtained by extending the language of modal logic, and so they are not conceptually
pure. In this thesis we are interested only in the properties of systems with conceptual
purity, so that the above systems are not presented here.

The rest of the systems either imitate or enjoy implicitly deep inference, the ability of
applying inference rules deep inside structures. The systems in the higher arity sequent
calculus, multiple sequent calculus and hypersequents imitate deep inference by allowing
deep rule applications at limited depth. On the other hand, the systems in display logic
enjoy deep inference since deep applications are possible at any depth. Still, deep inference
remains implicit in the systems, because of the shallow nature of their rules. However,
this is not a real limitation of the calculus; display logic does not only give cut-admissible
formulations for all logics of normal modal logic, but it also provides a technique for
formulating rules out of the modal Hilbert-style axioms. This systematic formulation of
the axiom rules (a property we call systematicity) seems to be strongly related to deep
inference 2.

The calculus of structures is a generalization of the sequent calculus which makes
explicit use of deep inference. It is explicit because its rules can be directly applied in
substructures at any depth. This is denoted by the S{−}, which surrounds the premise
and conclusion of a rule. Among the cut-admissible modal systems developed in this
framework are systems for logics K, K4, D, D4, M , S4 and S5. All of them enjoy
systematicity and, contrary to display logic, no special technique is needed for this.

The main achievements of this thesis are firstly a survey of systems and calculi for the
proof theory of modal logic, with particular emphasis on the conceptually pure calculi.
Second, an investigation of the properties responsible for providing good systems for modal
logic. Third, a presentation of such a good system for logic S5 in the calculus of structures.
In a descending order of importance, the main desiderata that we apply to determine which
are the good systems for modal logic are: cut-admissibility, conceptual purity, generality of
the calculus and systematicity for the modal rules. Deep inference seems to be unavoidable
in achieving all of them. Moreover, its direct application results in systems with simple
design and other desirable properties, such as locality. A system is said to be local when all
of its rule applications require inspections only on formulae of bounded length. Although
the system presented here is cut-admissible, the inclusion of restricted cuts results in a
better upper bound on the length of the proofs. Whereas in general restricted cuts are
defined over the set of subformulae of a given formula, locality ensures that such cuts are
restricted to atoms.

The rest of the thesis is organized as follows: in Section 2 we give a short overview
on normal modal logic and its systems in the sequent calculus. In Section 3 we present
the systems for S5 (and B), give the definition of deep inference and its contextuals, and
classify the systems according to some desirable properties. In Section 4 we introduce the
calculus of structures and present a cut-admissible system for S5. Finally, Section 5 is
dedicated in conclusions and work that need to be developed.

2This should not be a surprise considering that Hilbert-style systems for normal modal logic also enjoy
deep inference.
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2 Preliminaries

2.1 The Proof Theory of Sequential Calculi

Proof theory concerns the development and study of formal systems, called calculi , which
are suitable for axiomatizing various logics. Its considerations include general properties
on the design of the calculi, as well as properties on their proofs.

A logic L consists of a set of well formed formulae F and a consequence relation ` over
F which assigns a truth value to each formula in F . A formula α which is true in logic
L is said to be a theorem of L and is denoted as `L α. The set of all theorems of L is
its axiomatization. A calculus provide mechanisms for generating the theorems of various
logics. These include (i) a set of axioms, which are some basic theorems of the logic in
consideration, and (ii) a set of inference rules which allow us to conclude a theorem under
the assumption that some other theorems hold. Then, the set of all theorems is obtained
by recursive rule applications on existent theorems. We call the set of axioms and inference
rules that axiomatizes logic L in calculus C, a system for L in C.

A first division on calculi concerns their relevance in providing automating deductions
for their theorems. A calculus is therefore called proof search calculus when it provides
mechanisms for proving theorems deductively. This means that given a theorem of a
certain logic, the construction of a proof for it is obtained by reasoning backwards: the
theorem is provable if so are some other theorems. The most well-known proof search
calculi are the calculus of Natural Deduction and the Sequent Calculus. In this thesis
we are not going to present natural deduction. The sequent calculus is presented as
formulated by Gentzen [10], and we refer to its systems as Gentzen systems. Moreover,
other sequential calculi that have been developed based on its general ideas will also be
presented.

Deductive calculi provide a meta-language applied on top of the language of a given
logic, which allows inputs of a certain form, called structures. More specifically, in sequen-
tial calculi structures are built up from a set of connectives, called structural connectives,
that are usually combined as logical connectives but are applied on formulae rather than
on propositional variables. An inference rule takes the general form

P1 . . . Pn (R)
C

where R is the name of the rule, n ≥ 0 and, P1, . . . , Pn and C are schematic letters for
structures called premises and conclusion, respectively. When the premise is empty, i.e.
n = 0, the conclusion is an axiom of the system.

A rule application is an instance of a rule R if all its premises and its conclusion match
the corresponding ones of R. A finite sequent of rule applications is called a derivation.
The premises of its first rule application are the premises of the derivation. Similarly, the
conclusion of its last rule is the conclusion of the derivation. A proof is a derivation which
starts with an axiom instance. The conclusion of a proof is called a theorem.

The Sequent Calculus

Structures in the sequent calculus are called Gentzen structures and are given by the
following simple definition:
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Definition 1 Gentzen structures are recursively defined as follows:

1. Any formula α is a structure.

2. If Γ1 and Γ2 are structures then so is Γ1,Γ2.

Structures are denoted with the letters Γ,∆,Γ1,∆1 . . . and are closed under associa-
tivity and commutativity, so that, the comma can be seen as a separator of the elements
of a (multi)set. For instance, p ∨ q,¬q, p is a valid Gentzen structure. Structures are
then build in sequents, which are of the form Γ ` ∆, where Γ and ∆ are the antecedent
and succedent of the sequent, respectively.

Gentzen systems are organized in a very clear, structural way. Each rule has two
versions, the left and the right, one for each side of the turnstile. Moreover, there are
two types of rules: the logical and the structural rules. The logical rules cover rules that
introduce a logical connective to their conclusions. In each logical connective corresponds
precisely a pair of rules (the left and right ones). In the structural rules belong those
rules which manipulate structures only on their structural level (i.e. without changing
any formulae).

The fundamental justification for Gentzen systems is the possibility of eliminating
the cut-rule, which means that there is a procedure for eliminating cut-rule applications,
whenever they occur in a proof. The cut-rule has the form

Γ1 ` ∆1, α α,Γ2 ` ∆2 (cut)
Γ1,Γ2 ` ∆1,∆2

where α is the cut-formula. Reading the rule top-down in a computational context, the
rule ensures the composition of two programs for which an output of the one is used
as input to the other. In a mathematical context, while reading the rule bottom-up, it
expresses the decomposition of a problem to smaller ones with the help of lemmas.

The absence of the cut-rule from a system is important both for implementions and
theoretical reasons. Firstly, it ensures that for every conclusion, there are only finite
choices of possible premises. This is expressed through the subformula property, which
says that every formula in the premises of a rule is a subformula of the formulae in its
conclusion. Secondly, it is good for proof analysis, as it allows properties on the structure
of proofs to be exhibited. Moreover, it ensures that the meaning of the cut-rule is virtual:
any lemmas used in a proof are real ones and can be ommited.

The system LK for propositional logic in the sequent calculus is presented in Figure 1.
It is a representative system of good design and its calculus accomplishes all the properties
that allow a calculus to be a good calculus. A list of properties have been presented by
Wansing [27], Avron [1] and Indrzejczak [15]. Some of the most important ones follow.

Good Proof Theoretical Properties

At a first level, the three most desirable properties a calculus and its systems should enjoy
we consider to be the following:

Cut-admissibility: The cut-rule should either not be a rule of the systems - in this case
we say that the system is cut-free - or the systems should be accompanied with a
proof of cut-elimination.
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(Axiom)
α ` α

Γ1 ` ∆1, α α,Γ2 ` ∆2 (Cut)
Γ1,Γ2 ` ∆1,∆2

Γ ` ∆ (Wl)
α,Γ ` ∆

Γ ` ∆ (Wr)
Γ ` ∆, α

α, α,Γ ` ∆
(Cl)

α,Γ ` ∆

Γ ` ∆, α, α
(Cr)

Γ ` ∆, α

α,Γ ` ∆
(∧ `)

α ∧ β,Γ ` ∆

β,Γ ` ∆
(∧ `)

α ∧ β,Γ ` ∆

Γ ` ∆, α Γ ` ∆, β
(` ∧)

Γ ` ∆, α ∧ β

α,Γ ` ∆ β,Γ ` ∆
(∨ `)

α ∨ β,Γ ` ∆

Γ ` ∆, α
(` ∨)

Γ ` ∆, α ∨ β
Γ ` ∆, β

(` ∨)
Γ ` ∆, α ∨ β

α,Γ ` ∆
(¬ `)

Γ ` ∆,¬α
Γ ` ∆, α

(` ¬)
¬α,Γ ` ∆

Γ1 ` ∆1, α β,Γ2 ` ∆2 (⊃`)
α ⊃ β,Γ1,Γ2 ` ∆1,∆2

α,Γ ` ∆, β
(`⊃)

Γ ` ∆, α ⊃ β

Figure 1: System LK: a system for propositional logic
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Conceptual purity: The systems should use only concepts provided by the language of
a logic and not by its semantics.

Generality: The calculus should be general enough to cover systems for a wide variety
of logics.

There are three more specific properties we would like to introduce. The first one is
known as Došen’s principle and has only sequential orientation. Došen’s principle says
that in a calculus, different systems should share the same logical rules and differ only on
their structural rules. This principle has been the subject of discussion in philosophical
logic, related to the meaning of the logical connectives which is, however, out of the scope
of this thesis. The second property concerns the structure of the logical rules and it will
be particularly useful later, in the modal systems:

Definition 2 A logical rule is said to be focussed when all its modifications are about a
single formula in its conclusion, the primitive formula. Otherwise the rule is unfocussed.

Moreover, a focussed rule is said to be strongly focussed when no logical connectives in
other formulae (the side-formulae) are exhibited. Otherwise it is weakly focussed. For
example, the rule

Γ ` ∆, α Γ ` ∆, β
(` ∧)

Γ ` ∆, α ∧ β
is strongly focussed, whereas the rules

β,¬α,Γ ` ∆
¬α,Γ ` ∆,¬β

and β,Γ ` ∆, α
¬α,Γ ` ∆,¬β

are weakly focussed and unfocussed, respectively.
The above definition is also expanded to systems. A system with all its logical rules

being focussed is a focussed system. When additionally all the rules are strongly focussed,
the system is a strongly focussed one, otherwise it is weakly focussed. Moreover, when
there is at least one unfocussed rule, the system is an unfocussed one.

Finally, a property which strengthens the importance of cut admissibility is that of
analyticity. A system is analytic when it is cut-admissible and none of its rules includes
hidden cuts. For example, the rule

Γ1 ` ∆1, α, β β,Γ2 ` ∆2, α α, β,Γ3 ` ∆3 (⊃`)
α ⊃ β,Γ1,Γ2,Γ3 ` ∆1,∆2,∆3

is not analytic as it is derivable in LK using the rules of cut, contraction and left impli-
cation. Analiticity ensures that the system is suitable for proof analysis.

2.2 Normal modal logic

Normal modal logic is modal propositional logic with semantics that can be given in
terms of Kripke frames. Modal propositional logic extends propositional logic with a
unary connective, the modality, denoted as � (box). The meaning often assigned to � is
that of necessity : for P a modal formula, �P is read as ’it is necessary that P ’ (or ’P
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must hold’) and its negation as ’it is possible that not P ’ (or ’P may not hold’). This
is why modal logic is often also called the logic of necessity and possibility. Accordingly,
a variety of axioms can be formulated. For instance, axiom T : �P ⊃ P expresses the
desirable property ’whatever is necessary does actually hold’.

However, the term modal logic is used more widely and covers also logics with variant
interpretations of the modality. In epistemic logic, for example, the modality is used for
reasoning about knowledge. Here, �P is instead read as ’the agent knows that P holds’
and its negation as ’the agent believes that not P holds’. In this logic, axiom T plays a
vital role, since it expresses the consistency of the agent: if the agent knows that P holds,
then P does actually hold. Although epistemic and other logics are of great importance
in computer science, they will not be considered here, since they are not related to our
topic. Formally, the language of modal logic is given by the following grammar:

Definition 3 Well formed formulae (wff) in modal propositional logic are generated as
follows:

P ::= > | ⊥ | A | ¬P | P ∧ P | P ∨ P | P ⊃ P | P ↔ P | � P | � P

The set of all wff is denoted as mF . We use the schematic letters A,B, . . . for propositional
variables and P,Q, . . . for any mF . The � (diamond) connective is again a modality related
to the negation of the � and is associated with the notion of possibility.

The axiomatization

We start with the axiomatization of normal modal logic as given in the Hilbert-style
calculus. We write ` P to denote that P is a theorem of normal modal logic.

Definition 4 Normal modal logic is modal propositional logic which includes all the the-
orems generated as follows:

PC Tautologies of classical propositional logic are theorems of normal modal logic.

K Axiom K : �(P ⊃ Q) ⊃ (�P ⊃ �Q) is a theorem of normal modal logic.

Def M The definition of diamond: �P ↔ ¬� ¬P is a theorem of normal modal logic.

US All theorems are closed under uniform substitution: if ` P and P1 . . . Pn variables
occuring in P , then, for Q1 . . . Qn ∈ mF , ` P [P1/Q1 . . . Pn/Qn] is again a theorem
of normal modal logic.

N The rule of necessitation: If ` P then ` �P .

MP The rule of Modus Ponens: If ` P and ` P ⊃ Q then ` Q.

Thus, normal modal logic is a class of logics which contain the theorems generated by
the above definition. The minimal logic is K and contains exactly those theorems. We
write `K P to say that P is a theorem of K. Other logics are obtained by adding more
axioms - and thus more theorems - to logic K. For example, logic M is formulated by
adding to K the axiom T : �P ⊃ P .

Let us illustrate how theorems are generated by two simple though useful derived rules
which will be later used:
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1. DR1 3 If `K P ⊃ Q then `K �P ⊃ �Q

Proof. Applying the (N) rule in the given `K P ⊃ Q yields `K �(P ⊃ Q). Then,
by (MP) to the latter and axiom K (together with (US)): �(P ⊃ Q) ⊃ (�P ⊃ �Q)
we get `K �P ⊃ �Q, as required.

2. DRt If `K P ⊃ Q then `K ¬Q ⊃ ¬P .

Proof. The required result is easily obtained by (MP) application to the propositional
tautology `K (P ⊃ Q) ⊃ (¬Q ⊃ ¬P ) and the given `K P ⊃ Q.

Also, a property of normal modal logic which will be proved crucial later on, is given
by the following lemma:

Lemma 1 Given P , Q formulae in mF , if ` P ⊃ Q is derivable in normal modal logic,
then so is ` F{P} ⊃ F{Q}, where F{P} is any formula which contains P outside the
scope of a negation, and F{Q} is obtained from F{P} by replacing its subformula P with
Q.

Proof. Let ` P ⊃ Q derivable in K. Then, by induction on the structure of F , we prove
the lemma for logic K and so for all its extensions:
Base Step. If F is exactly P , then `K P ⊃ Q holds by the assumption.
Induction Step. By induction hypothesis, given a formula F ′, `K F ′{P} ⊃ F ′{Q} (1) is
derivable. There are 4 cases:

1. F = �F ′{P}. Applying (DR1) to (1) yields `K �F ′{P} ⊃ �F ′{Q} as required.

2. F = �F ′{P}. Applying (DRt) to (1) following by (DR1) yields `K �¬F ′{Q} ⊃
�¬F ′{P} by which with (DRt) and (Def M) we get `K �F ′{P} ⊃ �F ′{Q} as re-
quired.

3. F = F ′{P} ∧ Y . Applying (MP) to (1) and the classical tautology `K (F ′{P} ⊃
F ′{Q}) ⊃ ((F ′{P} ∧ Y ) ⊃ (F ′{Q} ∧ Y )), gives `K (F ′{P} ∧ Y ) ⊃ (F ′{Q} ∧ Y ) as
required.

4. F = F ′{P} ∨ Y . Similar to conjunction. �

Note that theorem (Def M) is an equivalence relation and so closed under the replace-
ment theorem: whenever ¬�¬ occurs in any part of a formula, it can be replaced with a
� and vice versa. Some immediate consequences of (Def M) are the theorems:

` �P ↔ ¬ � ¬P
` ¬ � P ↔ �¬P

3Its name is due to Hughes and Cresswell [13]
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(DR1) If ` P ⊃ Q then ` �P ⊃ �Q (PCt) ` (P ⊃ Q) ⊃ ((Q ⊃ R) ⊃ (P ⊃ R))

(DRt) If ` P ⊃ Q then ` ¬Q ⊃ ¬P (PCi) ` (P ⊃ Q) ⊃ ((Q ⊃ P ) ⊃ (P ↔ Q))

(Lem) If ` P ⊃ Q then ` H{P} ⊃ H{Q} (PCe) ` (P ↔ Q) ⊃ ((Q↔ R) ⊃ (P ↔ R))

Figure 2: Some derived rules and propositional tautologies

` ¬� P ↔ �¬P

The last two we call modal dualities.
From now on, rules (DR1) and (DRt) will be used as normal rules and their proofs will

be omited. The rules are summarized in Figure 2 together with some useful propositional
tautologies and Lemma 1.

The semantics

As mentioned above, the semantics of normal modal logic is usually given in terms of
Kripke frames.

Definition 5 A frame is a pair 〈W,R〉, where W is a non-empty set of states (also
known as worlds) and R ⊆W ×W is a binary relation over the states.

Intuitively, for s, s′ ∈W , sRs′ denotes that state s′ is accessible from state s.

Definition 6 A model is a tuple 〈W,R, V 〉, where 〈W,R〉 is a frame and V is a binary
relation over propositional variables and states. The relation V is the valuation of every
variable A in a specific state s: V (A, s) = 1 or V (A, s) = 0, and is recursively extended
on modal formulae as follows:

1. V (>, s) = 1 and V (⊥, s) = 0, for every state.

2. V (¬P, s) = 1 iff V (P, s) = 0.

3. V (P ∧Q, s) = 1 iff V (P, s) = 1 and V (Q, s) = 1.

4. V (P ∨Q, s) = 1 iff V (P, s) = 1 or V (Q, s) = 1.

5. V (P ⊃ Q, s) = 1 iff V (P, s) = 0 or V (Q, s) = 1.

6. V (P ↔ Q, s) = 1 iff V (P, s) = V (Q, s).

7. V (�P, s) = 1 iff for all s′ such that sRs′, V (P, s′) = 1.

8. V (�P, s) = 1 iff there is a s′ such that sRs′ and V (P, s′) = 1.
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Example
Take the frame F = 〈W,R〉 with W = {s1, s2, s3} and R = {(s1, s2), (s1, s3), (s2, s2)} and
a model M = 〈F, V 〉 based on it with only positive valuations the V (A, s2) and V (B, s3).
Then, by Definition 6 the following valuations holds:

In s1 In s2 In s3
V (¬A, s1) = 1 V (�A, s2) = 1 V (�A, s3) = 1
V (�A, s1) = 1 V (�A, s2) = 1 V (�A, s3) = 0

Satisfiability and validity of a formula P with respect to a frame F or a class of frames F
is defined as follows:

Definition 7

1. Given a frame 〈W,R〉 and a formula P
(i) P is satisfiable iff there is a model 〈W,R, V 〉 and a state s ∈W , with V (P, s) = 1
and
(ii) P is valid iff for every model 〈W,R, V 〉 and every state s ∈W , V (P, s) = 1.

2. Given a class of frames F and a formula P
(i) P is satisfiable iff it is satisfiable in all frames 〈W,R〉 ∈ F and
(ii) P is valid iff it is valid in all frames 〈W,R〉 ∈ F .

All theorems of normal modal logic are satisfiable with respect to the class of all frames,
denoted by K, and all theorems of logic K are additionally valid w.r.t K. Validity for other
logics is obtained by restricting the class of frames to include only frames which satisfy
certain conditions on their accessibility relation R. For instance, logic M is sound and
complete with respect to the class of reflexive frames, that is frames 〈W,R〉 which satisfy
the following condition: ∀s. sRs, with s ∈ W . In this sense, every logic corresponds to a
certain class of frames.

The cube

A semantic-based subclass of normal modal logic includes those logics for which their
frame accessibility relation can be given by a set of geometric sequents, called a geometric
theory. A geometric sequent is a first order sequent of the form:

∀x.φ ⊃ ψ

where φ and ψ are first-order formulae built up from atomic formulae using only the
connectives in {⊥,∨,∧,∃} (for a complete definition see Simpson [26]). Such logics we call
geometric modal logics.

All the logics we are going to deal with are geometric ones. As an example of a non
geometric logic, consider the logic which extends K with the Löb axiom: �(�p ⊃ p) ⊃
�p. This logic is complete with respect to the class of frames with transitive and finite-
path4 relation, and is not definable in first order logic (the proof for it can be found in

4The finite-path property says that all paths starting from any state are finite.
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textbook [3]). We can further restrict geometric modal logics into those with axioms (other
than the K) of the form:

G : �h �iP ⊃ �j �k P

with h, i, j, k ≥ 0, called Scott-Lemmon logics. An axiom which do not follow the G
pattern, though its frame condition is geometric, is, for instance, axiom �M : �(�P ⊃ P )
with frame condition ∀wv.(wRv ⊃ vRv). All the axioms of the logics we are interested
in match the general axiom G. These logics are obtained by adding to logic K a number
of the axioms in {D,T, 4, 5, B}, which are presented in Figure 3. All the logics obtained
in this way can be then displayed in a complete lattice, known as the cube of normal
modal logic. In this cube, a connection from logic L1 to logic L2 (with L1 under or on the
left-hand side of L2) denotes that L1 is subsumed by L2, in other words all theorems of
L1 are also theorems of L2. Here we list the main logics of the cube:

Logic D : extends logic K with axiom D

Logic M : extends logic K with axiom T

Logic S4 : extends logic M with axiom 4
Logic S5 : extends logic M with axiom 5
Logic B : extends logic M with axiom B

The names of the rest of the logics are concatenations of the names of their axioms. For
instance, logic K45 is the result of extending logic K with the axioms 4 and 5. The
weakest logic is logic K and the strongest one is logic S5.

An important result in modal logic is the Scott-Lemmon theorem [18]) which states
the correspondence between axioms of the G form and the condition on frames.

Theorem 1 (Lemmon and Scott, 1977) The accessibility relation R of a logic which ex-
tends K with an axiom of the G form is given:

(hijk-Convergence) ∀wvu.((wRhv ∧ wRju) ⊃ ∃x.(vRix ∧ uRkx))

where Rn is the result of the composition of R with itself n-times, R0beingtheidentity.

Note that the sequent is a basic geometric one. Then, the frame condition of a Scott-
Lemmon logic is the set of frame conditions that correspond to its axioms. For instance,
logic S4 corresponds to the transitive, reflexive frames. The correspondence between frame
conditions and axioms is shown in Figure 3.

2.3 Modal Systems in the Sequent Calculus

When dealing with modal systems we are additionally interested in two more properties5:

Systematicity: There is a clear technique for formulating the modal rules out of the
modal axioms.

Modularity: Each axiom is captured by a finite number of rules.
5As defined by Wansing [27].
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Axioms Frame Condition

D : �P ⊃ �P ∀x.∃y.xRy (seriality)
T : �P ⊃ P ∀x.xRx (reflexivity)
4 : �P ⊃ � � P ∀xyz.(xRy ∧ yRz ⊃ xRz) (transitivity)
5 : �P ⊃ � � P ∀xyz.(xRy ∧ xRz ⊃ yRz) (Euclideanness)
B : P ⊃ � � P ∀xy.(xRy ⊃ yRx) (symmetry)

Figure 3: Axioms and their frame conditions

Some of the modal systems in the sequent calculus are neither systematic nor modular.
Systems for logics K, D, M and S4 have been presented by Ohnishi and Matsumoto [21]
and are obtained by adding to the system for propositional logic LK a combination of the
following pairs of logical rules for the modalities (the rules are generalized versions of the
original ones):

(1)
α,Γ ` ∆

(� `)
�α,�Γ ` �∆

Γ ` ∆, α
(` �)

�Γ ` �∆,�α

(2)
α,�Γ ` �∆

(� `)
�α,�Γ ` �∆

�Γ ` �∆, α
(` �)

�Γ ` �∆,�α

(3)
α,Γ ` ∆

(� `)
�α,Γ ` ∆

Γ ` ∆, α
(` �)

Γ ` ∆, �α

(4)
α,Γ ` ∆

(� `)
�α,�Γ ` �∆

Γ ` ∆, α
(` �)

�Γ ` �∆, �α
The notations �Γ and �Γ are abbreviations for the sets {�α | α ∈ Γ} and {�α | α ∈ Γ},

respectively. The systems extend system LK with the above rules as follows:

System for K : the rules in (1)
System for D : the rules in (1) and (4)
System for M : the rules in (1) and (3)
System for S4 : the rules in (2) and (3)

Cut-elimination holds for all the systems. However, adding these systems to the sequent
calculus causes failure of Došen’s principle: the logical rules for the modalities vary de-
pending on the logic. Moreover, as it has been already mentioned, some of these systems
are not modular. The restriction of Gentzen systems on having at most a pair of rules
for each connective, in combination with the way the modal systems are formulated, leads
unavoidably to a situation where a pair of rules need to capture more than one axiom.
This happens in logics which contain more than two axioms. For instance, the system
for S4 presented above is not modular, since 3 axioms, the K, T and 4, are captured
by two pairs of rules. This situation makes also the formulation of the rules being ran-
dom, since their design is based on providing cut-admissibility for the systems, through
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intuitive-based verifications on counterexamples. Furthermore, all of them are unfocussed
except of the one for S4, which is weakly focussed.

A system for S5 is given by Ohnishi and Matsumoto [21] and is obtained by adding to
LK the logical rules in (3) and the following rules:

(5)
α, �Γ1,�∆1 ` �Γ2,�∆2 (� `)
�α, �Γ1,�∆1 ` �Γ2,�∆2

�Γ1,�∆1 ` �Γ2,�∆2, α (` �)
�Γ1,�∆1 ` �Γ2,�∆2,�α

However, the cut-rule is not admissible in this system. Its failure is related to the weakly
focussed rules in (5), since their side-conditions do not allow the introduction of the �-
modality in certain cases, as it is desirable. For instance, the proof of axiom B cannot be
obtained without a cut-rule application:

p ` p
(` �)

p ` �p
�p ` �p

(` �)
�p ` � � p

(cut)
p ` � � p

(`⊃)
` p ⊃ � � p

As has been already observed (for instance by Avron [1]), it is sufficient to use a
restricted form of the cut-rule, known as analytic cut. This cut-rule has additionally the
condition that the cut-formula must be a subformula of the formulae in its conclusion.
In this way, the technical advantages of cut-admissibility are saved. However, it does not
solve the theoretical concerns, as it restricts significantly the strength of proof analysis.
This is the reason we choose to call such rules restricted cut-rules rather than analytic
ones. Moreover, having such rules in a system with no proof of their admissibility prohibits
them from being real cut-rules, as there is no proof that the lemmas they introduce are
nothing more than shortcuts (that they are real lemmas).

An alternative way for obtaining a cut-admissible system for S5, is to use the systems
implemented in other frameworks for this logic. One suitable framework is the tableaux
methods, for which it is known that its systems can be easily translated to systems in the
sequent calculus. However, the tableaux system for S5 presented by Goré [11]) make also
use of the cut-rule.

Consequently, the lack of a cut-admissible system for S5 (and also for B) leads to
investigations of new calculi, presented in the next section.

3 The Systems for S5

Based on the way they have been obtained, cut-admissible systems for S5 are divided as
follows:

1. Sequent-style systems which modify the usual Gentzen systems in a way that essen-
tial properties the systems in the sequent calculus should enjoy are violated. Such
systems we call extended sequent systems and have been specifically developed and
work only for S5.

2. Systems formulated in alternative calculi which modify in several systematic ways
the sequent calculus. These calculi are still sequential.
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We count the systems for S5 presented by Braüner [5] and Sato [25] among the extended
sequent systems. Both make fundamental changes to the right logical rule for the �-
modality. In Braüner’s system, the logical rule for the modality is applicable only under a
condition based on ”the way the premises have been obtained”6. This condition is derived
from the side condition of the right-hand side rule of the universal quantifier (` ∀) in
monadic predicate calculus. Accordingly, every formula carries (implicitly) information
about the state it might be true, so that inside a sequent several states are exhibited.
Consequently, Kripke-frame semantics are embedded in the system and so we do not
examine the system here.

In Sato’s system, a function is applied on a formula in the premise of the rule, which
selectively falsifies its subformulae. This means that, besides introducing the �-modality,
the rule also includes selective deep applications of the weakening rules. The use of func-
tions in a sequent can be avoided by alternatively giving rules for their mappings. Such
rules can see deeper in a formula as they exhibit more than one of its connectives. For
instance, the rule

Γ ` ∆, (+α) ⊃ (−β)
Γ ` ∆,−(α ⊃ β)

could be added for the mapping of the function (α ⊃ β)− = α+ ⊃ β−, where ()− and ()+

are functions treated as logical connectives. This system is not presented here, as the one
given in the higher arity sequent calculus (presented in the next section) follows the same
idea and is more systematic.

For the new calculi, the following types are obtained, based on the way they extend
the sequent calculus:

1. An enrichment of the sequent calculus: This is a calculus that extends the sequent
calculus by building in it additional types. Such types are, for instance, connectives,
judgements and formulae.

2. An extension of the sequent calculus: This is a calculus where sequents of the sequent
calculus are built into a notion of a higher level. For instance, the calculus of
hypersequents is an extension, since it deals with sets of sequents.

Moreover, we call a generalization or an abstraction of the sequent calculus, a calculus that
identifies distinct notions of the sequent calculus. The calculus of structures presented in
the next section is, for instance, a generalization calculus.

Some enrichment calculi with systems for S5 or B have been presented by Kanger [16],
Mints [19], Orlowska [22], Simpson [26] and Braüner [6]7. All of them annotate indices
onto formulae, which carry information based on Kripke-frame semantics8, and as so they
are rejected.

6the expression is due to Avron [1], where such rules are called ”rules with non local nature”
7Although the hybrid system presented in this paper is not proved to be cut-admissible, ”this can be

done by a straightforward modification on the normalization results presented by Braüner [7] for natural
deduction systems for hybrid logic” (private communication with the author).

8In hybrid logic indices are treated as normal connectives in the sense that they can appear wherever
any other connective can do so. However, this does not solve our semantic concerns.
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Other enrichments with systems for the same logics are higher arity sequent calculus,
multiple sequent calculus and display logic, and are presented below together with two
systems of an extension calculi, the hypersequents or tableaux calculi9.

3.1 Higher Arity Sequent Calculus: GS5s

Higher arity sequent calculi are calculi developed on augmented sequents of arity greater
than two. This means that instead of the usual two-place consequence relation (with
elements the antecedent and the succedent) a relation with more elements is now used.

Calculi of arity four have been independenly studied in modal logic by Blamey and
Humberstone [4] and Sato [24], in the latter of which a cut-admissible presentation of
S5 is given. A four-place sequent takes the form (Γ,Π,Σ,∆), where all the variables are
Gentzen structures. Structures Γ and ∆ are the usual ones as for regular sequents, whereas
Π and Σ are new. Following the notation introduced by Sato [24], however, such sequents
are rather denoted as

Γ ; Π ` Σ; ∆

When both Π and Σ are empty, the sequent takes the usual form Γ ` ∆ and is called a
proper sequent. In general, there are three types of rules:

1. The internal rules: they concern only the inner sets Π and Σ and are applied re-
gardless the information in the other sets.

2. The external rules: these are the usual rules concerning the outer sets Γ and ∆.
Again, no information about Π and Σ is exhibited.

3. The interactive rules: They are structural rules that move information from the
innner sets to the outer ones and vice versa.

The system for S5, called GS5s10, is presented in the Appendix (Figure 9). Primitive
connectives are only the ones in {⊥,⊃,�}. The rest are abbreviations of the following:

> ≡ ⊥ ⊃ ⊥ α ∨ β ≡ (α ⊃ ⊥) ⊃ β

¬α ≡ α ⊃ ⊥ α ∧ β ≡ (α ⊃ (β ⊃ ⊥)) ⊃ ⊥

Theorems of the system are only the provable proper sequents. Its design is a part of
the completeness proof for some Kripke-type models, also presented in the same paper.
Accordingly, a semantic proof for cut admissibility is given. Moreover, the judgment on
the internal sets is given by the one on a proper sequent prefixed with the �-modality. So,
given the translation of a proper sequent to a formula ψ(), the translation of an improper
sequent of the form Γ ; Π ` Σ; ∆ to a formula is the

ψ(Γ ` ∆,�ψ(Π ` Σ)).

Theorem 2 If a proper sequent is provable in GS5s then it is provable without using the
cut-rule.

9The two calculi use different notations but represent the same concept.
10The original name of the system is GS5, but since it coincides with the one developed on hypersequents

in section 3.3, −s (for Sato) is added to it.
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A proof in the system for axiom B is obtained as follows:

(ax)
p ` p

(ext: out)
p ` p,⊥

(⊥ `)
⊥ ` (ext: out)
⊥ ` p

(⊥ `)
⊥ ` (ext: out)
p,⊥ `

(⊃`: out)
p, p ⊃ ⊥ `

(ext: in)
p, p ⊃ ⊥ ` ⊥;

(� `: out)
p,�(p ⊃ ⊥) ` ⊥;

(enter `)
p ;�(p ⊃ ⊥) ` ⊥;

(`⊃: in)
p ` �(p ⊃ ⊥) ⊃ ⊥;

(` exit)
p ` �(�(p ⊃ ⊥) ⊃ ⊥)

(`⊃: out)
` p ⊃ �(�(p ⊃ ⊥) ⊃ ⊥)

3.2 Multiple Sequent Calculus: DSC

Multiple sequent calculus (also known as ”generalised sequent calculus”) is an enrichment
of Gentzen systems presented by Indrzejczak [14] and [15]. The main purpose of its
developement is to give cut-admissible formulations for propositional modal logic with
emphasis on simplicity on proofs. Its extentions concern both sequent and formula types.
More specifically:

1. Sequents take the general forms Γ �`i ∆ and Γ �`j ∆, with i, j ≥ 0, which
abbreviate the judgments

� . . .�︸ ︷︷ ︸
i times

` and � . . . �︸ ︷︷ ︸
j times

`

respectively. When i or j are set to zero, the sequents are the classical ones and
are presented as usual: Γ ` ∆. Otherwise, the sequents are called non-classical or
modal sequents. When i or j are set to 1 they are omitted and the sequents take the
form Γ �` ∆ and Γ �` ∆, respectively. Theorems of the systems are only proofs
of classical sequents.

2. In addition to the set of modal formulae MF , the set of well formed formulae also
includes the formulae in MF prefixed with the special operator −. Such formulae
are called S-formulae. The operator is used for shifting a formula from one side of a
sequent to the other, and can only occur at the beginning of a formula. The formula
−(α∨�β) is, for instance, a valid well formed S-formula, whereas α∨−� β is not.

In multiple sequent calculus are given cut-admissible presentations for the logics with
axioms any of the {D,T, 4}, as well as for logics KB, KDB, B and S5. However, the
cut-rule is not a rule of the systems, which means that no proof of cut-elimination is given.
Alternatively, completeness for the cut-free systems is obtained following methods that do
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not involve any forms of cut (such as Modus Ponens). The translation Υ() of a sequent
to a formula is given as follows:

Υ(Γ� . . .�︸ ︷︷ ︸
i times

` ∆) =
∧
τ(Γ) ⊃ � . . .�︸ ︷︷ ︸

i times

(
∨
τ(∆))

Υ(Γ � . . . �︸ ︷︷ ︸
j times

` ∆) = � . . . �︸ ︷︷ ︸
j times

(
∧
τ(Γ)) ⊃

∨
τ(∆)

where τ(Γ) = {τ(α) | α ∈ Γ}, τ(−α) = ¬α and τ(α) = α.
The system for logic S5, called DSC (double sequent calculus), is presented in the

Appendix (Figure 10) (for a complete presentation see Indrzejczak [14]). In this system,
as its name reveals, only two types of sequents are exhibited: the classical one and the
modal Γ �` ∆ (i = 1). The following notations are used:

1. Γ (�)` ∆ is used in an inference rule when the type of the sequent is unspecified.
This means that the rule is applicable in both sequents.

2. The notations α∗ and (−α)∗ stand for −α and α, respectively, where α is a formula
in MF , and are used in shifting formulae in a sequent. Extending this to a set of
formulae Γ, Γ∗ is the set of all α*, with α ∈ Γ.

3. Similarly, ¬Γ, �Γ and �Γ denote the sets obtained by prefixing their formulae with
the relevant connective.

4. MΓ denotes the set obtained by prefixing each formula in Γ with one of {�,−�},
the �-formulae, or one of {�,−�}, the �-formulae. A formula in MΓ is called an
M -formula and is accordingly denoted as Mα (for α ∈ Γ).

Theorem 3 System DSC (i.e. without any cut-rules) is sound and complete with respect
to S5.

To illustrate how proofs are obtained, consider the proof for axiom B:

(AX)
p ` p

(` �)
p ` �p

(NC)
p �` � p

(` �)
p ` � � p

(∗r)
` � � p,−p

(`⊃)
` p ⊃ � � p

The systems for the rest of the logics are given in Indrzejczak [15]. Among all the
systems, DSC enjoys the simplest design, due to the special properties of S5. Unsurpris-
ingly, systems with axiom B are the most complicated ones, since axiom B is responsible
for symmetry, the property which causes problems in the formulation of B in a Gentzen
system.
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3.3 Hypersequents: GS5 and LS5

Hypersequents

The method of hypersequents is an extention of sequent calculus, where structures (called
hypersequents) are finite (multi)sets of normal sequents. For instance,

Γ1 ` ∆1 | Γ2 ` ∆2 | Γ3 ` ∆3

is a hypersequent of three sequents, seperated by |. The set has a disjunctive role: a hyper-
sequent is provable if at least one of its sequents is provable. The schematic letters α, β, . . .
denote arbitrary formulae, Γ,∆, . . . (multi)sets of formulae and G,H, . . . (multi)sets of se-
quents.

Axioms are of the form α ` α. Logical rules and the cut-rule are formulated as in
Gentzen systems, with the addition that they are applicable on sets of sequents. For
instance, the rule for the introduction of negation to the right of the turnstile (` ¬)

α,Γ ` ∆
(` ¬)

Γ ` ∆,¬α
takes the form

G | α,Γ ` ∆ | H
(` ¬)

G | Γ ` ∆,¬α | H
.

For the structural rules permutation, weakening and contraction there are two versions
of rules:

1. the internal version, which is applied on formulae inside a sequent. These are
the standard Gentzen rules, which are obtained in the same way logical rules are
obtained, as described above.

2. the external version which is applied on sequents. For example, the external version
of the contraction duplicates a sequent:

G | Γ ` ∆ | Γ ` ∆ | H
(C external)

G | Γ ` ∆ | H

Since hypersequents is a more general framework than Gentzen systems, logics with
problematic formulations in Gentzen systems can be successfully formulated here. This
is obtained through new types of structural rules, that is rules without correspondence to
any normal sequent ones. Two types of such rules are the ones for splitting and shuffling
(see Avron [1]).

All modal systems with cut-admissible formulations in Gentzen systems can be for-
mulated in hypersequents. Cut-admissible formulations for M and S4 are presented by
Pottinger [23], for which their equivalence to the corresponding sequent systems is easily
shown. Moreover, in Avron [1] and Pottinger [23] are presented cut-admissible formu-
lations for S5. Here, we present the one in Avron [1], system GS5. This formulation
makes use of the modalized splitting rule, a rule which allows us, under some structural
conditions, to split a sequent.

More specifically, GS5 is obtained by adding to the system for propositional logic the
modal rules for S4

α,Γ ` ∆
(� `)

�α,Γ ` ∆
�Γ ` α (` �)

�Γ ` �α
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and the modalized splitting rule:

G | � Γ1,Γ2 ` �∆1,∆2 | H (MS)
G | � Γ1 ` �∆1 | Γ2 ` ∆2 | H

When � is treated as primitive, an application of the (MS) rule allows additionally splitting
on formulae prefixed with � (and not only with �):

G | � Γ1, �Γ2,Γ3 ` �∆1, �∆2,∆3 | H (MS)
G | � Γ1, �Γ2 ` �∆1, �∆2 | Γ3 ` ∆3 | H

System GS5 is presented in the Appendix (Figure 11). The rules for the propositional
part are due to Gentzen system LK. It is equivalent to S5 and admits cut-elimination.
We present the proof for axiom B:

p ` p
(¬ `)

p,¬p `
(� `)

p,�¬p `
(MS)

p ` | � ¬p `
(` ¬)

p ` | ` ¬� ¬p
(` �)

p ` | ` �¬� ¬p
(Wr)

p ` �¬� ¬p | ` �¬� ¬p
(Wl)

p ` �¬� ¬p | p ` �¬� ¬p
(C external)

p ` �¬� ¬p
(`⊃)

` p ⊃ �¬� ¬p

Completeness for GS5 is shown using the translation of a hypersequent G

G = Γ1 ` ∆1 | . . . | Γn ` ∆n

to a formula of modal logic

φG = �ψΓ1`∆1 ∨ . . . ∨�ψΓn`∆n ,

where ψΓi`∆i
(i = [1 . . . n]) is the usual translation of a sequent to a formula:

ψα1,...,αl`β1,...,βm = ¬α1 ∨ . . . ∨ ¬αl ∨ β1 ∨ . . . βm .

The results of GS5 for its equivalence to S5 and its cut-admissibility follow:

Proposition 1 `GS5 G iff `S5 φG .

Theorem 4 System GS5 admits cut-elimination.

We call GS5− the system obtained by removing the cut rule from GS5. The two systems
are equivalent.
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Mints’ system LS5

A similar system for S5 has been presented by Mints [20], where a connective he calls
tableau11 is defined over lists of formulae. A tableau is denoted by 〈Γ〉, where Γ is a non-
empty set of formulae. As in system GS5s, formulae are built up only from {⊃,�,⊥}.
Moreover, for any formula α, α is again a formula and denotes that α occurs in the
antecedent. For uniformity reasons, we treat tableau over two-sided sequents. Since the
bar is only an indicator, this is only a presentational conversion and does not change the
system as originally presented by Mints. Sets of formulae and sets of tableaux are denoted
by the same letters as in hypersequents.

System LS5 is shown in the Appendix (Figure 12) and admits cut-elimination. The
translation of a list of tableaux to a modal formula coincides to the one in GS5.

3.4 Display Logic: DS5

Display logic is an enrichment of Gentzen systems introduced by Belnap [2] and further
developed by Wansing [27]. It extends Gentzen structures with two structural connectives:
the unary connectives ∗ and •. Formally,

Definition 8 Structures in display logic are built up as follows:

X ::= f | t | I | α | •X | ∗X | X ◦X

Letters f and t stand for falsity and truth, respectively, I for the empty structure, X,Y, . . .
denote arbitrary structures and α, β, . . . propositional formulae. The binary connective ◦ is
the usual addition on structures and corresponds to the comma (,) of Gentzen structures.
The ∗ shifts structures from one side of the turnstile to the other and the • marks a
structure as intensional. As an example of a valid structure in the calculi, consider the
structure ∗ (X ◦ Y ) ◦ (• Z). As usual, parenthesis are ommited when no confusion is
possible. Note that the new connectives allow nested structures of arbitrary depth, and
so we say that structures in display logic are deep, in contrast to the Gentzen structures
which are shallow.

The main characteristic of display logic is the ability to move structures inside a se-
quent. This, in combination with other structural rules, allows any substructure to be
displayed isolated to the left or to the right of the turnstile, without changing the meaning
of the sequent. This is known as the Display Theorem:

Theorem 5 For every sequent s and every antecedent (succedent) part X of s there exists
a sequent s′ structurally equivalent to s such that X is the entire antecedent (succedent)
of s′.

In other words, every sequence is deep, in the sense that we can reach any of its substruc-
tures12. This corresponds to the structure context S{−} of the calculus of structures,
defined in section 4.1.

The basic structural rules in display logic are:
11This name is taken from tableau methods but the calculus is a deductive one
12Saying that we can reach a substructure implies that we do not lose any other information by doing

so.
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(1) (2) (3) (4)

X ◦ Y ` Z
X ` Z ◦ ∗Y

X ` Y ◦ Z
X ◦ ∗Z ` Y

X ` Y
∗Y ` ∗X

•X ` Y
X ` •Y

X ` Z ◦ ∗Y
Y ` ∗X ◦ Z

X ◦ ∗Z ` Y
∗Y ◦X ` Z

∗Y ` ∗X
X ` ∗ ∗ Y

Double line abbreviates the rule obtained by reversing premise-conclusion. Thus, in all
the rules presented above, their conclusion also entails their premise. Two sequents are
called structurally equivalent, if both of them are derivable from each other. For example,
the structures

X ` ∗Y and Y ` ∗X

are structurally equivalent. Note that, contrary to the deepness of the structures, the rules
remain shallow. Kracht [17] shows that equivalent sequents are closed under congruence.
Moreover, he shows that any structure is equivalent to a shallow structure in reduced
normal form.

In Wansing [27] various modal systems are presented, including the normal modal and
tense logics13 of the cube. All of them are obtained in a systematic way: following the
algorithm given by Kracht [17], each axiom A can be mapped into a structural rule A′.
Then, the logic extending K with axioms {A,B, . . .} is formulated by adding to system
DK the corresponding rules {A′, B′, . . .}. All the systems admit cut-elimination. The
translation of a sequent to a formula is τ(X ` Y ) = τ1(X) ⊃ τ2(Y ), where τi, i ∈ {1, 2}
are recursively defined as follows:

τi(α) = α

τ1(I) = >
τ2(I) = ⊥

τi(∗X) = ¬τi(X)
τ1(X ◦ Y ) = τ1(X) ∧ τ1(Y )
τ2(X ◦ Y ) = τ2(X) ∨ τ2(Y )
τ1(•X) = 〈P 〉τ1(X)
τ2(•X) = [F ]τ2(X)

The system for logic K, called DK, is shown in the Appendix, Figures 13 and 14. The
systems for S5 and B we call DS5 and DB respectively and are obtained by extending
system DK with the structural rules that correspond to their axioms, the rules (T ′), (5′)
and (B′) presented also in the Appendix, Figure 15.

Theorem 6 System DS5 admits cut-elimination.
13Tense or temporal logic is bimodal logic with modalities [F ], 〈F 〉 for the future (this coincides with the

normal modality) and [P ], 〈P 〉 for the past.
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In DS5, axiom B has the following proof:

(id)
p ` p

(` �)
∗ • ∗p ` �p

(5′)
• ∗ • ∗ p ` �p

(` �)
∗ • ∗p ` � � p

(T ′)
p ` � � p

`⊃
I ` p ⊃ � � p

where the empty structure I can be added or removed in any place of a sequent.

3.5 A Characterization of the Systems

Deep Inference

All of the systems presented in this section overcome the lack of cut-admissibility of the
system for S5 in the sequent calculus, following the same technique: they exhibit formulae
in a state not reachable by the usual Gentzen systems. More specifically, the rules in (5)
presented in Section 2.3

α, �Γ1,�∆1 ` �Γ2,�∆2 (� `)
�α, �Γ1,�∆1 ` �Γ2,�∆2

�Γ1,�∆1 ` �Γ2,�∆2, α (` �)
�Γ1,�∆1 ` �Γ2,�∆2,�α

have the side-condition that all formulae must be prefixed with a modality. The new
systems allow, directly or indirectly, partial applications of these rules, so that their side-
conditions are avoided. Examples of partial applications of the (` �)-rule are the following
derivations in GS5 and DS5 respectively:

p ` �p
(MS)

p ` | ` �p
(` �)

p ` | ` � � p
(Wr)

p ` � � p | ` � � p
(Wl)

p ` � � p | p ` � � p
(C external)

p ` � � p

and
∗ • ∗p ` p

(5′)
• ∗ • ∗ p ` p

(` �)
∗ • ∗p ` �p

where their premises and conclusions matches the ones of the (` �)-rule, without though
satisfying the side-conditions. Note that such derivations do not always lead to proofs,
since sequences such that ` p ⊃ �p are not theorems of S5 and thus not provable in any of
the systems. The systems then stay in S5 by changing the judgements of the consequence
relation, as shown by the translations of their input to modal formulae.

Analytically, reading the rules bottom-up, the situation in each system is as follows:

1. In the higher arity system GS5s formula α is unconditionally placed to the inside set
Σ by the (` exit)-rule and is retrieved by the (enter)-rules only when it is prefixed
with a modality.
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2. In the multiple sequent system DSC an application of the (` �)-rule replaces the
classical sequent with the modal one. The classical sequent is then reset only with
an application under conditions of the (NC)-rule.

3. In the hypersequent system GS5, as can been seen in the above derivation, the se-
quent is first duplicated, so that all structures which do not satisfy the side-conditions
of the (` �)-rule will be safely removed by applications of weakening rules. Then,
the two sequents are joined to a single sequent by an application of the conditional
(MS)-rule.

4. In Mints’ hypersequent system LS5 formula α is seperated to a new tableau by an
application of the (` �)-rule. The two tableaux are then joined under conditions
with an application of the (�1 `)-rule.

5. In the display system DS5 an application of the (` �)-rule marks the rest of the
structure as intensional. The judgement is then reset either by an application of the
(5′)-rule or by applications of the introduction rules (� `) and (` �).

Consequently, roughly speaking, the systems provide techniques that allow, in certain
cases, deep applications of the specific rules. Based on the depth of their structures the
systems are splitted into two groups:

1. Deep systems are those with nested structures of infinite depth, called deep struc-
tures.

2. Augmented systems are systems with shallow structures of finite depth greater than
the one of Gentzen structures.

All of the systems presented above are augmented systems of depth 1, except the ones
in display logic which are deep. In GS5, for instance, structures have maximum depth 1,
since the | connective is only applied on sequents, whereas in DS5, the new connectives
can be applied in any structure of the system and so structures are of arbitrary depth.
The systems in the calculus of structures presented in the next section are also deep. Now
we can define deep inference:

Definition 9 Deep inference is the ability to apply inference rules in any depth inside
a structure, and so it is a property of deep systems. A system with such rules is said
to enjoy deep inference. We say that a system only imitates deep inference if it is an
augmented system of depth n with inference rules applied inside a structure till depth n.

The systems in display logic enjoy deep inference, as well as the systems in the calculus
of structures. However, in contrast to the calculus of structures, in display logic deep
inference is only implicit. This is because its systems are sequential with rules that are not
applied directly inside structures. Instead, substructures are shifted so that a structurally
equivalent sequent that matches the rule is obtained. For instance, the (` ∨)-rule can be
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applied bottom-up to the substructure p∨q of the sequent I ` •(p∨q)◦∗(r◦•q) as follows:

I ` •(p ◦ q) ◦ ∗(r ◦ •q)
(1)

(r ◦ •q) ` •(p ◦ q)
(4)

•(r ◦ •q) ` p ◦ q
(` ∨)

•(r ◦ •q) ` p ∨ q
(4)

r ◦ •q ` •(p ∨ q)
(1)

I ` •(p ∨ q) ◦ ∗(r ◦ •q)

In the above derivation, the conclusion sequent in its current form does not match the
conclusion of the (` ∨)-rule, though after equivalent transformations it does so.

The rest of the systems imitate deep inference, since they all have rules applicable both
in depth 0 and 1. For instance, weakening in all systems has two versions, one for each
depth.

Other Properties

Only two of the above calculi satisfy Došen’s principle, namely the multiple sequent cal-
culus and display logic. Both of them give common logical rules for the modalities and
different structural rules for the formulations of the specific logics14. In system GS5s

and in both hypersequential systems GS5 and LS5, the logical rules for the modalities
are more specific than the ones needed for logic K, meaning that those rules give more
theorems than just the ones in K. Therefore, as long as those systems keep their current
formulation, the addition of new systems to the calculi (such as a system for K) will cause
failure of the principle.

As it can be observed from the systems which satisfy Došen’s principle, its success in the
cases of modal systems results complicated structural rules and, consequently, complicated
proofs. Also, this principle is not applicable in the calculus of structures (presented in the
next section). For these reasons, we are instead interested in the success of a similar
notion, the one of modularity. This property, together with the properties being focussed
and systematicity, has been presented in Sections 2.1 and 2.3. Figure 4 shows the systems
for S5 already presented and some properties they enjoy, as well as the system for S5 in
the calculus of structures, KSg{kt45}. The calculi with modular systems are the multiple
sequent calculus and display logic, and are the only ones with systems for logic B. The
notion of monotonicity is defined as follows:

Definition 10
1. A rule is of increased (decreased) monotonicity if the number of symbols in its
premise with the most symbols is less (greater) than the number of symbols in its conclusion.
2. A set of rules is said to be monotone if it has rules only of the one type (and no rules
of the other).
3. A system enjoys monotonicity if the set of all its rules is monotone.

14although the logical rules in DSC differ from the ones in the other systems, they are only simplified
versions of the original system and not new ones.
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Systems Properties

being focussed systematicity modularity monotonicity

GS5s weakly fails fails subformula prop.

DSC weakly fails succeeds subformula prop.

GS5 weakly fails fails subformula prop.

LS5 strongly fails fails subformula prop.

DS5 strongly succeeds succeeds fails

KSg{kt45} n.a. succeeds succeeds fails

Figure 4: Some properties of the systems for S5

Monotonicity is a notion similar to the subformula property which can be used in deep
systems. In deep systems, the benefits of the subformula property are lost, as its presence
does not ensure the existence of finitely many possible premises. For instance, in display
logic a sequent is structurally equivalent with an infinite number of sequents, and so, there
are always unboundedly many ways to apply a rule. Increased monotonicity ensures that
this is never the case whereas decreased monotonicity works when the rules are applied top-
down. Here we use this notion only for deep systems and check instead for the subformula
property in the augmented ones.

Note that systematicity is used here only in relation with the axioms of each logic and
not with other means. For instance, as mentioned by Sato [24], the system in the higher
arity sequent calculus GS5s is obtained after close inspection of a completeness proof for
a family of logics. However, this system is not considered to be systematic. Also, the
property being focussed covers only logical rules and thus, it is not applicable in systems
in the calculus of structures.

As it can be easily observed, the only systems with systematic and modular rules are
the deep systems. Moreover, system KSg{kt45}, the only system with explicit use of deep
inference, satisfies additionally the following properties:

1. Simplicity. The rules are few and simple, and the connectives used the least pos-
sible. Also, systematicity is obtained in an obvious way without the use of special
techniques.

2. No specific translation of its structures into formulae is needed, other than the direct
one.

3. Locality. The rules can be restricted in such a way that the inspection of a formula
of an arbitrary length is never necessary.

A short introduction to the calculus of structures and its modal systems follows.
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4 The Calculus of Structures and S5

4.1 The Calculus of Structures

The calculus of structures is a proof theoretical framework introduced by Guglielmi [12].
It is a generalization of the sequent calculus, since there are no logical connectives or rules.
Thus, all the connectives occuring in the structures are structural connectives which are
applied only on atoms and their complements. Modal structures extend the propositional
structures with modal connectives and equations. Similarly, modal systems extend the
propositional one, system SKSg, presented by Brünnler [8].

Definition 11 Prestructures in modal KS systems are built up as follows:

S ::= ff | tt | a | a | [S, . . . , S]︸ ︷︷ ︸
≥1

| (S, . . . , S)︸ ︷︷ ︸
≥1

| � S | � S

The units ff and tt stand for falsity and truth, the schematic letters a, b, . . . and a, b, . . .
for atoms and their complements (also called positive and negative literals respectively),
[S1, . . . , Sn] and (S1, . . . , Sn) for disjunction and conjunction, and �S and �S for the
usual modal operators. A prestructure context S{−} is a prestructure in which an atom is
replaced by −, the hole. S{R} is a prestructure for which − is replaced by the prestructure
R, that is, a prestructure with R as a subprestructure. Curly braces are omitted when the
prestructure R is precisely of the form (S1, . . . , Sn) or [S1, . . . , Sn]. When modalities occur
in prestructures or prestructure contexts, they are called modal prestructures or modal
prestructure contexts respectively.

Since prestructures are defined in negation normal form we make use of their De
Morgan dualities given by the following function ()d:

(a)d = a (a)d = a, for any atom a and its complement

(tt)d = ff (ff)d = tt

(R1, . . . , Ri)d = [Rd
1, . . . , R

d
i ]

[R1, . . . , Ri]d = (Rd
1, . . . , R

d
i )

(�R)d = �Rd

(�R)d = �Rd

Note that for R = T , Rd = T d. Now we can define structures:

Definition 12 Structures S are defined modulo the following equations on prestructures:

1. Associativity:

[R1, . . . , Ri, [T1, . . . , Tj ], U1, . . . , Uk] = [R1, . . . , Ri, T1, . . . Tj , U1, . . . Uk] and
(R1, . . . , Ri, (T1, . . . , Tj), U1, . . . , Uk) = (R1, . . . , Ri, T1, . . . Tj , U1, . . . Uk)

2. Commutativity: [R, T ] = [T,R] and (R, T ) = (T,R)
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3. Identity: R = [R,ff], R = (R, tt), tt = �tt and ff = �ff.

and are closed under the replacement theorem: If R = T then S{R} = S{T}, for any
prestructure context S{−}.

Accordingly, a structure context S{−} extends the notion of substructure context onto
structures as follows: S{−} is the structure defined over the prestructures of S in which
an atom is replaced by −. Note that all prestructures of a structure share the same atoms
and their complements. Similarly, S{R} is the structure defined over the prestructures
Si{Rj}, with i = [1 . . . n] and j = [1 . . .m] for S1, . . . , Sn, R1, . . . , Rm the prestructures in
S and R, respectively.

Definition 13 An inference rule is of the form S{R}
π

S{T }
,

where π is its name, and it is deep in the sense that it is applicable in any structure S{R},
no matter how deep inside S the prestructures of R occur. However, when we formulate
or apply rules, we refer to a structure by one of its prestructures. A rule application ρ

π τ
is such that, given a structure context S{−}, ρ = S{R} and τ = S{T }. A derivation is a
finite sequent of applications of inference rules. A proof is a derivation starting with the
structure tt.

In the symmetric, non cut-free systems in the calculus of structures, every inference rule
has also its dual one. The latter is obtained by reversing the position of premise/conclusion
and applying negation on them. For instance, the dual of the rule in Definition 13 is

S{T }
π
S{R}

, where R is the structure obtained over the output prestructures of function

()d when applying on the prestructures of R. Note that for R = T being two structures
which share the same prestructures, R = T . When the resulted rule is different from the
initial one, its name is extended by an up arrow ↑, while the name of the initial rule gets
a down arrow ↓. So, the two rules are distinguished still sharing the same name, denoting
in this way their duality. Consequently, the notion of duality is extended on derivations
as follows: the dual of a derivation is its reverse derivation, with every structure negated.
The rules of the symmetric system for classical propositional logic SKSg are:

Interaction and cut rules:

S{tt}
i ↓

S[R,R]
S(R,R)

i ↑
S{ff}

The switch rule:
S([R, T ], U)

s
S[(R,U), T ]

The weakening rules:
S{ff}

w ↓
S{R}

S{R}
w ↑

S{tt}
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S{tt}
i ↓

S[R,R]
S([R, T ], U)

s
S[(R,U), T ]

S{ff}
w ↓

S{R}
S[R,R]

c ↓
S{R}

Figure 5: System KSg

And the contraction rules:

S[R,R]
c ↓

S{R}
S{R}

c ↑
S(R,R)

In this system, prestructures are built up as in Definition 11 without the modal con-
structors and structures are closed under the same equations modal structures are, except
of the modal equations of identity. Note that the dual of a derivation is again a valid
derivation of the system. For instance, the dual of the derivation:

(T,U)
w ↓

([R, T ], U)
s

[(R,U), T ]
is the derivation

([R,U ], T )
s

[(R, T ), U ]
w ↑

[T ,U ]

Proposition 2 System SKSg is equivalent to the classical propositional logic.

The rules for interaction, cut and weakening can be restricted to be applied only on atoms
(rather than on arbitrary structures). By adding to the system the medial rule

S[(R,U), (T, V )]
m

S([R, T ], [U, V ])

the same is also true for the contraction rule. In this way we get the local system SKS. It
is local in the sense that none of its rules need to deal with structures of unbounded size.
Note that dualization of the switch and the medial rules gives the same rules.

Proposition 3 Systems SKSg and SKS are strongly equivalent.

Two systems are strongly equivalent if they share the same derivations. Cut-elimination
for both SKSg and SKS is given by the following theorem and is a consequence of the
admissibility of all their up rules - and so the cut rule.

Theorem 7 Systems SKSg and SKS admit cut-elimination.

The cut-free systems obtained by removing the up rules are called KSg and KS respec-
tively. System KSg is shown in Figure 5.
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S{�[R, T ]}
k ↓

S[�R, �T ]
S(�R, �T )

k ↑
S{�(R, T )}

S{�R}
t ↓

S{R}
S{R}

t ↑
S{�R}

S{� �R}
4 ↓

S{�R}
S{�R}

4 ↑
S{� �R}

S{��R}
5 ↓

S{�R}
S{�R}

5 ↑
S{� �R}

Figure 6: System SKSg{kt45}: the new rules

4.2 SKSg{kt45}: A system for S5

System SKSg{kt45} is obtained by extending system SKSg with the rules {k ↓, t ↓, 4 ↓, 5 ↓}
and their duals (see Figure 6). System SKSg{k} is the system for logic K. All new rules
are deep and local. Their correspondence to the Hilbert Axioms arises easily, as, for each
axiom A : R ⊃ T with the subformulae R and T in negation normal form, either the up or

the down rule is of the form S{R}
a
S{T}

. The rules are then oriented so that the up ones

will be admissible. Theorems of the system are its proofs, that is, all derivations starting
with tt. For instance, a proof of axiom B is:

tti ↓
[��R,� �R]

5 ↓
[�R,� �R]

t ↓
[R,� �R]

Equivalence to S5

Proving that system SKSg{kt45} is indeed a system for S5, requires at a first step a way
to move between the two calculi, so that translations of theorems from the one calculi
to the other will be possible. Function ()s maps a modal formula to a structure and is
recursively defined as follows (A is a propositional variable):
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>s = tt, ⊥s = ff, As = as

(¬P )s = P s

(�P )s = �P s

(�P )s = �P s

(P ∨Q)s = [P s, Qs]
(P ∧Q)s = (P s, Qs)

(P ⊃ Q)s = [P s, Qs]

(P ↔ Q)s = ([P s, Qs], [Qs, P s])

Using the reverse function ()s−1
we can translate a structure to a formula. We call this

function ()h. Since there are arbitrary formulae that a structure can be mapped onto, we
simply choose one of them. The following properties hold:

Proposition 4 For F a formula of modal logic and V a structure of modal KS, the
following holds

1. ` F ↔ F hs is derivable in normal modal logic and

2. V = Vsh in system SKSg{k}.

Proof.

1. By induction on the structure of F . We prove the theorem for logic K, so the result
is extended in all the logics:

Base Step. For F a propositional variable A, Ahs = A and `K A↔ A is a proposi-
tional tautology and so, derivable in K. Similar proofs are given for the cases F = >
and F = ⊥.

Induction Step. By induction hypothesis we have P and Q modal formulae with

(1) `K P ↔ P hs and (2) `K Q↔ Qhs

respectively. There are seven cases:

(a) F = ¬P . Then, (¬P )hs = ¬P hs. Applying (MP) to the tautology `K (P ↔
P hs) ⊃ (¬P ↔ ¬P hs) and (1) yields `K ¬P ↔ ¬P hs, as required.

(b) F = �P . Then (�P )hs = �P hs. Applying (MP) to the tautology `K (P ↔
P hs) ⊃ (P ⊃ P hs) and (1) gives `K P ⊃ P hs, from which by (DR1) we derive
`K �P ⊃ �P hs. Similarly we can derive `K �P hs ⊃ �P . Finally, applying
(MP) to the latter two theorems and the propositional tautology (PCi) yields
`K �P ↔ �P sh.
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(c) F = �P . Then (�P )hs = �P hs. Replacing in (b) the result of (a) with (1) yields
`K �¬P ↔ �¬P hs, from which by (DRt) and (Def M) we get `K �P ↔ �P hs,
as required.

(d) F = P ∨ Q. Then, (P ∨ Q)hs = P hs ∨ Qhs. Applying (MP) to the tautology
`K (P ↔ P hs) ⊃ ((Q ↔ Qhs) ⊃ ((P ∨ Q) ↔ (P hs ∨ Qhs))) with (1) and (2)
yields `K (P ∨Q) ↔ (P hs ∨Qhs), as required.

(e) F = P ∧Q. Similar to the above.

(f) F = P ⊃ Q. Then, (P ⊃ Q)hs = ¬P hs ∨Qhs. `K (¬P ∨Q) ↔ (¬P hs ∨Qhs) is
derived as in (d) with (1) replaced by the result of (a) and `K (P ⊃ Q) ↔ (¬P∨
Q) is a tautology. Applying (MP) to the appropriate instance of the tautology
(PCe) and the two theorems mentioned above, we get `K P ⊃ Q↔ ¬P hs∨Qhs,
as required.

(g) F = P ↔ Q. Similar to the above.

2. Function ()h maps V to a formula Rh and is guided by a specific prestructure R in V,
so that the reverse function ()s will result a structure that has R as a prestructure.
Obviously, for all prestructures T in V, R = T will hold again so that all T will be
in Vsh. �

The following theorem establishes the equivalence (up to provability) of system SKSg{kt45}
to S5.

Theorem 8 `SKSg{kt45} V iff `S5 Vh.

Proof. From right to left. Let V be a structure and Vh a theorem in S5. We need to
show that V is provable in SKSg{kt45}. Thus, we prove that every axiom in S5 is provable
in SKSg{kt45} and that proofs in SKSg{kt45} are closed under substitution, necessitation
and modus ponens:

Classical tautologies . They are theorems in SKSg, since it is equivalent to proposi-
tional logic, and so they are in SKSg{kt45}.

Axiom DM . �Rh ↔ ¬� ¬Rh = (�Rh ⊃ ¬� ¬Rh) ∧ (¬� ¬Rh ⊃ �Rh) =
(¬ �Rh ∨¬�¬Rh)∧ (¬¬�¬Rh ∨ �Rh). Then, V = ([�R, �R], [�R, �R]). Applying
to it twice the interaction rule (i ↓) yields tt as required.
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Axiom K . �(Rh ⊃ T h) ⊃ (�Rh ⊃ �T h) = ¬ � (¬Rh ∨ T h) ∨ (¬ � Rh ∨ �T h). Then,
V = [�(R, T ), �R,�T ]. Take the proof

tti ↓
�[R,R]

i ↓
�([R,R], [T, T ])

s
�[T, ([R,R], T )]

s
�[(R, T ), R, T ]

k ↓
[�(R, T ),�[R, T ]]

k ↓
[�(R, T ), �R,�T ]

Axiom T . �Rh ⊃ Rh = ¬�Rh∨Rh. Then V = [�R,R]. Take the proof
tti ↓

[�R,�R]
t ↓

[�R,R]
.

Axiom 4 . �Rh ⊃ � �Rh = ¬�Rh ∨� �Rh. Then, V = [�R,� �R] with proof

tti ↓
[� �R,� �R]

4 ↓
[�R,� �R]

Axiom 5 . �Rh ⊃ � �Rh = ¬ �Rh ∨� �Rh. Then V = [�R,� �R]. Take the proof

tti ↓
[��R,� �R]

5 ↓
[�R,� �R]

Necessitation . Assume `SKSg{kt45} R with proof Π. Applying the same proof Π a level
deeper we get a proof of �R since, by definition, �tt = tt.

Modus Ponens . Assume `SKSg{kt45} [R, T ] with proof Π1 and `SKSg{kt45} R with proof

Π2. Then build the proof

tt
‖
‖Π1; Π2

([R, T ], R)
s

[(R,R), T ]
i ↑

T

.

From left to right. We need to show that for every rule S{W}
S{Z}

and equation

R1 = R2, ` S{W}h ⊃ S{Z}h and ` S{R1}h ↔ S{R2}h are derivable in S5. Then, for
every proof Π of V with a sequent of rule applications and equations (reading the proof
top-down): tt,V1,V2, . . . ,Vn−1,V (n ≥ 1) we get a chain of S5 theorems `S5 > ⊃ Vh

1 (or
`S5 > ↔ Vh

1 ), `S5 Vh
1 ⊃ Vh

2 (or `S5 Vh
1 ↔ Vh

2 ), . . . ,`S5 Vh
n−1 ⊃ Vh (or `S5 Vh

n−1 ↔ Vh),
to which we replace every equality `S5 Vh

i ↔ Vh
i+1 with the theorem `S5 Vh

i ⊃ Vh
i+1
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(this is done by (MP) and the appropriate tautology). Finally, a chain of (PCt) applica-
tions yields `S5 > ⊃ Vh, which is equivalent to `S5 Vh. We start by proving the equations:

Equations
By lemma 1, which shows that Hilbert axioms are applicable deep inside formulae, it
suffices to prove `S5 R

h
1 ↔ Rh

2 . The theorems given by the equations of associativity,
commutativity and the two classical ones of identity are propositional tautologies. For the
modal equations of identity we have:

tt = �tt . Applying (MP) to the propositional tautology `S5 �> ⊃ (> ↔ �>) and
`S5 �> (which is the result from applying necessitation to the propositional tautol-
ogy `S5 >), yields `S5 > ↔ �>, as required.

ff = �ff . Applying (DRt) to the previous result together with (Def M) we get as expected
`S5 ⊥ ↔ �⊥.

Rules
We prove that, given a rule S{W}

S{Z}
, ` S{W}h ⊃ S{Z}h is derivable in S5. Again,

using lemma 1 it suffices to prove that ` W h ⊃ Zh is derivable in S5. The theorems for
the classical rules are propositional tautologies. For the modal rules:

Down rules

Rule {k ↓} . Applying (DR1) to the tautology `S5 (Rh ∨ T h) ⊃ (¬T h ⊃ Rh) yields
`S5 �(Rh ∨ T h) ⊃ �(¬T h ⊃ Rh), from which by (K) and (PCt) we obtain `S5

�(Rh∨T h) ⊃ (�¬T h ⊃ �Rh). Now, applying (PCt) to the latter and the tautology
`S5 (�¬T h ⊃ �Rh) ⊃ (�Rh ∨¬�¬T h) yields `S5 �(Rh ∨T h) ⊃ (�Rh ∨¬�¬T h),
from which the desired theorem easily follows by (Def M).

Rule {t ↓} . `S5 �Rh ⊃ Rh follows immediately from axiom T .

Rule {4 ↓} . `S5 � �Rh ⊃ �Rh is obtained by applying (DRt) to axiom 4.

Rule {5 ↓} . As in 4 ↓, `S5 ��Rh ⊃ �Rh is obtained by applying (DRt) to axiom 5.

Up rules
The proof for the up rules follows from the proof of their corresponding down rules: We
know that ` S{W}h ⊃ S{Z}h is derivable in the corresponding Hilbert System. By
` (S{W}h ⊃ S{Z}h) ⊃ (¬S{Z}h ⊃ ¬S{W}h), which is a propositional tautology, and
Modus Ponens, we get that ` ¬S{Z}h ⊃ ¬S{W}h is also derivable, which is precisely
what do we need. �
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Completeness for KSg{kt45}

Cut-elimination for SKSg{kt45} follows from the elimination of all its up rules. This
is obtained via translations of cut-free proofs from the hypersequential system GS5 to
KSg{kt45}. Since GS5 admits cut-elimination trivially follows that system KSg{kt45} is
complete. For this, we are going to use the translation φ on hypersequents, defined in
Section 3.3. A recursive definition for φ follows:

Definition 14 The translation of a sequent S to a modal formula is recursively defined
as follows:

1. ψS = ⊥, if S is empty.

2. ψS = ¬P ∨ ψΓ`∆, if S is of the form P,Γ ` ∆.

3. ψS = P ∨ ψΓ`∆, if S is of the form Γ ` ∆, P .

For homomorphic reasons, we use the letters P,Q, . . . to range over modal formulae instead
of the α, β, . . . used in the hypersequents.

Definition 15 The translation of a hypersequent G to a modal formula is recursively
defined as follows:

1. φG = ⊥, if G is empty.

2. φG = φG1 ∨�ψΓ`∆ ∨ φH1, if G is of the form G1|Γ ` ∆|H1.

Note: Given two hypersequents G and H, (φG|H)s = [(φG)s, (φH)s], where ()s is the
translation of a modal formula to a structure in the calculus of structures.

Lemma 2 For a hypersequent G and a structure R, the following rule is

derivable in KSg{k5}:
S{�[R, (φG)s]}

g ↓
S[�R, (φG)s]

Proof. By induction on the length of a hypersequent G.

Base step. G is empty. Then (φG)s = ff and S{�[R,ff]} = S{�R} = S[�R,ff].

Induction step. Let G = G1|Γ ` ∆|H1. Then (φG)s = [�(ψΓ`∆)s, (φG1|H1
)s].

By induction hypothesis we have
S{�[R, (φG1|H1

)s]}
g ↓

S[�R, (φG1|H1
)s]

and the derivation

S{�[R, (φG1|H1
)s,�(ψΓ`∆)s]}

k ↓
S[�[R, (φG1|H1

)s], �� (ψΓ`∆)s]
5 ↓

S[�[R, (φG1|H1
)s],�(ψΓ`∆)s]

g ↓
S[�R, (φG1|H1

)s,�(ψΓ`∆)s]

proves the lemma. �
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Proposition 5 `GS5− G implies `KSg{kt45} (φG)s .

Proof. By induction on the length of a derivation D, we prove that for every derivation
step in GS5−, there is a proof of its conclusion in KSg{kt45}, under the assumption that
its premises are provable.

Base step. G is an axiom. Then, φG = �φP`P = �(¬P ∨ P ) and, for (φG)s = �[P s, P s],

tt=
�tt

i ↓
�[P s, P s]

is a proof in KSg.

Induction step. Here Lemma 1 is freely applied.

1. Weakening. For the internal versions by induction hypothesis we have `KSg{kt45}
[�(ψΓ`∆)s, (φG|H)s] and Π a proof of it. Then, build the proofs

tt
‖
‖Π

[�(ψΓ`∆)s, (φG|H)s]
w ↓

[�[P s, (ψΓ`∆)s], (φG|H)s]

and

tt
‖
‖Π

[�(ψΓ`∆)s, (φG|H)s]
w ↓

[�[P s, (ψΓ`∆)s], (φG|H)s]

for left and right weakening, respectively. For external weakening, by induction
hypothesis we have `KSg{kt45} (φG|H)s with proof Π. Build

tt
‖
‖Π

(φG|H)s

w ↓
[�(ψΓ`∆)s, (φG|H)s]

2. Contraction. Similar to weakening.

3. Modalized Splitting. By induction hypothesis `KSg{kt45} [�[�Γs
1,�∆s

1, (ψΓ2`∆2)
s], (φG|H)s]
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holds with proof Π. Build the proof

tt=
�tt
‖
‖Π

�[�[�Γs
1,�∆s

1, (ψΓ2`∆2)
s], (φG|H)s]

k ↓
�[� � Γs

1,�[�∆s
1, (ψΓ2`∆2)

s], (φG|H)s]
k ↓

�[� � Γs
1, �� ∆s

1,�(ψΓ2`∆2)
s, (φG|H)s]

4 ↓
�[�Γs

1, �� ∆s
1,�(ψΓ2`∆2)

s, (φG|H)s]
5 ↓

�[�Γs
1,�∆s

1,�(ψΓ2`∆2)
s, (φG|H)s]

g ↓
[�[�Γs

1,�∆s
1,�(ψΓ2`∆2)

s], (φG|H)s]
k ↓

[�[�Γs
1,�∆s

1], �� (ψΓ2`∆2)
s, (φG|H)s]

5 ↓
[�[�Γs

1,�∆s
1],�(ψΓ2`∆2)

s, (φG|H)s]

Note: �Γ,�∆ are abbreviations for [�Γ1, . . . , �Γn] and [�∆1, . . . ,�∆m], for Γ1, . . . ,Γn

elements of Γ (similar for ∆). The k ↓ rule is applied as many times as the elements
in Γ/∆.

4. Conjuction. For the left introduction rule for conjuction, by induction hypothesis
`KSg{kt45} [�[P s, (ψΓ`∆)s], (φG|H)s] holds. Applying w ↓ yields `KSg{kt45} [�[P s, Qs, (ψΓ`∆)s], (φG|H)s],
as it is needed.
For the right rule, by induction hypothesis `KSg{kt45} [�[P s, (ψΓ`∆)s], (φG|H)s] and
`KSg{kt45} [�[Qs, (ψΓ`∆)s], (φG|H)s] hold with proofs Pi1 and Pi2 respectively. Build
the proof

tt=
�(tt, tt)

‖
‖Π1; Π2

�([�[P s, (ψΓ`∆)s], (φG|H)s], [�[Qs, (ψΓ`∆)s], (φG|H)s])
s

�[(�[P s, (ψΓ`∆)s], [�[Qs, (ψΓ`∆)s], (φG|H)s]), (φG|H)s]
s

�[(�[P s, (ψΓ`∆)s],�[Qs, (ψΓ`∆)s]), (φG|H)s, (φG|H)s]
c ↓

�[(�[P s, (ψΓ`∆)s],�[Qs, (ψΓ`∆)s]), (φG|H)s]
t ↓

�[([P s, (ψΓ`∆)s],�[Qs, (ψΓ`∆)s]), (φG|H)s]
t ↓

�[([P s, (ψΓ`∆)s], [Qs, (ψΓ`∆)s]), (φG|H)s]
s

�[([P s, (ψΓ`∆)s], Qs), (ψΓ`∆)s, (φG|H)s]
s

�[(P s, Qs), (ψΓ`∆)s, (ψΓ`∆)s, (φG|H)s]
c ↓

�[(P s, Qs), (ψΓ`∆)s, (φG|H)s]
g ↓

[�[(P s, Qs), (ψΓ`∆)s], (φG|H)s]

5. Disjunction and implication. These cases are similar to conjuction.
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S{tt}
i ↓

S[R,R]
S{ff}

w ↓
S{R}

S[R,R]
c ↓

S{R}

S([R, T ], U)
s
S[(R,U), T ]

S{�[R, T ]}
k ↓

S[�R, �T ]

S{�R}
t ↓

S{R}
S{� �R}

4 ↓
S{�R}

S{��R}
5 ↓

S{�R}

Figure 7: System KSg{kt45}

6. Negation. Here the results coincide with the induction hypothesis.

7. Rules for �. By induction hypothesis we have `KSg{kt45} [�[P s, (ψΓ`∆)s], (φG|H)s]
with proof Pi1 and `KSg{kt45} [�[�Γs, P s], (φG|H)s] with proof Π2. Build the proofs

tt=
�tt
‖
‖Π1

�[�[P s, (ψΓ`∆)s], (φG|H)s]
k ↓

�[�P s,�(ψΓ`∆)s, (φG|H)s]
t ↓

�[�P s, (ψΓ`∆)s, (φG|H)s]
g ↓

[�[�P s, (ψΓ`∆)s], (φG|H)s]

and

tt=
�tt
‖
‖Π2

�[�[�Γs, P s], (φG|H)s]
k ↓

�[� � Γs,�P s, (φG|H)s]
4 ↓

�[�Γs,�P s, (φG|H)s]
g ↓

[�[�Γs,�P s], (φG|H)s]

for the left and right introduction rules for �, respectively. �

Theorem 9 `S5 F implies `KSg{kt45} F
s .

Proof. Since S5 and GS5 are equivalent `GS5 ` F and so, `GS5− ` F , which implies
`KSg{kt45} �(ψ`F )s (Proposition 5). Since F is a single formula, we have `KSg{kt45} �F s.
Applying t ↓ yields `KSg{kt45} F

s, as needed. �

Corollary 1 Systems KSg{kt45} and S5 are equivalent.

Corollary 2 System SKSg{kt45} admits elimination of its up-rules.

The cut-free system KSg{kt45}, is shown in Figure 7.
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System SKS{kt45}: A local system

Locality for SKSg{kt45} can be obtained by extending the results for SKSg to the modal
cases. We remind that a system is called local if all of its rules have local nature, meaning
that no inspection of structures of unbounded length is required. Locality is obtained by
restricting all the non-local rules to their atomic forms. In general, the atomic form of a
rule is the result of applying uniform substitutions on the arbitrary structures occuring in
the rule, with atoms. For instance, the atomic form of the interaction rule {i ↓}

S{tt}
i ↓

S[R,R]
is S{tt}

ai ↓
S[a, a]

Notice that their names carry an a (for atomic) in front of the general name. The re-
striction of the non-local rules to their atomic ones has been done in a way similar to the
case for SKSgq, the system for predicate logic (see Brünnler [8]). The non-local rules are
again identity, weakening, contraction and their duals. By adding to SKSg{kt45} the local
rules

S[�R,�T ]
l ↓

S{�[R, T ]}
S{�(R, T )}

l ↑
S(�R, �T )

S[�R, �T ]
j ↓

S{�[R, T ]}
S{�(R, T )}

j ↑
S(�R,�T )

(which are derivable in SKSg{k}) and restricting the non-local rules to atoms, we
obtain a local system which is weakly equivalent to the general one. This means that they
share the same theorems, but not necessarily the same derivations.

Proposition 6 The rules {l ↓, l ↑, j ↓, j ↑} are derivable in SKSg{k}.

Proof. For l ↓ take the derivation:

S[�R,�T ]
w ↓

S[�R,�[R, T ]]
w ↓

S[�[R, T ],�[R, T ]]
c ↓

S{�[R, T ]}

.

For j ↓ the proof is similar. For the up rules take the dual of the down rule proofs. �

The rule S{ff}
uw ↓

S{�ff}
is obviously local and derivable in SKSg{k}, since it is an

instance of weakening. By adding uw ↓ and its dual to the local system for S5, we
obtain strong equivalence to its general system. The local system for SKSg{kt45}, called
SKS{kt45}, is shown in Figure 8.

Theorem 10 Systems SKSg{kt45} and SKS{kt45} are strongly equivalent.
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S{tt}
ai ↓

S[a, a]
S(a, a)

ai ↑
S{ff}

S{ff}
aw ↓

S{a}
S{a}

aw ↑
S{tt}

S([R, T ], U)
s
S[(R,U), T ]

S{ff}
uw ↓

S{�ff}
S{�tt}

uw ↑
S{tt}

S[a, a]
ac ↓

S{a}
S{a}

ac ↑
S(a, a)

S{�[R, T ]}
k ↓

S[�R, �T ]
S(�R, �T )

k ↑
S{�(R, T )}

S[(R,U), (T, V )]
m

S([R, T ], [U, V ])
S[�R,�T ]

l ↓
S{�[R, T ]}

S{�(R, T )}
l ↑

S(�R, �T )

S[�R, �T ]
j ↓

S{�[R, T ]}
S{�(R, T )}

j ↑
S(�R,�T )

S{�R}
t ↓

S{R}
S{R}

t ↑
S{�R}

S{� �R}
4 ↓

S{�R}
S{�R}

4 ↑
S{� �R}

S{��R}
5 ↓

S{�R}
S{�R}

5 ↑
S{� �R}

Figure 8: System SKS{kt45}
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Proof. It is enough to prove the theorem for the K systems, since all modal rules
are local and do not change in the local system. Proposition 6 shows that all the rules
in SKS{k} are derivable in SKSg{k}. For the other direction, we extend theorem 3.23
presented in Brünnler [8] to the modal cases:

By induction hypothesis rules i ↓, w ↓ and c ↓ are applicable to structure T :

S{tt}
i ↓

S[T, T ]
,

S{ff}
w ↓

S{T}
and

S[T, T ]
c ↓

S{T}
.

Then, the following derivations are built up only from rules of the local system and
the induction hypothesis. For R a modal extention of T , we have the following cases:

1. R = �T .

S{tt}
=

S{�tt}
i ↓

S{�[T, T ]}
k ↓

S[�T, �T ]

,

S{ff}
uw ↓

S{�ff}
w ↓

S{�T}
and

S[�T,�T ]
l ↓

S{�[T, T ]}
c ↓

S{�T}
.

2. R = �T .

S{tt}
=

S{�tt}
i ↓

S{�[T, T ]}
k ↓

S[�T,�T ]

,

S{ff}
=

S{�ff}
w ↓

S{�T}
and

S[�T, �T ]
j ↓

S{�[T, T ]}
c ↓

S{�T}
.

The derivations for the up rules are the duals of the above. �

The above theorem holds also for systems KSg{kt45} and KS{kt45}. As a result, we
obtain cut-elimination for the local system.

4.3 Other normal modal systems

As it has been already mentioned, the system for logic K in the calculus of structures is
system SKSg{k} and is formulated by adding to the system for propositional logic SKSg
the pair of rules k ↓ and k ↑. Accordingly, systems for K4, D, D4, M and S4 are obtained
by extending SKSg with the rules that correspond to their axioms. The systems are then
called SKSg{k4}, SKSg{kd}, SKSg{kd4}, SKSg{kt} and SKSg{kt4}, respectively. All their
rules except the d rule have been presented earlier in this section (for the modal rules see
Figure 6). The d rule is formulated as follows:

S{�R}
d
S{�R}
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Note that the rule is self-dual, which means that the down and up rules are identical.
Equivalence of the systems to the relevant logics is shown in the same way equivalence

of system SKSg{kt45} to S5 has been proved in Section 4.2 (see Theorem 8). For the
systems without the d rule, that is systems SKSg{k}, SKSg{k4}, SKSg{kt} and SKSg{kt4},
their equivalence is included in that proof. For systems SKSg{kd} and SKSg{kd4}, we
additionally need to show that (i) axiom D is provable in the systems and (ii) the d rule
is derivable in logic D:

Axiom D . �R ⊃ �R = ¬�R∨�R. Then Q = [�R, �R]. Take the proof
tti ↓

[�R,�R]
d ↓

[�R, �R]

Rule {d} . `D �R ⊃ �R follows immediately from axiom D.

Theorem 11 Systems KSg{k}, KSg{k4}, KSg{kd}, KSg{kd4}, KSg{kt} and KSg{kt4} are
complete for K, K4, D, D4, M and S4, respectively.

For the systems KSg{k}, KSg{kd}, KSg{kt} and KSg{kt4} the above theorem follows
from the cut-elimination results for their symmetric systems. This is shown following the
same technique used for proving cut-elimination for system SKSg{kt45}, that is, by trans-
lating the proofs of a known cut-admissible system to proofs of the system in consideration,
in which proofs only down or self-dual rules occur. The cut-admissible systems used in
these proofs are the systems in the sequent calculus presented in Section 2.3. Furthermore,
for all the systems (and so, also for systems KSg{k4} and KSg{kd4}) a semantic complete-
ness proof is given. Both techniques have been developed and applied by Brünnler to
the system for propositional logic SKSg. The first result can be found in Brünnler [8],
whereas the second one is still unpublished [9].

Lastly, all of the systems can be trivially restricted to their local ones (S)KS{k},
(S)KS{k4}, (S)KS{kd}, (S)KS{kd4}, (S)KS{kt} and (S)KS{kt4} respectively, since the
proof for locality for system (S)KSg{kt45} presented earlier is actually a proof for locality
for all the systems that extend system (S)KSg{k} with local rules.

5 Conclusions and Future Directions

Through a study on the current systems for S5, we have verified the importance of deep
inference in providing good formulations for normal modal logic. Moreover, we have
presented a cut-admissible system for S5 in the calculus of structures, a calculus which
makes explicit use of deep inference. The system is additionally distinguished by a simple
design and a direct way for obtaining the modal rules out of the modal axioms. Also, the
system is local, which means that any application of its rules requires the inspection only
of formulae of bounded length.

However, the proof of cut-elimination presented here is indirect, since the cuts are
eliminated externally in another system with known cut-elimination results. Proving these
results internally is a matter of future work, which will also provide (i) completeness
for system KSg{kt5}, a system for S5 with minimal rules and (ii) a way for proving
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completeness for system KSg{ktb}, a cut-admissible system for logic B. The b rules are
again systematic and correspond precisely to axiom B:

S{��R}
b ↓

S{R}
S{R}

b ↑
S{� �R}

Notice that systems KSg{kt45} and KSg{kt45b} are strongly equivalent, since the b ↓ rule is
derivable in KSg{kt45}. Furthermore, since monotonicity fails, another issue of future work
is the implementation of techniques for obtaining decidability results for all the systems.
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A Appendix: The S5 systems

(ax)
α ` α

(⊥ `)
⊥ `

Γ ` ∆ (extension: out)
Γ′,Γ ` ∆,∆′

Γ ; Π ` Σ; ∆
(extension: in)

Γ ; Π′,Π ` Σ,Σ′; ∆

Γ ` ∆, α α,Γ′ ` ∆′
(cut)

Γ,Γ′ ` ∆,∆′

Γ ;` α; ∆
(` exit)

Γ ` �α,∆

Γ,�α ; Π ` Σ; ∆
(enter `)

Γ ; �α,Π ` Σ; ∆

Γ ; Π ` Σ; � α,∆
(` enter)

Γ ; Π ` Σ,�α; ∆

Γ1 ` ∆1, α, β β,Γ2 ` ∆2, α α, β,Γ3 ` ∆3 (⊃`: out)
α ⊃ β,Γ1,Γ2,Γ3 ` ∆1,∆2,∆3

α,Γ ` ∆, β
(`⊃: out)

Γ ` ∆, α ⊃ β

Γ ;α,Π ` Σ, β; ∆
(`⊃: in)

Γ ; Π ` Σ, α ⊃ β; ∆

Γ ; Π1 ` Σ1, α, β; ∆ Γ ;β,Π2 ` Σ2, α; ∆ Γ ;α, β,Π3 ` Σ3; ∆
(⊃`: in)

Γ ;α ⊃ β,Π1,Π2,Π3 ` Σ1,Σ2,Σ3; ∆

α,Γ ` ∆
(� `: out)

�α,Γ ` ∆

�Γ ` �∆, α
(` � : out)

�Γ ` �∆,�α

Figure 9: System GS5s: A system for S5
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(AX)
α ` α

Γ �` ∆ (TR)
∆∗ �` Γ∗

Γ ` ∆, α
(∗l)

α∗,Γ ` ∆

α,Γ ` ∆
(∗r)

Γ ` ∆, α∗

Γ (�)` ∆
(Wl)

α,Γ (�)` ∆

Γ (�)` ∆
(Wr)

Γ (�)` ∆, α

α, β,Γ (�)` ∆
(∧ `)

α ∧ β,Γ (�)` ∆

Γ1 (�)` ∆1, α Γ2 (�)` ∆2, β (` ∧)
Γ1,Γ2 (�)` ∆1,∆2, α ∧ β

α,Γ1 (�)` ∆1 β,Γ2 (�)` ∆2 (∨ `)
α ∨ β,Γ1,Γ2 (�)` ∆1,∆2

Γ (�)` ∆, α, β
(` ∨)

Γ (�)` ∆, α ∨ β

−α,Γ (�)` ∆
(¬ `)

¬α,Γ (�)` ∆

Γ (�)` ∆,−α
(` ¬)

Γ (�)` ∆,¬α

−α,Γ1 (�)` ∆1 β,Γ2 (�)` ∆2 (⊃`)
α ⊃ β,Γ1,Γ2 (�)` ∆1,∆2

Γ (�)` ∆,−α, β
(`⊃)

Γ (�)` ∆, α ⊃ β

Γ ` ∆ (NC)
Γ �` ∆

, where Γ or ∆ either contains only M -formulae or is empty

α,Γ (�)` ∆
(� `)

�α,Γ (�)` ∆

Γ �` M∆, α
(` �)

Γ `M∆,�α

α,MΓ �` ∆
(� `)

�α,MΓ ` ∆

Γ (�)` ∆, α
(` �)

Γ (�)` ∆, �α

Figure 10: System DSC: a system for S5
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(Axiom)
α ` α

G | � Γ1,Γ2 ` �∆1,∆2 | H (MS)
G | � Γ1 ` �∆1 | Γ2 ` ∆2 | H

G | Γ ` ∆ | H
(Wl)

G | α,Γ ` ∆ | H
G | Γ ` ∆ | H

(Wr)
G | Γ ` ∆, α | H

G | α, α,Γ ` ∆ | H
(Cl)

G | α,Γ ` ∆ | H
G | Γ ` ∆, α, α | H

(Cr)
G | Γ ` ∆, α | H

G | H
(W external)

G | Γ ` ∆ | H
G | Γ ` ∆ | Γ ` ∆ | H

(C external)
G | Γ ` ∆ | H

G1 | Γ1 ` ∆1, α | H1 G2 | α,Γ2 ` ∆2 | H2 (Cut)
G1 | G2 | Γ1,Γ2 ` ∆1,∆2 | H1 | H2

G | α,Γ ` ∆ | H
(∧ `)

G | α ∧ β,Γ ` ∆ | H
G | Γ ` ∆, α | H

(` ∨)
G | Γ ` ∆, α ∨ β | H

G | Γ ` ∆, α | H G | Γ ` ∆, β | H
(` ∧)

G | Γ ` ∆, α ∧ β | H

G | β,Γ ` ∆ | H
(∧ `)

G | α ∧ β,Γ ` ∆ | H
G | Γ ` ∆, β | H

(` ∨)
G | Γ ` ∆, α ∨ β | H

G | α,Γ ` ∆ | H G | β,Γ ` ∆ | H
(∨ `)

G | α ∨ β,Γ ` ∆ | H

G | α,Γ ` ∆ | H
(¬ `)

G | Γ ` ∆,¬α | H
G | Γ ` ∆, α | H

(` ¬)
G | ¬α,Γ ` ∆ | H

G1 | Γ1 ` ∆1, α | H1 G2 | β,Γ2 ` ∆2 | H2 (⊃`)
G1 | G2 | α ⊃ β,Γ1,Γ2 ` ∆1,∆2 | H1 | H2

G | α,Γ ` ∆, β | H
(`⊃)

G | Γ ` ∆, α ⊃ β | H

G | α,Γ ` ∆ | H
(� `)

G | � α,Γ ` ∆ | H
G | � Γ ` α | H

(` �)
G | � Γ ` �α | H

Figure 11: System GS5
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(Axiom)
〈α ` α〉

(⊥ `)
〈⊥ ` 〉

G, 〈Γ1 ` ∆1, α〉 H, 〈α,Γ2 ` ∆2〉 (Cut)
G, H, 〈Γ1,Γ2 ` ∆1,∆2〉

G, 〈Γ ` ∆〉
(Wl)

G, 〈α,Γ ` ∆〉
G, 〈Γ ` ∆〉

(Wr)
G, 〈Γ ` ∆, α〉

G, 〈α, α,Γ ` ∆〉
(Cl)

G, 〈α,Γ ` ∆〉
G, 〈Γ ` ∆, α, α〉

(Cr)
G, 〈Γ ` ∆, α〉

G (W external)
G, 〈Γ ` ∆〉

G, 〈Γ ` ∆〉, 〈Γ ` ∆〉
(C external)

G, 〈Γ ` ∆〉

G, 〈Γ ` ∆, α〉 G, 〈β,Γ ` ∆〉
(⊃`)

G, 〈α ⊃ β,Γ ` ∆〉
G, 〈α,Γ ` ∆, β〉

(`⊃)
G, 〈Γ ` ∆, α ⊃ β〉

G, 〈α,Γ1 ` ∆1〉, 〈Γ2 ` ∆2〉 (�1 `)
G, 〈�α,Γ2 ` ∆2〉, 〈Γ1 ` ∆1〉

G, 〈α,Γ ` ∆〉
(�2 `)

G, 〈�α,Γ ` ∆〉
G, 〈Γ ` ∆〉, 〈α〉

(` �)
G, 〈Γ ` ∆,�α〉

Figure 12: System LS5
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(id)
α ` α

X ` α α ` Y (cut)
X ` Y

(f `)
f ` I

X ` I (` f)
X ` f

I ` X (t `)
t ` X

(` t)
I ` t

α ◦ β ` X
(∧ `)

α ∧ β ` X
X ` α Y ` β

(` ∧)
X ◦ Y ` α ∧ β

α ` X β ` Y
(∨ `)

α ∨ β ` X ◦ Y
X ` α ◦ β

(` ∨)
X ` α ∨ β

∗α ` X (¬ `)
¬α ` X

X ` ∗α (` ¬)
X ` ¬α

X ` α β ` Y
(⊃`)

α ⊃ β ` ∗X ◦ Y
X ◦ α ` β

(`⊃)
X ` α ⊃ β

α ` X (� `)
�α ` •X

•X ` α (` �)
X ` �α

∗ • ∗α ` X (� `)
�α ` X

X ` α (` �)
∗ • ∗X ` �α

Figure 13: System DK: the logical, the axiom and the (cut) rules.
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I ◦X ` Z (I−)l
X ` Z

X ` Z ◦ I (I−)r
X ` Z

I ` X (I ex)
Z ` X

X ` I (ex I)
X ` Z

I ` X (I∗)l
∗I ` X

X ` I (I∗)r
X ` ∗I

X1 ` Z (M)l
X1 ◦X2 ` Z

Z ` X1 (M)r
Z ` X1 ◦X2

X ◦X ` Z (C)l
X ` Z

Z ` X ◦X (C)r
Z ` X

X1 ◦X2 ` Z (P )l
X2 ◦X1 ` Z

Z ` X1 ◦X2 (P )r
Z ` X2 ◦X1

X1 ◦ (X2 ◦X3) ` Z
(A)l

(X1 ◦X2) ◦X3 ` Z

Z ` X1 ◦ (X2 ◦X3)
(A)r

Z ` (X1 ◦X2) ◦X3

X ` I (MN)l
X ` •I

I ` X (MN)r
I ` •X

Figure 14: Systems DK: additional structural rules

∗ • ∗X ` Y (T ′)
X ` Y

∗ • ∗X ` Y (5′)
• ∗ • ∗X ` Y

∗ • ∗(X ◦ ∗ • ∗Y ) ` Z
(B′)

Y ◦ ∗ • ∗X ` Z

Figure 15: Rules for the axioms: additional structural rules for S5 and B
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