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Answer Set Programming with Sets

Approach: Extend ASP with terms that represent finite sets of domain elements.

{ useful in declarative modelling

Example: Defining connected components

edge+(X, Y)← edge(X, Y)

edge+(X, Y)← edge+(X, Z) ∧ edge(Z, Y)

comp({X})← vertex(X)

comp(S U {Y})← comp(S) ∧ X ∈ S ∧ edge+(X, Y) ∧ edge+(Y, X)

subComp(S1)← comp(S1) ∧ comp(S2) ∧ S1 ⊆ S2 ∧ not S2 ⊆ S1

maxComp(S)← comp(S) ∧ not subComp(S)
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Reasoning with DLP(S)

Key observation:
On a given input, a set term can only represent finitely many sets.

{ finite grounding possible
{ grounding might be exponential in the number of constants (data complexity!)

These bounds are tight:

Theorem: Complexity of deciding fact entailment under stable-model semantics:

DLP(S) coNExpTimeNP-complete

DLP(S) without ∨ coNExpTime-complete

Hardness holds even if only facts are allowed to vary (data complexity).
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Simulating Sets with Function Symbols and Negation

Sets can be encoded in facts:

b

a

in

in

{a,b}

in(X, S): “X ∈ S”

f∪(X, S): “{X} ∪ S”

c∅: “∅”

su(X, S, T): “{X} ∪ S = T”
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Simulating Sets with Function Symbols and Negation

Sets can be constructed element-by-element:

f∪(b, f∪(a, c∅))
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Simulating Sets with Function Symbols and Negation

f∪(b, f∪(a, c∅))

b
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in

in

{a,b}
a

in

{a}
b

su
∅
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f∪(a, c∅)c∅

f∪(a, f∪(b, f∪(a, c∅)))

in(X, S): “X ∈ S”

f∪(X, S): “{X} ∪ S”

c∅: “∅”

su(X, S, T): “{X} ∪ S = T”

Problem: Duplicate elements in terms{ infinitely many terms for finitely many sets
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Simulating Sets with Function Symbols and Negation
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f∪(a, f∪(b, f∪(a, c∅)))

in(X, S): “X ∈ S”

f∪(X, S): “{X} ∪ S”

c∅: “∅”

su(X, S, T): “{X} ∪ S = T”

Problem: Duplicate elements in terms{ infinitely many terms for finitely many sets

Solution: Use negation to prevent duplicates:

su(X, S, f∪(X, S))← get_su(X, S) ∧ not in(X, S)
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Finite Stable Models: Theory and Practice

Theorem: The ASP encoding with function symbols has finite stable models, cor-
responding to the stable models of the encoded DLP(S).

Problem: Classical ground-and-solve approaches fail since grounders ignore some
negations:

su(X, S, f∪(X, S))← get_su(X, S) ∧ not in(X, S)

Solution 1: Use lazy grounders

• Lazy ASP systems compute grounding on-demand
{ non-stratified negations not ignored during grounding

• Systems like Alpha [Weinzierl et al.] can produce finite stable models
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Finite Stable Models: Theory and Practice

Theorem: The ASP encoding with function symbols has finite stable models, cor-
responding to the stable models of the encoded DLP(S).

Problem: Classical ground-and-solve approaches fail since grounders ignore some
negations:

su(X, S, f∪(X, S))← get_su(X, S) ∧ not in(X, S)

Solution 2: Use existential quantifiers instead of function terms

∃V.su(X, S, V)← get_su(X, S)

• If in(X, S) holds, then also su(X, S, S), and therefore ∃V.su(X, S, V)
{ standard redundancy check in existential rule reasoning mimics negation

• Use existential rule reasoners for grounding
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Evaluation: Setup

Use ASP to solve non-monotonic, ExpTime-complete problems for OWL ontologies

• Implement an ontology reasoner in DLP(S)

• Add additional non-monotonic rules to
(A) compute the reduced class hierarchy
(B) compute maximal antichains in the class hierarchy

• Evaluated implementations:
Alpha (lazy grounder + function-term rewriting)
ExRules (VLog existential rule grounder + clasp solver)
DLVcomplex (native DLP(S) implementation)

• Test data:
8 real-world ontologies, entailing 11K–911K subclass relations
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Evaluation: Results

• Alpha could not solve task (A) or (B) in any case,
but it could compute plain OWL inferences for one ontology

• DLVcomplex could solve (A) in all cases, and (B) for 3 (of 8)

• ExRules could solve (A) and (B) in all cases
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(A) DLVcomp (B) DLVcomp (A) ExRules (B) ExRulessec

{ Initial feasibility study – should not exclude any implementation approach yet
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Conclusion

We extend disjunctive logic programming with set-terms, study its complexity, and
show that it can solve reasoning problems beyond the propositional case.

Main contributions:

• Complexity results for stable-model reasoning with set terms

• Simulation of sets in logic programs with functions and finite stable models

• Set-aware grounding using existential rule reasoning

• New grounding implementation and evaluation

Open questions:

• Could lazy grounding approaches perform better here?

• In general: how to make set-related reasoning performance more robust?

• Further use cases to exploit the added expressivity?

Rewatch talk: https://tinyurl.com/asp-sets-22 IJCAI’22 Poster #174
Markus Krötzsch, TU Dresden Simulating Sets in Answer Set Programming slide 9 of 9

https://tinyurl.com/asp-sets-22
https://iccl.inf.tu-dresden.de/web/Inproceedings3290/en

