# Simulating Sets in Answer Set Programming

As presented at the 31st Int. Join Conf. on Artificial Intelligence (IJCAI'22)

### Sarah Alice Gaggl, Philipp Hanisch, Markus Krötzsch

Department of Computer Science TU Dresden





International Center for Computational Logic

## Answer Set Programming with Sets

**Approach:** Extend ASP with terms that represent finite sets of domain elements.

 $\rightarrow$  useful in declarative modelling

### Answer Set Programming with Sets

Approach: Extend ASP with terms that represent finite sets of domain elements.

 $\rightarrow$  useful in declarative modelling

**Example:** Defining connected components  $edge^{+}(X, Y) \leftarrow edge(X, Y)$   $edge^{+}(X, Y) \leftarrow edge^{+}(X, Z) \wedge edge(Z, Y)$   $comp(\{X\}) \leftarrow vertex(X)$   $comp(S \cup \{Y\}) \leftarrow comp(S) \wedge X \in S \wedge edge^{+}(X, Y) \wedge edge^{+}(Y, X)$   $subComp(S_{1}) \leftarrow comp(S_{1}) \wedge comp(S_{2}) \wedge S_{1} \subseteq S_{2} \wedge \operatorname{not} S_{2} \subseteq S_{1}$   $maxComp(S) \leftarrow comp(S) \wedge \operatorname{not} subComp(S)$ 

# Reasoning with DLP(S)

Key observation:

On a given input, a set term can only represent finitely many sets.

# Reasoning with DLP(S)

Key observation:

On a given input, a set term can only represent finitely many sets.

 $\rightsquigarrow$  finite grounding possible

ightarrow grounding might be exponential in the number of constants (data complexity!)

# Reasoning with DLP(S)

Key observation:

On a given input, a set term can only represent finitely many sets.

 $\rightsquigarrow$  finite grounding possible

ightarrow grounding might be exponential in the number of constants (data complexity!)

These bounds are tight:

 DLP(S)
 coNExpTime<sup>NP</sup>-complete

 DLP(S) without ∨
 coNExpTime-complete

 Hardness holds even if only facts are allowed to vary (data complexity).

Sets can be encoded in facts:



in(X, S): " $X \in S$ "

Function terms can represent sets:



Sets can be constructed element-by-element:



| in(X, S):         | $X \in S$             |
|-------------------|-----------------------|
| $f_{\cup}(X,S)$ : | "{ $X$ } $\cup$ $S$ " |
| $c_{\emptyset}$ : | "Ø"                   |
| su(X, S, T):      | $``\{X\} \cup S = T"$ |



Problem: Duplicate elements in terms  $\rightsquigarrow$  infinitely many terms for finitely many sets



Problem: Duplicate elements in terms  $\rightsquigarrow$  infinitely many terms for finitely many sets

Solution: Use negation to prevent duplicates:

 $su(X, S, f_{\cup}(X, S)) \leftarrow get\_su(X, S) \land \operatorname{not} in(X, S)$ 

Markus Krötzsch, TU Dresden

**Theorem:** The ASP encoding with function symbols has finite stable models, corresponding to the stable models of the encoded DLP(S).

**Theorem:** The ASP encoding with function symbols has finite stable models, corresponding to the stable models of the encoded DLP(S).

Problem: Classical ground-and-solve approaches fail since grounders ignore some negations:

 $su(X, S, f_{\cup}(X, S)) \leftarrow get\_su(X, S) \land \mathsf{not}\,in(X, S)$ 

**Theorem:** The ASP encoding with function symbols has finite stable models, corresponding to the stable models of the encoded DLP(S).

Problem: Classical ground-and-solve approaches fail since grounders ignore some negations:

$$su(X, S, f_{\cup}(X, S)) \leftarrow get\_su(X, S) \land \mathsf{not}\,in(X, S)$$

#### Solution 1: Use lazy grounders

- Lazy ASP systems compute grounding on-demand
   → non-stratified negations not ignored during grounding
- Systems like Alpha [Weinzierl et al.] can produce finite stable models

**Theorem:** The ASP encoding with function symbols has finite stable models, corresponding to the stable models of the encoded DLP(S).

Problem: Classical ground-and-solve approaches fail since grounders ignore some negations:

 $su(X, S, f_{\cup}(X, S)) \leftarrow get\_su(X, S) \land \mathsf{not}\,in(X, S)$ 

**Theorem:** The ASP encoding with function symbols has finite stable models, corresponding to the stable models of the encoded DLP(S).

Problem: Classical ground-and-solve approaches fail since grounders ignore some negations:

 $su(X, S, f_{\cup}(X, S)) \leftarrow get\_su(X, S) \land \mathsf{not}\,in(X, S)$ 

#### Solution 2: Use existential quantifiers instead of function terms

 $\exists V.su(X, S, V) \leftarrow get\_su(X, S)$ 

**Theorem:** The ASP encoding with function symbols has finite stable models, corresponding to the stable models of the encoded DLP(S).

Problem: Classical ground-and-solve approaches fail since grounders ignore some negations:

$$su(X, S, f_{\cup}(X, S)) \leftarrow get\_su(X, S) \land \mathsf{not}\,in(X, S)$$

#### Solution 2: Use existential quantifiers instead of function terms

 $\exists V.su(X, S, V) \leftarrow get\_su(X, S)$ 

- If *in*(*X*, *S*) holds, then also *su*(*X*, *S*, *S*), and therefore ∃*V*.*su*(*X*, *S*, *V*)
   → standard redundancy check in existential rule reasoning mimics negation
- Use existential rule reasoners for grounding

Markus Krötzsch, TU Dresden

# Evaluation: Setup

#### Use ASP to solve non-monotonic, ExpTime-complete problems for OWL ontologies

- Implement an ontology reasoner in DLP(S)
- Add additional non-monotonic rules to
  - (A) compute the reduced class hierarchy
  - (B) compute maximal antichains in the class hierarchy
- Evaluated implementations:
  - Alpha (lazy grounder + function-term rewriting) ExRules (VLog existential rule grounder + clasp solver) DLVcomplex (native DLP(S) implementation)
- Test data:
  - 8 real-world ontologies, entailing 11K-911K subclass relations

# **Evaluation: Results**

- Alpha could not solve task (A) or (B) in any case, but it could compute plain OWL inferences for one ontology
- DLVcomplex could solve (A) in all cases, and (B) for 3 (of 8)
- ExRules could solve (A) and (B) in all cases



#### $\sim$ Initial feasibility study – should not exclude any implementation approach yet

# Conclusion

We extend disjunctive logic programming with set-terms, study its complexity, and show that it can solve reasoning problems beyond the propositional case.

#### Main contributions:

- · Complexity results for stable-model reasoning with set terms
- · Simulation of sets in logic programs with functions and finite stable models
- Set-aware grounding using existential rule reasoning
- New grounding implementation and evaluation

#### **Open questions:**

- Could lazy grounding approaches perform better here?
- In general: how to make set-related reasoning performance more robust?
- Further use cases to exploit the added expressivity?

#### Rewatch talk: https://tinyurl.com/asp-sets-22

IJCAI'22 Poster #174

Markus Krötzsch, TU Dresden