
Fakultät Informatik, Institut für Künstliche Intelligenz, Professur Computational Logic

THEORETISCHE INFORMATIK UND LOGIK

19. Vorlesung: Resolution

Sebastian Rudolph

Folien:© Markus Krötzsch, https://iccl.inf.tu-dresden.de/web/TheoLog2017, CC BY 3.0 DE

TU Dresden, 26. Juni 2025

https://iccl.inf.tu-dresden.de/web/Computational_Logic
https://iccl.inf.tu-dresden.de/web/TheoLog2025
https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch

Wir haben soeben aus La Bérarde erfahren, dass sich ein neuer
Unfall auf dem Pelvoux ereignet hat: Ein junger Mann, der Mitglied
einer dreiköpfigen Gruppe aus Lyon gewesen ist, stürzte zu Tode.

– Le Temps, Montag, 29. Juli 1931

Resolution für Prädikatenlogik

Ein konkreter Algorithmus zum logischen Schließen:

(1) Logische Konsequenz auf Unerfüllbarkeit reduzieren

(2) Formeln in Klauselform umwandeln
– Formel bereinigen
– Negationsnormalform bilden
– Pränexform bilden
– Skolemform bilden
– Konjunktive Normalform bilden

(3) Resolutionsverfahren anwenden
– Unifikation zum Finden passender Klauseln
– Bilden von Resolventen bis zur Terminierung

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 3 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Unifikation

Unifikationsalgorithmus

Eingabe: Ein Unifikationsproblem G.
Ausgabe: Ein allgemeinster Unifikator für G, oder „nicht unifizierbar“.

Wende die folgenden Umformungsregeln auf G an, bis keine Regel mehr zu einer Än-
derung führt:

• Löschen: {t .
= t} ∪ G′ { G′

• Zerlegung: { f (s1, . . . , sn) .
= f (u1, . . . , un)} ∪ G′ { {s1

.
= u1, . . . , sn

.
= un} ∪ G′

• Orientierung: {t .
= x} ∪ G′ { {x .

= t} ∪ G′ falls x ∈ V und t < V

• Eliminierung: {x .
= t} ∪ G′ { {x .

= t} ∪ G′{x 7→ t} falls x ∈ V nicht in t vorkommt

Wenn G dann in gelöster Form ist, dann gib σG aus.
Andernfalls gib aus „nicht unifizierbar“.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 4 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Unifikation von Atomen

Ein Unifikator für eine Menge A = {A1, . . . , An} von prädikatenlogischen Atomen ist
eine Substitution θ mit A1θ = A2θ = . . . = Anθ.

Beobachtungen:

• Eine Menge von Atomen A ist nur dann unifizierbar, wenn alle Atome das gleiche
Prädikat verwenden, d.h. wenn es ein ℓ-stelliges Prädikatensymbol p gibt, so dass
Ai = p(ti,1, . . . , ti,ℓ) für alle i ∈ {1, . . . , n}.

• Dann ist σ genau dann ein Unifikator für A, wenn σ Unifikator für das folgende
Unifikationsproblem GA ist:

GA =
{
ti,j

.
= ti+1,j

∣∣∣ 1 ≤ i ≤ n − 1, 1 ≤ j ≤ ℓ
}

• Insbesondere ist der allgemeinste Unifikator für GA auch der allgemeinste
Unifikator für A.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 5 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Unifikation von Atomen

Ein Unifikator für eine Menge A = {A1, . . . , An} von prädikatenlogischen Atomen ist
eine Substitution θ mit A1θ = A2θ = . . . = Anθ.

Beobachtungen:

• Eine Menge von Atomen A ist nur dann unifizierbar, wenn alle Atome das gleiche
Prädikat verwenden, d.h. wenn es ein ℓ-stelliges Prädikatensymbol p gibt, so dass
Ai = p(ti,1, . . . , ti,ℓ) für alle i ∈ {1, . . . , n}.

• Dann ist σ genau dann ein Unifikator für A, wenn σ Unifikator für das folgende
Unifikationsproblem GA ist:

GA =
{
ti,j

.
= ti+1,j

∣∣∣ 1 ≤ i ≤ n − 1, 1 ≤ j ≤ ℓ
}

• Insbesondere ist der allgemeinste Unifikator für GA auch der allgemeinste
Unifikator für A.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 5 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Die Resolutionsregel

Die Resolvente von zwei Klauseln der Form

K1 = {A1, . . . , An, L1, . . . , Lk} und K2 = {¬A′1, . . . ,¬A′m, L′1, . . . , L′ℓ},

für welche σ der allgemeinste Unifikator der Menge {A1, . . . , An, A′1, . . . , A′m} ist und
Li, L′j beliebige Literale sind, ist die Klausel {L1σ, . . . , Lkσ, L′1σ, . . . , L′ℓσ}.

Beobachtung: Wegen {A1, . . . , An, A′1, . . . , A′m}σ = {A} für ein Atom A ist
K1σ = {A, L1σ, . . . , Lkσ} und K2σ =

{
¬A, L′1σ, . . . , L′ℓσ

}
.

Beispiel: Die Klausel K1 = {¬Mensch(x), hatVater(x, f (x))} und die Klausel
K2 = {¬hatVater(z, v), hatKind(v, z)} können resolviert werden. Ein allgemeinster Uni-
fikator von {hatVater(x, f (x)), hatVater(z, v)} ist σ = {z 7→ x, v 7→ f (x)}. Die entsprechende
Resolvente von K1 und K2 ist {¬Mensch(x), hatKind(f (x), x)}.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 6 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Die Resolutionsregel

Die Resolvente von zwei Klauseln der Form

K1 = {A1, . . . , An, L1, . . . , Lk} und K2 = {¬A′1, . . . ,¬A′m, L′1, . . . , L′ℓ},

für welche σ der allgemeinste Unifikator der Menge {A1, . . . , An, A′1, . . . , A′m} ist und
Li, L′j beliebige Literale sind, ist die Klausel {L1σ, . . . , Lkσ, L′1σ, . . . , L′ℓσ}.

Beobachtung: Wegen {A1, . . . , An, A′1, . . . , A′m}σ = {A} für ein Atom A ist
K1σ = {A, L1σ, . . . , Lkσ} und K2σ =

{
¬A, L′1σ, . . . , L′ℓσ

}
.

Beispiel: Die Klausel K1 = {¬Mensch(x), hatVater(x, f (x))} und die Klausel
K2 = {¬hatVater(z, v), hatKind(v, z)} können resolviert werden. Ein allgemeinster Uni-
fikator von {hatVater(x, f (x)), hatVater(z, v)} ist σ = {z 7→ x, v 7→ f (x)}. Die entsprechende
Resolvente von K1 und K2 ist {¬Mensch(x), hatKind(f (x), x)}.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 6 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Resolution: Beispiel (1)
Wir hatten die folgende Beispielformel F betrachtet:

∀x.
(
(W(x) ∧ ¬L(x)) ∨ (L(x) ∧ ¬W(x))

)
∧
(
∃x.W(x)→ (∀x.W(x) ∨ ∀x.L(x))

)
∧
(
∃x.L(x)→ ¬(∀x.W(x) ∨ ∀x.L(x))

)
(Jeder ist Typ W oder Typ L; ist einer Typ W, dann gibt es hier nur einen Typ; ist einer
Typ L, dann gibt es hier nicht nur einen Typ.)

Folgt aus F, dass alle Typ W sind?

Vorgehen:
• Formalisiere diese Frage: F |= ∀z.W(z)?
• Reduktion auf Unerfüllbarkeit: Ist F ∧ ¬∀z.W(z) unerfüllbar?
• Klauselform: F haben wir bereits in Klauselform gebracht. Wir können direkt die

Klauseln für ¬∀z.W(z) hinzufügen:
– Bereinigte NNF (und Pränexform): ∃z.¬W(z)
– Skolemform (und KNF): ¬W(a) (a ist Skolemkonstante)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 7 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Resolution: Beispiel (1)
Wir hatten die folgende Beispielformel F betrachtet:

∀x.
(
(W(x) ∧ ¬L(x)) ∨ (L(x) ∧ ¬W(x))

)
∧
(
∃x.W(x)→ (∀x.W(x) ∨ ∀x.L(x))

)
∧
(
∃x.L(x)→ ¬(∀x.W(x) ∨ ∀x.L(x))

)
(Jeder ist Typ W oder Typ L; ist einer Typ W, dann gibt es hier nur einen Typ; ist einer
Typ L, dann gibt es hier nicht nur einen Typ.)

Folgt aus F, dass alle Typ W sind?

Vorgehen:
• Formalisiere diese Frage: F |= ∀z.W(z)?

• Reduktion auf Unerfüllbarkeit: Ist F ∧ ¬∀z.W(z) unerfüllbar?
• Klauselform: F haben wir bereits in Klauselform gebracht. Wir können direkt die

Klauseln für ¬∀z.W(z) hinzufügen:
– Bereinigte NNF (und Pränexform): ∃z.¬W(z)
– Skolemform (und KNF): ¬W(a) (a ist Skolemkonstante)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 7 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Resolution: Beispiel (1)
Wir hatten die folgende Beispielformel F betrachtet:

∀x.
(
(W(x) ∧ ¬L(x)) ∨ (L(x) ∧ ¬W(x))

)
∧
(
∃x.W(x)→ (∀x.W(x) ∨ ∀x.L(x))

)
∧
(
∃x.L(x)→ ¬(∀x.W(x) ∨ ∀x.L(x))

)
(Jeder ist Typ W oder Typ L; ist einer Typ W, dann gibt es hier nur einen Typ; ist einer
Typ L, dann gibt es hier nicht nur einen Typ.)

Folgt aus F, dass alle Typ W sind?

Vorgehen:
• Formalisiere diese Frage: F |= ∀z.W(z)?
• Reduktion auf Unerfüllbarkeit: Ist F ∧ ¬∀z.W(z) unerfüllbar?

• Klauselform: F haben wir bereits in Klauselform gebracht. Wir können direkt die
Klauseln für ¬∀z.W(z) hinzufügen:

– Bereinigte NNF (und Pränexform): ∃z.¬W(z)
– Skolemform (und KNF): ¬W(a) (a ist Skolemkonstante)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 7 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Resolution: Beispiel (1)
Wir hatten die folgende Beispielformel F betrachtet:

∀x.
(
(W(x) ∧ ¬L(x)) ∨ (L(x) ∧ ¬W(x))

)
∧
(
∃x.W(x)→ (∀x.W(x) ∨ ∀x.L(x))

)
∧
(
∃x.L(x)→ ¬(∀x.W(x) ∨ ∀x.L(x))

)
(Jeder ist Typ W oder Typ L; ist einer Typ W, dann gibt es hier nur einen Typ; ist einer
Typ L, dann gibt es hier nicht nur einen Typ.)

Folgt aus F, dass alle Typ W sind?

Vorgehen:
• Formalisiere diese Frage: F |= ∀z.W(z)?
• Reduktion auf Unerfüllbarkeit: Ist F ∧ ¬∀z.W(z) unerfüllbar?
• Klauselform: F haben wir bereits in Klauselform gebracht. Wir können direkt die

Klauseln für ¬∀z.W(z) hinzufügen:
– Bereinigte NNF (und Pränexform): ∃z.¬W(z)
– Skolemform (und KNF): ¬W(a) (a ist Skolemkonstante)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 7 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Resolution: Beispiel (2)

Zusammen mit der Klauselform für F erhalten wir die Klauseln:

(1) {W(x1), L(x1)}
(2) {¬L(x1), L(x1)}
(3) {W(x1),¬W(x1)}
(4) {¬L(x1),¬W(x1)}
(5) {¬W(x2), W(x3), L(x4)}
(6) {¬L(x5),¬W(f6(x1, x2, x3, x4, x5))}
(7) {¬L(x5),¬L(f7(x1, x2, x3, x4, x5))}
(8) {¬W(a)}

(9) {L(a)} (1) + (8) {x1 7→ a}
(10) {¬L(f7(x1, x2, x3, x4, a))} (9) + (7) {x5 7→ a}

Problem:
• Das Literal ¬L(f7(x1, x2, x3, x4, a)) bedeutet „es gibt Nicht-Lügner“ (bezeichnet mit

Termen der Form f7(x1, x2, x3, x4, a)).
• Dies sollte z.B. mit (1) „Jeder Nicht-Lügner ist Wahrheitssager“ resolvieren.
• Aber {L(f7(x1, x2, x3, x4, a)), L(x1)} hat keinen Unifikator . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 8 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Resolution: Beispiel (2)

Zusammen mit der Klauselform für F erhalten wir die Klauseln:

(1) {W(x1), L(x1)}
(2) {¬L(x1), L(x1)}
(3) {W(x1),¬W(x1)}
(4) {¬L(x1),¬W(x1)}
(5) {¬W(x2), W(x3), L(x4)}
(6) {¬L(x5),¬W(f6(x1, x2, x3, x4, x5))}
(7) {¬L(x5),¬L(f7(x1, x2, x3, x4, x5))}
(8) {¬W(a)}
(9) {L(a)} (1) + (8) {x1 7→ a}

(10) {¬L(f7(x1, x2, x3, x4, a))} (9) + (7) {x5 7→ a}

Problem:
• Das Literal ¬L(f7(x1, x2, x3, x4, a)) bedeutet „es gibt Nicht-Lügner“ (bezeichnet mit

Termen der Form f7(x1, x2, x3, x4, a)).
• Dies sollte z.B. mit (1) „Jeder Nicht-Lügner ist Wahrheitssager“ resolvieren.
• Aber {L(f7(x1, x2, x3, x4, a)), L(x1)} hat keinen Unifikator . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 8 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Resolution: Beispiel (2)

Zusammen mit der Klauselform für F erhalten wir die Klauseln:

(1) {W(x1), L(x1)}
(2) {¬L(x1), L(x1)}
(3) {W(x1),¬W(x1)}
(4) {¬L(x1),¬W(x1)}
(5) {¬W(x2), W(x3), L(x4)}
(6) {¬L(x5),¬W(f6(x1, x2, x3, x4, x5))}
(7) {¬L(x5),¬L(f7(x1, x2, x3, x4, x5))}
(8) {¬W(a)}
(9) {L(a)} (1) + (8) {x1 7→ a}

(10) {¬L(f7(x1, x2, x3, x4, a))} (9) + (7) {x5 7→ a}

Problem:
• Das Literal ¬L(f7(x1, x2, x3, x4, a)) bedeutet „es gibt Nicht-Lügner“ (bezeichnet mit

Termen der Form f7(x1, x2, x3, x4, a)).
• Dies sollte z.B. mit (1) „Jeder Nicht-Lügner ist Wahrheitssager“ resolvieren.
• Aber {L(f7(x1, x2, x3, x4, a)), L(x1)} hat keinen Unifikator . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 8 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Resolution: Beispiel (2)

Zusammen mit der Klauselform für F erhalten wir die Klauseln:

(1) {W(x1), L(x1)}
(2) {¬L(x1), L(x1)}
(3) {W(x1),¬W(x1)}
(4) {¬L(x1),¬W(x1)}
(5) {¬W(x2), W(x3), L(x4)}
(6) {¬L(x5),¬W(f6(x1, x2, x3, x4, x5))}
(7) {¬L(x5),¬L(f7(x1, x2, x3, x4, x5))}
(8) {¬W(a)}
(9) {L(a)} (1) + (8) {x1 7→ a}

(10) {¬L(f7(x1, x2, x3, x4, a))} (9) + (7) {x5 7→ a}

Problem:
• Das Literal ¬L(f7(x1, x2, x3, x4, a)) bedeutet „es gibt Nicht-Lügner“ (bezeichnet mit

Termen der Form f7(x1, x2, x3, x4, a)).
• Dies sollte z.B. mit (1) „Jeder Nicht-Lügner ist Wahrheitssager“ resolvieren.
• Aber {L(f7(x1, x2, x3, x4, a)), L(x1)} hat keinen Unifikator . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 8 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Varianten von Klauseln

Wir wissen: ∀x.(F ∧ G) ≡ (∀x.F ∧ ∀x.G)

In Klauselform kann man sich also die Allquantoren direkt vor jeder einzelnen Klausel
denken:

(1) ∀x1.{W(x1), L(x1)}
(2) ∀x1.{¬L(x1), L(x1)}

. . .

(10) ∀x1, x2, x3, x4.{¬L(f7(x1, x2, x3, x4, a))}

Daher darf man die Variablen jeder Klausel einheitlich umbenennen, unabhängig von
jeder anderen Klausel, z.B.

{¬L(f7(x1, x2, x3, x4, a))} { {¬L(f7(x′1, x′2, x′3, x′4, a))}

Klauseln, die durch eineindeutige Umbenennung von Variablen entstanden sind, nennt
man Varianten (einer Klausel).

{Wir bilden bei der Resolution Varianten, um Konflikte von Variablen zu vermeiden.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 9 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Varianten von Klauseln

Wir wissen: ∀x.(F ∧ G) ≡ (∀x.F ∧ ∀x.G)

In Klauselform kann man sich also die Allquantoren direkt vor jeder einzelnen Klausel
denken:

(1) ∀x1.{W(x1), L(x1)}
(2) ∀x1.{¬L(x1), L(x1)}

. . .

(10) ∀x1, x2, x3, x4.{¬L(f7(x1, x2, x3, x4, a))}

Daher darf man die Variablen jeder Klausel einheitlich umbenennen, unabhängig von
jeder anderen Klausel, z.B.

{¬L(f7(x1, x2, x3, x4, a))} { {¬L(f7(x′1, x′2, x′3, x′4, a))}

Klauseln, die durch eineindeutige Umbenennung von Variablen entstanden sind, nennt
man Varianten (einer Klausel).

{Wir bilden bei der Resolution Varianten, um Konflikte von Variablen zu vermeiden.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 9 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Resolution: Beispiel (3)

Mit einer Variante von Klausel (11) gelingt die Resolution:

(1) {W(x1), L(x1)}
(2) {¬L(x1), L(x1)}
(3) {W(x1),¬W(x1)}
(4) {¬L(x1),¬W(x1)}
(5) {¬W(x2), W(x3), L(x4)}
(6) {¬L(x5),¬W(f6(x1, x2, x3, x4, x5))}
(7) {¬L(x5),¬L(f7(x1, x2, x3, x4, x5))}
(8) {¬W(a)}
(9) {L(a)} (1) + (8) {x1 7→ a}

(10) {¬L(f7(x′1, x′2, x′3, x′4, a))} (9) + (7) {x5 7→ a}

(11) {W(f7(x′1, x′2, x′3, x′4, a))} (1) + (10) {x1 7→ f7(x′1, x′2, x′3, x′4, a)}
(12) {W(x3), L(x4)} (11) + (5) {x2 7→ f7(x′1, x′2, x′3, x′4, a)}
(13) {L(x4)} (12) + (8) {x3 7→ a}
(14) {} (13) + (10) {x4 7→ f7(x′1, x′2, x′3, x′4, a)}

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 10 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Resolution: Beispiel (3)

Mit einer Variante von Klausel (11) gelingt die Resolution:

(1) {W(x1), L(x1)}
(2) {¬L(x1), L(x1)}
(3) {W(x1),¬W(x1)}
(4) {¬L(x1),¬W(x1)}
(5) {¬W(x2), W(x3), L(x4)}
(6) {¬L(x5),¬W(f6(x1, x2, x3, x4, x5))}
(7) {¬L(x5),¬L(f7(x1, x2, x3, x4, x5))}
(8) {¬W(a)}
(9) {L(a)} (1) + (8) {x1 7→ a}

(10) {¬L(f7(x′1, x′2, x′3, x′4, a))} (9) + (7) {x5 7→ a}
(11) {W(f7(x′1, x′2, x′3, x′4, a))} (1) + (10) {x1 7→ f7(x′1, x′2, x′3, x′4, a)}

(12) {W(x3), L(x4)} (11) + (5) {x2 7→ f7(x′1, x′2, x′3, x′4, a)}
(13) {L(x4)} (12) + (8) {x3 7→ a}
(14) {} (13) + (10) {x4 7→ f7(x′1, x′2, x′3, x′4, a)}

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 10 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Resolution: Beispiel (3)

Mit einer Variante von Klausel (11) gelingt die Resolution:

(1) {W(x1), L(x1)}
(2) {¬L(x1), L(x1)}
(3) {W(x1),¬W(x1)}
(4) {¬L(x1),¬W(x1)}
(5) {¬W(x2), W(x3), L(x4)}
(6) {¬L(x5),¬W(f6(x1, x2, x3, x4, x5))}
(7) {¬L(x5),¬L(f7(x1, x2, x3, x4, x5))}
(8) {¬W(a)}
(9) {L(a)} (1) + (8) {x1 7→ a}

(10) {¬L(f7(x′1, x′2, x′3, x′4, a))} (9) + (7) {x5 7→ a}
(11) {W(f7(x′1, x′2, x′3, x′4, a))} (1) + (10) {x1 7→ f7(x′1, x′2, x′3, x′4, a)}
(12) {W(x3), L(x4)} (11) + (5) {x2 7→ f7(x′1, x′2, x′3, x′4, a)}

(13) {L(x4)} (12) + (8) {x3 7→ a}
(14) {} (13) + (10) {x4 7→ f7(x′1, x′2, x′3, x′4, a)}

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 10 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Resolution: Beispiel (3)

Mit einer Variante von Klausel (11) gelingt die Resolution:

(1) {W(x1), L(x1)}
(2) {¬L(x1), L(x1)}
(3) {W(x1),¬W(x1)}
(4) {¬L(x1),¬W(x1)}
(5) {¬W(x2), W(x3), L(x4)}
(6) {¬L(x5),¬W(f6(x1, x2, x3, x4, x5))}
(7) {¬L(x5),¬L(f7(x1, x2, x3, x4, x5))}
(8) {¬W(a)}
(9) {L(a)} (1) + (8) {x1 7→ a}

(10) {¬L(f7(x′1, x′2, x′3, x′4, a))} (9) + (7) {x5 7→ a}
(11) {W(f7(x′1, x′2, x′3, x′4, a))} (1) + (10) {x1 7→ f7(x′1, x′2, x′3, x′4, a)}
(12) {W(x3), L(x4)} (11) + (5) {x2 7→ f7(x′1, x′2, x′3, x′4, a)}
(13) {L(x4)} (12) + (8) {x3 7→ a}

(14) {} (13) + (10) {x4 7→ f7(x′1, x′2, x′3, x′4, a)}

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 10 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Resolution: Beispiel (3)

Mit einer Variante von Klausel (11) gelingt die Resolution:

(1) {W(x1), L(x1)}
(2) {¬L(x1), L(x1)}
(3) {W(x1),¬W(x1)}
(4) {¬L(x1),¬W(x1)}
(5) {¬W(x2), W(x3), L(x4)}
(6) {¬L(x5),¬W(f6(x1, x2, x3, x4, x5))}
(7) {¬L(x5),¬L(f7(x1, x2, x3, x4, x5))}
(8) {¬W(a)}
(9) {L(a)} (1) + (8) {x1 7→ a}

(10) {¬L(f7(x′1, x′2, x′3, x′4, a))} (9) + (7) {x5 7→ a}
(11) {W(f7(x′1, x′2, x′3, x′4, a))} (1) + (10) {x1 7→ f7(x′1, x′2, x′3, x′4, a)}
(12) {W(x3), L(x4)} (11) + (5) {x2 7→ f7(x′1, x′2, x′3, x′4, a)}
(13) {L(x4)} (12) + (8) {x3 7→ a}
(14) {} (13) + (10) {x4 7→ f7(x′1, x′2, x′3, x′4, a)}

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 10 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Resolution: Beispiel (4)

Wir haben durch Resolution die leere Klausel {} abgeleitet.

Die leere Klausel bezeichnen wir auch mit ⊥:

• Sie steht für die leere Disjunktion,

• d.h. für eine unerfüllbare (falsche) Behauptung.

{Wir haben gezeigt, dass die Klauselmenge unerfüllbar ist.

{ Die geprüfte logische Konsequenz F |= ∀z.W(z) gilt.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 11 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Quiz: Resolutionsschritte in der Prädikatenlogik

Die Resolvente von zwei Klauseln der Form

K1 = {A1, . . . , An, L1, . . . , Lk} und K2 = {¬A′1, . . . ,¬A′m, L′1, . . . , L′
ℓ
},

ist die Klausel
{L1σ, . . . , Lkσ, L′1σ, . . . , L′

ℓ
σ},

wobei σ der allgemeinste Unifikator von {A1, . . . , An, A′1, . . . , A′m} ist und Li, L′j beliebige Literale sind.

Quiz: Welche der folgenden Resolventen sind korrekt berechnet? . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 12 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Der Resolutionsalgorithmus

Eingabe: Eine Formel F.

• Wandle F in Klauselform um { Klauselmenge K0

• Für alle i ≥ 0:
– Ki+1 := Ki

– Für alle Klauseln K1, K2 ∈ Ki:
• Bilde von K1 und K2 Varianten K′1 und K′2, welche keine Variablen

gemeinsam haben.
• Bilde alle möglichen Resolventen von K′1 und K′2 und füge diese zu
Ki+1 hinzu.

– Falls ⊥ ∈ Ki+1, dann terminiere und gib „unerfüllbar“ aus.
– Falls Ki = Ki+1, dann terminiere und gib „erfüllbar“ aus.

Anmerkung 1: K1 = K2 ist erlaubt und manchmal notwendig.
Anmerkung 2: K′1 = K1 und/oder K′2 = K2 ist möglich, sofern die Varianten keine
gemeinsamen Variablen haben.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 13 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Korrektheit des Resolutionsalgorithmus (1)

Wir wollen den folgenden Satz schrittweise beweisen:

Resolutionssatz: Sei F eine prädikatenlogische Formel und Ki (i ≥ 0) die vom Re-
solutionsalgorithmus ermittelten Klauselmengen. Dann sind die folgenden Aussagen
äquivalent:

• F ist unerfüllbar.

• Es gibt ein ℓ ≥ 0 mit ⊥ ∈ Kℓ.

Beweis (Korrektheit): Wir zeigen die Korrektheit eines einzelnen Resolutionsschrittes;
die Behauptung folgt per Induktion über die Schrittzahl. Wir unterscheiden Klauseln K
vom Satz ∀K, für den sie stehen (eine Disjunktion mit allquantifizierten Variablen).

Wir hatten bereits erkannt, dass Varianten von Klauseln deren logische Konsequenzen
sind (in der Notation des Algorithmus: ∀K1 |= ∀K′1 und ∀K2 |= ∀K′2).

Wir zeigen noch die Korrektheit des reinen Resolutionsschrittes.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 14 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Korrektheit des Resolutionsalgorithmus (1)

Wir wollen den folgenden Satz schrittweise beweisen:

Resolutionssatz: Sei F eine prädikatenlogische Formel und Ki (i ≥ 0) die vom Re-
solutionsalgorithmus ermittelten Klauselmengen. Dann sind die folgenden Aussagen
äquivalent:

• F ist unerfüllbar.

• Es gibt ein ℓ ≥ 0 mit ⊥ ∈ Kℓ.

Beweis (Korrektheit): Wir zeigen die Korrektheit eines einzelnen Resolutionsschrittes;
die Behauptung folgt per Induktion über die Schrittzahl. Wir unterscheiden Klauseln K
vom Satz ∀K, für den sie stehen (eine Disjunktion mit allquantifizierten Variablen).

Wir hatten bereits erkannt, dass Varianten von Klauseln deren logische Konsequenzen
sind (in der Notation des Algorithmus: ∀K1 |= ∀K′1 und ∀K2 |= ∀K′2).

Wir zeigen noch die Korrektheit des reinen Resolutionsschrittes.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 14 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Korrektheit des Resolutionsalgorithmus (2)
Beweis (Korrektheit, Fortsetzung): Gegeben:
• Klauseln K1 = {A1, . . . , An, L1, . . . , Lk} und K2 = {¬A′1, . . . ,¬A′m, L′1, . . . , L′ℓ}
• (allgemeinster) Unifikator σ der Menge {A1, . . . , An, A′1, . . . , A′m}
• zugehörige Resolvente K = {L1σ, . . . , Lkσ, L′1σ, . . . , L′ℓσ}

Sei I eine beliebige Interpretation.
• Angenommen, es gilt I |= ∀K1 ∧ ∀K2.
• Dann gilt auch I |= ∀(K1σ) ∧ ∀(K2σ). (σ konkretisiert die Allaussagen.)
• Also gilt für alle Zuweisungen Z: I,Z |= (K1σ) ∧ (K2σ)
• Fall 1: I,Z |= A1σ (= A2σ = . . . = A′mσ).

Dann gilt I,Z |= L′1σ ∨ . . . ∨ L′ℓσ, und damit I,Z |= K
• Fall 2: I,Z ̸|= A1σ (= A2σ = . . . = A′mσ).

Dann gilt I,Z |= L1σ ∨ . . . ∨ Lkσ, und damit I,Z |= K
• Also gilt I |= ∀K.

Da I beliebig war, gilt also ∀K1 ∧ ∀K2 |= ∀K.
Das heißt: Jede Resolvente ist logische Konsequenz der resolvierten Klauseln.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 15 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Korrektheit des Resolutionsalgorithmus (2)
Beweis (Korrektheit, Fortsetzung): Gegeben:
• Klauseln K1 = {A1, . . . , An, L1, . . . , Lk} und K2 = {¬A′1, . . . ,¬A′m, L′1, . . . , L′ℓ}
• (allgemeinster) Unifikator σ der Menge {A1, . . . , An, A′1, . . . , A′m}
• zugehörige Resolvente K = {L1σ, . . . , Lkσ, L′1σ, . . . , L′ℓσ}

Sei I eine beliebige Interpretation.
• Angenommen, es gilt I |= ∀K1 ∧ ∀K2.

• Dann gilt auch I |= ∀(K1σ) ∧ ∀(K2σ). (σ konkretisiert die Allaussagen.)
• Also gilt für alle Zuweisungen Z: I,Z |= (K1σ) ∧ (K2σ)
• Fall 1: I,Z |= A1σ (= A2σ = . . . = A′mσ).

Dann gilt I,Z |= L′1σ ∨ . . . ∨ L′ℓσ, und damit I,Z |= K
• Fall 2: I,Z ̸|= A1σ (= A2σ = . . . = A′mσ).

Dann gilt I,Z |= L1σ ∨ . . . ∨ Lkσ, und damit I,Z |= K
• Also gilt I |= ∀K.

Da I beliebig war, gilt also ∀K1 ∧ ∀K2 |= ∀K.
Das heißt: Jede Resolvente ist logische Konsequenz der resolvierten Klauseln.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 15 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Korrektheit des Resolutionsalgorithmus (2)
Beweis (Korrektheit, Fortsetzung): Gegeben:
• Klauseln K1 = {A1, . . . , An, L1, . . . , Lk} und K2 = {¬A′1, . . . ,¬A′m, L′1, . . . , L′ℓ}
• (allgemeinster) Unifikator σ der Menge {A1, . . . , An, A′1, . . . , A′m}
• zugehörige Resolvente K = {L1σ, . . . , Lkσ, L′1σ, . . . , L′ℓσ}

Sei I eine beliebige Interpretation.
• Angenommen, es gilt I |= ∀K1 ∧ ∀K2.
• Dann gilt auch I |= ∀(K1σ) ∧ ∀(K2σ). (σ konkretisiert die Allaussagen.)

• Also gilt für alle Zuweisungen Z: I,Z |= (K1σ) ∧ (K2σ)
• Fall 1: I,Z |= A1σ (= A2σ = . . . = A′mσ).

Dann gilt I,Z |= L′1σ ∨ . . . ∨ L′ℓσ, und damit I,Z |= K
• Fall 2: I,Z ̸|= A1σ (= A2σ = . . . = A′mσ).

Dann gilt I,Z |= L1σ ∨ . . . ∨ Lkσ, und damit I,Z |= K
• Also gilt I |= ∀K.

Da I beliebig war, gilt also ∀K1 ∧ ∀K2 |= ∀K.
Das heißt: Jede Resolvente ist logische Konsequenz der resolvierten Klauseln.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 15 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Korrektheit des Resolutionsalgorithmus (2)
Beweis (Korrektheit, Fortsetzung): Gegeben:
• Klauseln K1 = {A1, . . . , An, L1, . . . , Lk} und K2 = {¬A′1, . . . ,¬A′m, L′1, . . . , L′ℓ}
• (allgemeinster) Unifikator σ der Menge {A1, . . . , An, A′1, . . . , A′m}
• zugehörige Resolvente K = {L1σ, . . . , Lkσ, L′1σ, . . . , L′ℓσ}

Sei I eine beliebige Interpretation.
• Angenommen, es gilt I |= ∀K1 ∧ ∀K2.
• Dann gilt auch I |= ∀(K1σ) ∧ ∀(K2σ). (σ konkretisiert die Allaussagen.)
• Also gilt für alle Zuweisungen Z: I,Z |= (K1σ) ∧ (K2σ)

• Fall 1: I,Z |= A1σ (= A2σ = . . . = A′mσ).
Dann gilt I,Z |= L′1σ ∨ . . . ∨ L′ℓσ, und damit I,Z |= K

• Fall 2: I,Z ̸|= A1σ (= A2σ = . . . = A′mσ).
Dann gilt I,Z |= L1σ ∨ . . . ∨ Lkσ, und damit I,Z |= K

• Also gilt I |= ∀K.

Da I beliebig war, gilt also ∀K1 ∧ ∀K2 |= ∀K.
Das heißt: Jede Resolvente ist logische Konsequenz der resolvierten Klauseln.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 15 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Korrektheit des Resolutionsalgorithmus (2)
Beweis (Korrektheit, Fortsetzung): Gegeben:
• Klauseln K1 = {A1, . . . , An, L1, . . . , Lk} und K2 = {¬A′1, . . . ,¬A′m, L′1, . . . , L′ℓ}
• (allgemeinster) Unifikator σ der Menge {A1, . . . , An, A′1, . . . , A′m}
• zugehörige Resolvente K = {L1σ, . . . , Lkσ, L′1σ, . . . , L′ℓσ}

Sei I eine beliebige Interpretation.
• Angenommen, es gilt I |= ∀K1 ∧ ∀K2.
• Dann gilt auch I |= ∀(K1σ) ∧ ∀(K2σ). (σ konkretisiert die Allaussagen.)
• Also gilt für alle Zuweisungen Z: I,Z |= (K1σ) ∧ (K2σ)
• Fall 1: I,Z |= A1σ (= A2σ = . . . = A′mσ).

Dann gilt I,Z |= L′1σ ∨ . . . ∨ L′ℓσ, und damit I,Z |= K

• Fall 2: I,Z ̸|= A1σ (= A2σ = . . . = A′mσ).
Dann gilt I,Z |= L1σ ∨ . . . ∨ Lkσ, und damit I,Z |= K

• Also gilt I |= ∀K.

Da I beliebig war, gilt also ∀K1 ∧ ∀K2 |= ∀K.
Das heißt: Jede Resolvente ist logische Konsequenz der resolvierten Klauseln.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 15 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Korrektheit des Resolutionsalgorithmus (2)
Beweis (Korrektheit, Fortsetzung): Gegeben:
• Klauseln K1 = {A1, . . . , An, L1, . . . , Lk} und K2 = {¬A′1, . . . ,¬A′m, L′1, . . . , L′ℓ}
• (allgemeinster) Unifikator σ der Menge {A1, . . . , An, A′1, . . . , A′m}
• zugehörige Resolvente K = {L1σ, . . . , Lkσ, L′1σ, . . . , L′ℓσ}

Sei I eine beliebige Interpretation.
• Angenommen, es gilt I |= ∀K1 ∧ ∀K2.
• Dann gilt auch I |= ∀(K1σ) ∧ ∀(K2σ). (σ konkretisiert die Allaussagen.)
• Also gilt für alle Zuweisungen Z: I,Z |= (K1σ) ∧ (K2σ)
• Fall 1: I,Z |= A1σ (= A2σ = . . . = A′mσ).

Dann gilt I,Z |= L′1σ ∨ . . . ∨ L′ℓσ, und damit I,Z |= K
• Fall 2: I,Z ̸|= A1σ (= A2σ = . . . = A′mσ).

Dann gilt I,Z |= L1σ ∨ . . . ∨ Lkσ, und damit I,Z |= K

• Also gilt I |= ∀K.

Da I beliebig war, gilt also ∀K1 ∧ ∀K2 |= ∀K.
Das heißt: Jede Resolvente ist logische Konsequenz der resolvierten Klauseln.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 15 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Korrektheit des Resolutionsalgorithmus (2)
Beweis (Korrektheit, Fortsetzung): Gegeben:
• Klauseln K1 = {A1, . . . , An, L1, . . . , Lk} und K2 = {¬A′1, . . . ,¬A′m, L′1, . . . , L′ℓ}
• (allgemeinster) Unifikator σ der Menge {A1, . . . , An, A′1, . . . , A′m}
• zugehörige Resolvente K = {L1σ, . . . , Lkσ, L′1σ, . . . , L′ℓσ}

Sei I eine beliebige Interpretation.
• Angenommen, es gilt I |= ∀K1 ∧ ∀K2.
• Dann gilt auch I |= ∀(K1σ) ∧ ∀(K2σ). (σ konkretisiert die Allaussagen.)
• Also gilt für alle Zuweisungen Z: I,Z |= (K1σ) ∧ (K2σ)
• Fall 1: I,Z |= A1σ (= A2σ = . . . = A′mσ).

Dann gilt I,Z |= L′1σ ∨ . . . ∨ L′ℓσ, und damit I,Z |= K
• Fall 2: I,Z ̸|= A1σ (= A2σ = . . . = A′mσ).

Dann gilt I,Z |= L1σ ∨ . . . ∨ Lkσ, und damit I,Z |= K
• Also gilt I |= ∀K.

Da I beliebig war, gilt also ∀K1 ∧ ∀K2 |= ∀K.
Das heißt: Jede Resolvente ist logische Konsequenz der resolvierten Klauseln.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 15 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Vollständigkeit des Resolutionsalgorithmus

Resolutionssatz: Sei F eine prädikatenlogische Formel und Ki (i ≥ 0) die vom Re-
solutionsalgorithmus ermittelten Klauselmengen. Dann sind die folgenden Aussagen
äquivalent:

• F ist unerfüllbar.

• Es gibt ein ℓ ≥ 0 mit ⊥ ∈ Kℓ.

Bisher gezeigt: Die zweite Aussage impliziert die erste (Korrektheit).

Vollständigkeit ist die Umkehrung davon (die erste Aussage impliziert die zweite):

• Jeder Widerspruch wird irgendwann durch Resolution gefunden.

• Das ist nicht so offensichtlich – wir müssen dazu etwas weiter ausholen . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 16 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Wir hatten gestern erwähnt, dass ein junger Mann, der mit einer
Gruppe von Bergsteigern in der Umgebung von La Bérarde unterwegs
war, bei einem Sturz ums Leben kam. Es handelte sich um M. Jacques
Herbrand, wohnhaft in der Rue Viollet-le-duc 10 in Paris.
M. Herbrand war am Sonntag mit drei Gefährten – den Herren Jean
Brille, Pierre Delair und Henri Guigner – aufgebrochen, um Les
Bans zu besteigen. Beim Abstieg löste sich ein Kletterhaken, an
dem das Seil befestigt war, und nahm eine kleine Plattform mit
sich, auf der sich M. Herbrand befand, welcher in den Abgrund
stürzte. Ein Bergungstrupp ist aufgebrochen um den Leichnam zu
suchen und hofft ihn heute zu erreichen.

– Le Temps, Dienstag, 30. Juli 1931

Jacques Herbrand
12.02.1908 – 27.07.1931

Prädikatenlogische Modelle

Wir wollen zeigen:

Wenn es kein Modell für eine Formel gibt, dann leitet Resolution ⊥ ab.

Problem: Interpretationen sind sehr allgemeine Strukturen.

• Eine beliebige Menge kann als Domäne verwendet werden.

• Die systematische Betrachtung von Interpretationen ist daher schwierig.

Idee von Herbrand (und Skolem und Gödel):

„Semantik aus Syntax“
Konstruktion von Modellen direkt aus den Formeln, welche sie erfüllen sollen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 19 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Prädikatenlogische Modelle

Wir wollen zeigen:

Wenn es kein Modell für eine Formel gibt, dann leitet Resolution ⊥ ab.

Problem: Interpretationen sind sehr allgemeine Strukturen.

• Eine beliebige Menge kann als Domäne verwendet werden.

• Die systematische Betrachtung von Interpretationen ist daher schwierig.

Idee von Herbrand (und Skolem und Gödel):

„Semantik aus Syntax“
Konstruktion von Modellen direkt aus den Formeln, welche sie erfüllen sollen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 19 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Herbrand-Universum

Der Kern von Herbrands Idee ist eine „syntaktische“ Domäne:

Sei a eine beliebige Konstante. Das Herbrand-Universum ∆F für eine Formel F ist die
Menge aller variablenfreien Terme, die man mit Konstanten und Funktionssymbolen in
F und der zusätzlichen Konstante a bilden kann:

• a ∈ ∆F,

• c ∈ ∆F für jede Konstante aus F,

• f (t1, . . . , tn) ∈ ∆F für jedes n-stellige Funktionssymbol aus F und alle Terme
t1, . . . , tn ∈ ∆F.

Anmerkung: Das Herbrand-Universum ist immer abzählbar, manchmal endlich und
niemals leer.

Beispiel: Für die Formel F = p(f (x), y, g(z)) ergibt sich das Herbrand-Universum
∆F = {a, f (a), g(a), f (f (a)), f (g(a)), g(f (a)), g(g(a)), . . .}.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 20 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Herbrand-Universum

Der Kern von Herbrands Idee ist eine „syntaktische“ Domäne:

Sei a eine beliebige Konstante. Das Herbrand-Universum ∆F für eine Formel F ist die
Menge aller variablenfreien Terme, die man mit Konstanten und Funktionssymbolen in
F und der zusätzlichen Konstante a bilden kann:

• a ∈ ∆F,

• c ∈ ∆F für jede Konstante aus F,

• f (t1, . . . , tn) ∈ ∆F für jedes n-stellige Funktionssymbol aus F und alle Terme
t1, . . . , tn ∈ ∆F.

Anmerkung: Das Herbrand-Universum ist immer abzählbar, manchmal endlich und
niemals leer.

Beispiel: Für die Formel F = p(f (x), y, g(z)) ergibt sich das Herbrand-Universum
∆F = {a, f (a), g(a), f (f (a)), f (g(a)), g(f (a)), g(g(a)), . . .}.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 20 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Herbrand-Interpretationen

Mit dem Herbrand-Universum als Domäne kann man Interpretationen definieren, die
Terme „durch sich selbst“ interpretieren:

Eine Herbrand-Interpretation für eine Formel F ist eine Interpretation I, für die gilt:

• ∆I = ∆F ist das Herbrand-Universum von F;

• für jeden Term t ∈ ∆F gilt tI = t.

I ist genau dann ein Herbrand-Modell für F, wenn zudem gilt I |= F.

Anmerkung: Die Definition stellt Bedingungen an Grundbereich und Terminterpretation,
aber sie lässt auch viele Freiheiten (z.B. die Interpretation von Prädikatensymbolen).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 21 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel

Betrachten wir wieder die (skolemisierte) Formel F = ∀x.hatVater(x, f (x)).

Es ergibt sich das Herbrand-Universum ∆F = {a, f (a), f (f (a)), . . .}.

Alle Herbrand-Interpretationen stimmen auf der Domäne und (dem relevanten Teil) der
Terminterpretation überein.

• I1 mit hatVaterI1 = ∅ ist kein Herbrand-Modell.

• I2 mit hatVaterI2 = {⟨t, f (t)⟩ | t ∈ ∆F} ist ein Herbrand-Modell.

• I3 mit hatVaterI3 = ∆F × ∆F ist ein Herbrand-Modell.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 22 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Syntax vs. Semantik

Bei Herbrand-Interpretationen kann man semantische Elemente (wie sie in
Zuweisungen vorkommen) durch syntaktische Elemente (wie sie in Substitutionen
vorkommen) ausdrücken:

Lemma: Für jede Herbrand-Interpretation I, jede Zuweisung Z für I, jeden Term
t ∈ ∆I und jede Formel F gilt:

I,Z{x 7→ t} |= F gdw. I,Z |= F{x 7→ t} (♢)

(Ohne Beweis; einfach.)

Anmerkung: Man kann ein entsprechendes Resultat auch für Nicht-Herbrand-Interpretationen
zeigen. Dann muss man lediglich den Term auf der linken Seite durch tI,Z ersetzen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 23 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Erfüllbar + Skolem = Erfüllbarkeit bei Herbrand

Satz: Ein Satz F in Skolemform ist genau dann erfüllbar, wenn F ein Herbrand-Modell
hat.

Beweis: (⇐): Klar, da Herbrand-Modelle auch Modelle sind.

(⇒): Sei I |= F ein Modell für F. Wir definieren eine Herbrand-Interpretation J wie folgt:

pJ =
{
⟨t1, . . . , tn⟩ ∈ (∆F)n

∣∣∣ ⟨tI1 , . . . , tIn ⟩ ∈ pI
}

Anmerkung: Die ti sind variablenfrei, daher ist tIi wohldefiniert.

Behauptung: J ist ein Herbrand-Modell von F.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 24 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Erfüllbar + Skolem = Erfüllbarkeit bei Herbrand

Satz: Ein Satz F in Skolemform ist genau dann erfüllbar, wenn F ein Herbrand-Modell
hat.

Beweis: (⇐): Klar, da Herbrand-Modelle auch Modelle sind.

(⇒): Sei I |= F ein Modell für F. Wir definieren eine Herbrand-Interpretation J wie folgt:

pJ =
{
⟨t1, . . . , tn⟩ ∈ (∆F)n

∣∣∣ ⟨tI1 , . . . , tIn ⟩ ∈ pI
}

Anmerkung: Die ti sind variablenfrei, daher ist tIi wohldefiniert.

Behauptung: J ist ein Herbrand-Modell von F.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 24 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Erfüllbar + Skolem = Erfüllbarkeit bei Herbrand

Satz: Ein Satz F in Skolemform ist genau dann erfüllbar, wenn F ein Herbrand-Modell
hat.

Beweis: (⇐): Klar, da Herbrand-Modelle auch Modelle sind.

(⇒): Sei I |= F ein Modell für F. Wir definieren eine Herbrand-Interpretation J wie folgt:

pJ =
{
⟨t1, . . . , tn⟩ ∈ (∆F)n

∣∣∣ ⟨tI1 , . . . , tIn ⟩ ∈ pI
}

Anmerkung: Die ti sind variablenfrei, daher ist tIi wohldefiniert.

Behauptung: J ist ein Herbrand-Modell von F.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 24 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beweis (Fortsetzung)

Behauptung: J ist ein Herbrand-Modell von F.

F ist in Skolemform, hat also die Form ∀x1, . . . , xn.G, wobei G quantorenfrei ist.

• Wegen I |= F gilt also I,Z |= G für jede Zuweisung Z für I.
• Speziell gilt also für alle t1, . . . , tn ∈ ∆F:

– I, {x1 7→ tI1 , . . . , xn 7→ tIn } |= G.
– Daraus folgt I |= G{x1 7→ t1, . . . , xn 7→ tn} (analog zu Lemma ♢).
– Daraus folgt J |= G{x1 7→ t1, . . . , xn 7→ tn}.

(Für Atome G folgt das direkt aus der Definition; die Aussage kann leicht auf größere
Boolesche Verknüpfungen von Atomen verallgemeinert werden – formal durch
strukturelle Induktion.)

– Daraus folgt J , {x1 7→ t1, . . . , xn 7→ tn} |= G (Lemma ♢).

Da t1, . . . , tn ∈ ∆F beliebig gewählt waren, folgt also J |= F. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 25 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beweis (Fortsetzung)

Behauptung: J ist ein Herbrand-Modell von F.

F ist in Skolemform, hat also die Form ∀x1, . . . , xn.G, wobei G quantorenfrei ist.

• Wegen I |= F gilt also I,Z |= G für jede Zuweisung Z für I.

• Speziell gilt also für alle t1, . . . , tn ∈ ∆F:
– I, {x1 7→ tI1 , . . . , xn 7→ tIn } |= G.
– Daraus folgt I |= G{x1 7→ t1, . . . , xn 7→ tn} (analog zu Lemma ♢).
– Daraus folgt J |= G{x1 7→ t1, . . . , xn 7→ tn}.

(Für Atome G folgt das direkt aus der Definition; die Aussage kann leicht auf größere
Boolesche Verknüpfungen von Atomen verallgemeinert werden – formal durch
strukturelle Induktion.)

– Daraus folgt J , {x1 7→ t1, . . . , xn 7→ tn} |= G (Lemma ♢).

Da t1, . . . , tn ∈ ∆F beliebig gewählt waren, folgt also J |= F. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 25 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beweis (Fortsetzung)

Behauptung: J ist ein Herbrand-Modell von F.

F ist in Skolemform, hat also die Form ∀x1, . . . , xn.G, wobei G quantorenfrei ist.

• Wegen I |= F gilt also I,Z |= G für jede Zuweisung Z für I.
• Speziell gilt also für alle t1, . . . , tn ∈ ∆F:

– I, {x1 7→ tI1 , . . . , xn 7→ tIn } |= G.

– Daraus folgt I |= G{x1 7→ t1, . . . , xn 7→ tn} (analog zu Lemma ♢).
– Daraus folgt J |= G{x1 7→ t1, . . . , xn 7→ tn}.

(Für Atome G folgt das direkt aus der Definition; die Aussage kann leicht auf größere
Boolesche Verknüpfungen von Atomen verallgemeinert werden – formal durch
strukturelle Induktion.)

– Daraus folgt J , {x1 7→ t1, . . . , xn 7→ tn} |= G (Lemma ♢).

Da t1, . . . , tn ∈ ∆F beliebig gewählt waren, folgt also J |= F. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 25 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beweis (Fortsetzung)

Behauptung: J ist ein Herbrand-Modell von F.

F ist in Skolemform, hat also die Form ∀x1, . . . , xn.G, wobei G quantorenfrei ist.

• Wegen I |= F gilt also I,Z |= G für jede Zuweisung Z für I.
• Speziell gilt also für alle t1, . . . , tn ∈ ∆F:

– I, {x1 7→ tI1 , . . . , xn 7→ tIn } |= G.
– Daraus folgt I |= G{x1 7→ t1, . . . , xn 7→ tn} (analog zu Lemma ♢).

– Daraus folgt J |= G{x1 7→ t1, . . . , xn 7→ tn}.
(Für Atome G folgt das direkt aus der Definition; die Aussage kann leicht auf größere
Boolesche Verknüpfungen von Atomen verallgemeinert werden – formal durch
strukturelle Induktion.)

– Daraus folgt J , {x1 7→ t1, . . . , xn 7→ tn} |= G (Lemma ♢).

Da t1, . . . , tn ∈ ∆F beliebig gewählt waren, folgt also J |= F. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 25 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beweis (Fortsetzung)

Behauptung: J ist ein Herbrand-Modell von F.

F ist in Skolemform, hat also die Form ∀x1, . . . , xn.G, wobei G quantorenfrei ist.

• Wegen I |= F gilt also I,Z |= G für jede Zuweisung Z für I.
• Speziell gilt also für alle t1, . . . , tn ∈ ∆F:

– I, {x1 7→ tI1 , . . . , xn 7→ tIn } |= G.
– Daraus folgt I |= G{x1 7→ t1, . . . , xn 7→ tn} (analog zu Lemma ♢).
– Daraus folgt J |= G{x1 7→ t1, . . . , xn 7→ tn}.

(Für Atome G folgt das direkt aus der Definition; die Aussage kann leicht auf größere
Boolesche Verknüpfungen von Atomen verallgemeinert werden – formal durch
strukturelle Induktion.)

– Daraus folgt J , {x1 7→ t1, . . . , xn 7→ tn} |= G (Lemma ♢).

Da t1, . . . , tn ∈ ∆F beliebig gewählt waren, folgt also J |= F. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 25 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beweis (Fortsetzung)

Behauptung: J ist ein Herbrand-Modell von F.

F ist in Skolemform, hat also die Form ∀x1, . . . , xn.G, wobei G quantorenfrei ist.

• Wegen I |= F gilt also I,Z |= G für jede Zuweisung Z für I.
• Speziell gilt also für alle t1, . . . , tn ∈ ∆F:

– I, {x1 7→ tI1 , . . . , xn 7→ tIn } |= G.
– Daraus folgt I |= G{x1 7→ t1, . . . , xn 7→ tn} (analog zu Lemma ♢).
– Daraus folgt J |= G{x1 7→ t1, . . . , xn 7→ tn}.

(Für Atome G folgt das direkt aus der Definition; die Aussage kann leicht auf größere
Boolesche Verknüpfungen von Atomen verallgemeinert werden – formal durch
strukturelle Induktion.)

– Daraus folgt J , {x1 7→ t1, . . . , xn 7→ tn} |= G (Lemma ♢).

Da t1, . . . , tn ∈ ∆F beliebig gewählt waren, folgt also J |= F. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 25 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Gegenbeispiel
Der Satz gilt nicht unbedingt, wenn Formeln nicht in Skolemform sind:

Beispiel: Die folgende Formel ist offensichtlich erfüllbar:

∃x.p(x) ∧ ∃y.¬p(y)

Die Formel verwendet aber keine Funktionen oder Konstanten.
{ Das Herbrand-Universum ist {a}.

Aber keine Interpretation I mit Domäne {a} ist Modell der Formel, da in diesem Fall
entweder pI = ∅ oder (¬p)I = ∅ ist.

Zum Vergleich die Skolemform der Formel dieses Beispiels:

p(c) ∧ ¬p(d)

Hier gibt es zwei (Skolem-)Konstanten im Herbrand-Universum.
{ Es gibt ein Herbrand-Modell mit dieser Domäne.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 26 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zusammenfassung und Ausblick

Die prädikatenlogische Resolution ist ein Semi-Entscheidungsverfahren für die
Unerfüllbarkeit logischer Formeln.

Man kann Erfüllbarkeit auf Erfüllbarkeit über „syntaktisch definierten“
Herbrand-Modellen reduzieren. (Fortsetzung folgt . . .)

Was erwartet uns als nächstes?

• Beweis der Vollständigkeit der Resolution

• Logik über endlichen Interpretationen und ihre praktische Anwendung

• Gödel

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 27 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Bildrechte

Folie 2: Ausschnitt “Le Temps”, 29. Juli 1931, gemeinfrei; Digitalisierung durch
gallica.bnf.fr / Bibliothèque nationale de France; hier veröffentlicht unter
CC-By-NC-SA 3.0

Folie 17: Ausschnitt “Le Temps”, 30. Juli 1931, gemeinfrei; Digitalisierung durch
gallica.bnf.fr / Bibliothèque nationale de France; hier veröffentlicht unter
CC-By-NC-SA 3.0

Folie 18: Fotografie von Natasha Artin Brunswick, 1931, CC-By 3.0

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 28 von 28

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

