
Simulating Sets in Answer Set Programming
As presented at the 31st Int. Join Conf. on Artificial Intelligence (IJCAI’22)

Sarah Alice Gaggl, Philipp Hanisch, Markus Krötzsch

Department of Computer Science

TU Dresden

https://iccl.inf.tu-dresden.de/web/Inproceedings3320/en
https://kbs.inf.tu-dresden.de/mak


Answer Set Programming with Sets

Approach: Extend ASP with terms that represent finite sets of domain elements.

{ useful in declarative modelling

Example: Defining connected components

edge+(X, Y)← edge(X, Y)

edge+(X, Y)← edge+(X, Z) ∧ edge(Z, Y)

comp({X})← vertex(X)

comp(S U {Y})← comp(S) ∧ X ∈ S ∧ edge+(X, Y) ∧ edge+(Y, X)

subComp(S1)← comp(S1) ∧ comp(S2) ∧ S1 ⊆ S2 ∧ not S2 ⊆ S1

maxComp(S)← comp(S) ∧ not subComp(S)

Markus Krötzsch, TU Dresden Simulating Sets in Answer Set Programming slide 2 of 9

https://iccl.inf.tu-dresden.de/web/Inproceedings3290/en


Answer Set Programming with Sets

Approach: Extend ASP with terms that represent finite sets of domain elements.

{ useful in declarative modelling

Example: Defining connected components

edge+(X, Y)← edge(X, Y)

edge+(X, Y)← edge+(X, Z) ∧ edge(Z, Y)

comp({X})← vertex(X)

comp(S U {Y})← comp(S) ∧ X ∈ S ∧ edge+(X, Y) ∧ edge+(Y, X)

subComp(S1)← comp(S1) ∧ comp(S2) ∧ S1 ⊆ S2 ∧ not S2 ⊆ S1

maxComp(S)← comp(S) ∧ not subComp(S)

Markus Krötzsch, TU Dresden Simulating Sets in Answer Set Programming slide 2 of 9

https://iccl.inf.tu-dresden.de/web/Inproceedings3290/en


Reasoning with DLP(S)

Key observation:
On a given input, a set term can only represent finitely many sets.

{ finite grounding possible
{ grounding might be exponential in the number of constants (data complexity!)

These bounds are tight:

Theorem: Complexity of deciding fact entailment under stable-model semantics:

DLP(S) coNExpTimeNP-complete

DLP(S) without ∨ coNExpTime-complete

Hardness holds even if only facts are allowed to vary (data complexity).

Markus Krötzsch, TU Dresden Simulating Sets in Answer Set Programming slide 3 of 9

https://iccl.inf.tu-dresden.de/web/Inproceedings3290/en


Reasoning with DLP(S)

Key observation:
On a given input, a set term can only represent finitely many sets.

{ finite grounding possible
{ grounding might be exponential in the number of constants (data complexity!)

These bounds are tight:

Theorem: Complexity of deciding fact entailment under stable-model semantics:

DLP(S) coNExpTimeNP-complete

DLP(S) without ∨ coNExpTime-complete

Hardness holds even if only facts are allowed to vary (data complexity).

Markus Krötzsch, TU Dresden Simulating Sets in Answer Set Programming slide 3 of 9

https://iccl.inf.tu-dresden.de/web/Inproceedings3290/en


Reasoning with DLP(S)

Key observation:
On a given input, a set term can only represent finitely many sets.

{ finite grounding possible
{ grounding might be exponential in the number of constants (data complexity!)

These bounds are tight:

Theorem: Complexity of deciding fact entailment under stable-model semantics:

DLP(S) coNExpTimeNP-complete

DLP(S) without ∨ coNExpTime-complete

Hardness holds even if only facts are allowed to vary (data complexity).

Markus Krötzsch, TU Dresden Simulating Sets in Answer Set Programming slide 3 of 9

https://iccl.inf.tu-dresden.de/web/Inproceedings3290/en


Simulating Sets with Function Symbols and Negation

Sets can be encoded in facts:

b

a

in

in

{a,b}

in(X, S): “X ∈ S”

f∪(X, S): “{X} ∪ S”

c∅: “∅”

su(X, S, T): “{X} ∪ S = T”

Markus Krötzsch, TU Dresden Simulating Sets in Answer Set Programming slide 4 of 9

https://iccl.inf.tu-dresden.de/web/Inproceedings3290/en


Simulating Sets with Function Symbols and Negation

Function terms can represent sets:

f∪(b, f∪(a, c∅))

b

a

in

in

{a,b}

in(X, S): “X ∈ S”

f∪(X, S): “{X} ∪ S”

c∅: “∅”

su(X, S, T): “{X} ∪ S = T”

Markus Krötzsch, TU Dresden Simulating Sets in Answer Set Programming slide 4 of 9

https://iccl.inf.tu-dresden.de/web/Inproceedings3290/en


Simulating Sets with Function Symbols and Negation

Sets can be constructed element-by-element:

f∪(b, f∪(a, c∅))

b

a

in

in

{a,b}
a

in

{a}
b

su
∅

su

a

f∪(a, c∅)c∅

in(X, S): “X ∈ S”

f∪(X, S): “{X} ∪ S”

c∅: “∅”

su(X, S, T): “{X} ∪ S = T”

Markus Krötzsch, TU Dresden Simulating Sets in Answer Set Programming slide 4 of 9

https://iccl.inf.tu-dresden.de/web/Inproceedings3290/en


Simulating Sets with Function Symbols and Negation

f∪(b, f∪(a, c∅))

b

a

in

in

{a,b}
a

in

{a}
b

su
∅

su

a

f∪(a, c∅)c∅

f∪(a, f∪(b, f∪(a, c∅)))

in(X, S): “X ∈ S”

f∪(X, S): “{X} ∪ S”

c∅: “∅”

su(X, S, T): “{X} ∪ S = T”

Problem: Duplicate elements in terms{ infinitely many terms for finitely many sets

Markus Krötzsch, TU Dresden Simulating Sets in Answer Set Programming slide 4 of 9

https://iccl.inf.tu-dresden.de/web/Inproceedings3290/en


Simulating Sets with Function Symbols and Negation

f∪(b, f∪(a, c∅))

b

a

in

in

{a,b}
a

in

{a}
b

su
∅

su

a

f∪(a, c∅)c∅

f∪(a, f∪(b, f∪(a, c∅)))

in(X, S): “X ∈ S”

f∪(X, S): “{X} ∪ S”

c∅: “∅”

su(X, S, T): “{X} ∪ S = T”

Problem: Duplicate elements in terms{ infinitely many terms for finitely many sets

Solution: Use negation to prevent duplicates:

su(X, S, f∪(X, S))← get_su(X, S) ∧ not in(X, S)

Markus Krötzsch, TU Dresden Simulating Sets in Answer Set Programming slide 4 of 9

https://iccl.inf.tu-dresden.de/web/Inproceedings3290/en


Finite Stable Models: Theory and Practice

Theorem: The ASP encoding with function symbols has finite stable models, cor-
responding to the stable models of the encoded DLP(S).

Problem: Classical ground-and-solve approaches fail since grounders ignore some
negations:

su(X, S, f∪(X, S))← get_su(X, S) ∧ not in(X, S)

Solution 1: Use lazy grounders

• Lazy ASP systems compute grounding on-demand
{ non-stratified negations not ignored during grounding

• Systems like Alpha [Weinzierl et al.] can produce finite stable models

Markus Krötzsch, TU Dresden Simulating Sets in Answer Set Programming slide 5 of 9

https://iccl.inf.tu-dresden.de/web/Inproceedings3290/en


Finite Stable Models: Theory and Practice

Theorem: The ASP encoding with function symbols has finite stable models, cor-
responding to the stable models of the encoded DLP(S).

Problem: Classical ground-and-solve approaches fail since grounders ignore some
negations:

su(X, S, f∪(X, S))← get_su(X, S) ∧ not in(X, S)

Solution 1: Use lazy grounders

• Lazy ASP systems compute grounding on-demand
{ non-stratified negations not ignored during grounding

• Systems like Alpha [Weinzierl et al.] can produce finite stable models

Markus Krötzsch, TU Dresden Simulating Sets in Answer Set Programming slide 5 of 9

https://iccl.inf.tu-dresden.de/web/Inproceedings3290/en


Finite Stable Models: Theory and Practice

Theorem: The ASP encoding with function symbols has finite stable models, cor-
responding to the stable models of the encoded DLP(S).

Problem: Classical ground-and-solve approaches fail since grounders ignore some
negations:

su(X, S, f∪(X, S))← get_su(X, S) ∧ not in(X, S)

Solution 1: Use lazy grounders

• Lazy ASP systems compute grounding on-demand
{ non-stratified negations not ignored during grounding

• Systems like Alpha [Weinzierl et al.] can produce finite stable models

Markus Krötzsch, TU Dresden Simulating Sets in Answer Set Programming slide 5 of 9

https://iccl.inf.tu-dresden.de/web/Inproceedings3290/en


Finite Stable Models: Theory and Practice

Theorem: The ASP encoding with function symbols has finite stable models, cor-
responding to the stable models of the encoded DLP(S).

Problem: Classical ground-and-solve approaches fail since grounders ignore some
negations:

su(X, S, f∪(X, S))← get_su(X, S) ∧ not in(X, S)

Solution 2: Use existential quantifiers instead of function terms

∃V.su(X, S, V)← get_su(X, S)

• If in(X, S) holds, then also su(X, S, S), and therefore ∃V.su(X, S, V)
{ standard redundancy check in existential rule reasoning mimics negation

• Use existential rule reasoners for grounding

Markus Krötzsch, TU Dresden Simulating Sets in Answer Set Programming slide 6 of 9

https://iccl.inf.tu-dresden.de/web/Inproceedings3290/en


Finite Stable Models: Theory and Practice

Theorem: The ASP encoding with function symbols has finite stable models, cor-
responding to the stable models of the encoded DLP(S).

Problem: Classical ground-and-solve approaches fail since grounders ignore some
negations:

su(X, S, f∪(X, S))← get_su(X, S) ∧ not in(X, S)

Solution 2: Use existential quantifiers instead of function terms

∃V.su(X, S, V)← get_su(X, S)

• If in(X, S) holds, then also su(X, S, S), and therefore ∃V.su(X, S, V)
{ standard redundancy check in existential rule reasoning mimics negation

• Use existential rule reasoners for grounding

Markus Krötzsch, TU Dresden Simulating Sets in Answer Set Programming slide 6 of 9

https://iccl.inf.tu-dresden.de/web/Inproceedings3290/en


Finite Stable Models: Theory and Practice

Theorem: The ASP encoding with function symbols has finite stable models, cor-
responding to the stable models of the encoded DLP(S).

Problem: Classical ground-and-solve approaches fail since grounders ignore some
negations:

su(X, S, f∪(X, S))← get_su(X, S) ∧ not in(X, S)

Solution 2: Use existential quantifiers instead of function terms

∃V.su(X, S, V)← get_su(X, S)

• If in(X, S) holds, then also su(X, S, S), and therefore ∃V.su(X, S, V)
{ standard redundancy check in existential rule reasoning mimics negation

• Use existential rule reasoners for grounding

Markus Krötzsch, TU Dresden Simulating Sets in Answer Set Programming slide 6 of 9

https://iccl.inf.tu-dresden.de/web/Inproceedings3290/en


Evaluation: Setup

Use ASP to solve non-monotonic, ExpTime-complete problems for OWL ontologies

• Implement an ontology reasoner in DLP(S)

• Add additional non-monotonic rules to
(A) compute the reduced class hierarchy
(B) compute maximal antichains in the class hierarchy

• Evaluated implementations:
Alpha (lazy grounder + function-term rewriting)
ExRules (VLog existential rule grounder + clasp solver)
DLVcomplex (native DLP(S) implementation)

• Test data:
8 real-world ontologies, entailing 11K–911K subclass relations

Markus Krötzsch, TU Dresden Simulating Sets in Answer Set Programming slide 7 of 9

https://iccl.inf.tu-dresden.de/web/Inproceedings3290/en


Evaluation: Results

• Alpha could not solve task (A) or (B) in any case,
but it could compute plain OWL inferences for one ontology

• DLVcomplex could solve (A) in all cases, and (B) for 3 (of 8)

• ExRules could solve (A) and (B) in all cases

1

10

100

1000

00668 00368 00371 00541 00375 00395 00533 00477

(A) DLVcomp (B) DLVcomp (A) ExRules (B) ExRulessec

{ Initial feasibility study – should not exclude any implementation approach yet

Markus Krötzsch, TU Dresden Simulating Sets in Answer Set Programming slide 8 of 9

https://iccl.inf.tu-dresden.de/web/Inproceedings3290/en


Conclusion

We extend disjunctive logic programming with set-terms, study its complexity, and
show that it can solve reasoning problems beyond the propositional case.

Main contributions:

• Complexity results for stable-model reasoning with set terms

• Simulation of sets in logic programs with functions and finite stable models

• Set-aware grounding using existential rule reasoning

• New grounding implementation and evaluation

Open questions:

• Could lazy grounding approaches perform better here?

• In general: how to make set-related reasoning performance more robust?

• Further use cases to exploit the added expressivity?

Rewatch talk: https://tinyurl.com/asp-sets-22 IJCAI’22 Poster #174
Markus Krötzsch, TU Dresden Simulating Sets in Answer Set Programming slide 9 of 9

https://tinyurl.com/asp-sets-22
https://iccl.inf.tu-dresden.de/web/Inproceedings3290/en

