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— On vient d'éire avisé de la Bérarde, qu'un nou=
vel acoident gesl p dans le massif du Pel-

voux i un jeune homme, faisant & partie dune
caravang lyonnaise de {rois personnes, a fait une
chule mortella. . 5

Wir haben soeben aus La Bérarde erfahren, dass sich ein neuer
Unfall auf dem Pelvoux ereignet hat: Ein junger Mann, der Mitglied
einer dreikoépfigen Gruppe aus Lyon gewesen ist, stiirzte zu Tode.

- Le Temps, Montag, 29. Juli 1931



Resolution fir Pradikatenlogik

Ein konkreter Algorithmus zum logischen SchlieBen:
(1) Logische Konsequenz auf Unerflllbarkeit reduzieren
(2) Formeln in Klauselform umwandeln
— Formel bereinigen
Negationsnormalform bilden
Pranexform bilden

Skolemform bilden
Konjunktive Normalform bilden

(3) Resolutionsverfahren anwenden

— Unifikation zum Finden passender Klauseln
— Bilden von Resolventen bis zur Terminierung
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Unifikation

Unifikationsalgorithmus

Eingabe: Ein Unifikationsproblem G.
Ausgabe: Ein allgemeinster Unifikator flir G, oder ,nicht unifizierbar*.

Wende die folgenden Umformungsregeln auf G an, bis keine Regel mehr zu einer An-
derung fahrt:

e |6schen: {t=1}UG ~ G’

o Zerlegung: {f(s1, ... 8n) =f(ur, ..., un) UG ~> {s; =up,....sp =u,} UG

® QOrientierung: {t=x}UG ~ {x=1}UG fallsxeVundr ¢V

® Eliminierung: {x =1} UG’ ~ {x =t} U G’{x — 1} falls x € V nicht in # vorkommt

Wenn G dann in geldéster Form ist, dann gib o aus.
Andernfalls gib aus ,nicht unifizierbar®.
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Unifikation von Atomen

Ein Unifikator fiir eine Menge A = {A,,...,A,} von pradikatenlogischen Atomen ist
eine Substitution 8 mit A160 = A0 =... = A,6.
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Unifikation von Atomen

Ein Unifikator fiir eine Menge A = {A,,...,A,} von pradikatenlogischen Atomen ist
eine Substitution 8 mit A160 = A0 =... = A,6.
Beobachtungen:

® Eine Menge von Atomen A ist nur dann unifizierbar, wenn alle Atome das gleiche
Pradikat verwenden, d.h. wenn es ein {-stelliges Pradikatensymbol p gibt, so dass
Ai=p(tig,...,tigp)furalleiefl,... n}

® Dann ist o genau dann ein Unifikator fir A, wenn o Unifikator flr das folgende
Unifikationsproblem G 4 ist:

Ga={tj=ti;|1<isn-11<j<¢}

® Insbesondere ist der allgemeinste Unifikator fir G4 auch der allgemeinste
Unifikator flr A.
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Die Resolutionsregel

Die Resolvente von zwei Klauseln der Form
Ky ={A1,..., Ay, Ly,....Liyund Ky = {-A7,...,-A) L], ... L},

fir welche o der allgemeinste Unifikator der Menge {Ay,...,A,,A},... A, } ist und
L,-,LJ’. beliebige Literale sind, ist die Klausel {Lic, ..., Lo, Lio,...,L,0}.
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Die Resolutionsregel

Die Resolvente von zwei Klauseln der Form

Ky ={A1,..., Ay, Ly,....Liyund Ky = {-A7,...,-A) L], ... L},
fir welche o der allgemeinste Unifikator der Menge {Ay,...,A,,A},... A, } ist und
L,-,LJ’. beliebige Literale sind, ist die Klausel {Lic, ..., Lo, Lio,...,L,0}.

Beobachtung: Wegen {A,...,A,,A],... A} }o = {A} fUr ein Atom A ist
Kio ={A Lo,..., Lo} und Ko = {-A, Lo, ... Ljo).

Beispiel: Die Klausel K; = {=Mensch(x), hatVater(x, f(x))} und die Klausel

K, = {=hatVater(z, v), hatKind(v, z)} kénnen resolviert werden. Ein allgemeinster Uni-
fikator von {hatVater(x, f(x)), hatVater(z, v)} ist o = {z — x,v — f(x)}. Die entsprechende
Resolvente von K; und K ist {=Mensch(x), hatKind( f(x), x)}.
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Resolution: Beispiel (1)
Wir hatten die folgende Beispielformel F betrachtet:
Ya.(W(x) A =L(x)) V (L(x) A =W(x)))

A @A W) = (Vx.W(x) V Vx.L(x)))
A (3x.L(x) = =(Yx.W(x) V Yx.L(x)))

(Jeder ist Typ W oder Typ L; ist einer Typ W, dann gibt es hier nur einen Typ; ist einer
Typ L, dann gibt es hier nicht nur einen Typ.)

Folgt aus F, dass alle Typ W sind?
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Resolution: Beispiel (1)
Wir hatten die folgende Beispielformel F betrachtet:
Ya.(W(x) A =L(x)) V (L(x) A =W(x)))

A @A W) = (Vx.W(x) V Vx.L(x)))
A (3x.L(x) = =(Yx.W(x) V Yx.L(x)))

(Jeder ist Typ W oder Typ L; ist einer Typ W, dann gibt es hier nur einen Typ; ist einer
Typ L, dann gibt es hier nicht nur einen Typ.)

Folgt aus F, dass alle Typ W sind?

Vorgehen:
® Formalisiere diese Frage: F = Vz.W(z)?
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Resolution: Beispiel (1)
Wir hatten die folgende Beispielformel F betrachtet:
Ya.(W(x) A =L(x)) V (L(x) A =W(x)))

A @A W) = (Vx.W(x) V Vx.L(x)))
A (3x.L(x) = =(Yx.W(x) V Yx.L(x)))

(Jeder ist Typ W oder Typ L; ist einer Typ W, dann gibt es hier nur einen Typ; ist einer
Typ L, dann gibt es hier nicht nur einen Typ.)

Folgt aus F, dass alle Typ W sind?

Vorgehen:
® Formalisiere diese Frage: F = Vz.W(z)?
® Reduktion auf Unerflllbarkeit: Ist F A =Vz.W(z) unerflllbar?
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Resolution: Beispiel (1)
Wir hatten die folgende Beispielformel F betrachtet:

V. (W(x) A =L(x)) V (L(x) A =W (x)))
A @A W) = (Vx.W(x) V Vx.L(x)))
A (3x.L(x) = =(Yx.W(x) V Yx.L(x)))

(Jeder ist Typ W oder Typ L; ist einer Typ W, dann gibt es hier nur einen Typ; ist einer
Typ L, dann gibt es hier nicht nur einen Typ.)

Folgt aus F, dass alle Typ W sind?

Vorgehen:
® Formalisiere diese Frage: F = Vz.W(z)?
® Reduktion auf Unerflllbarkeit: Ist F A =Vz.W(z) unerflllbar?
® Klauselform: F haben wir bereits in Klauselform gebracht. Wir kénnen direkt die
Klauseln fir =Vz.W(z) hinzuflgen:

— Bereinigte NNF (und Pranexform): 9z.-W(z)
— Skolemform (und KNF): =W (a) (a ist Skolemkonstante)
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Resolution: Beispiel (2)

Zusammen mit der Klauselform flir F erhalten wir die Klauseln:

ey
@
3
“
)
(6)
(N
®)

Sebastian Rudolph, TU Dresden

{W(x1), L(x1)}
{=L(x1), L(x1)}
{W(xr), =W(xn)}
{=L(x1), =W(x1)}
{(=W(x2), W(x3), L(x4)}
{=L(x5), "W(fs(x1, X2, X3, X4, x5))}
{=L(xs), =L( f7(x1, X2, X3, X4, X5))}
{=W(a)}

Theoretische Informatik und Logik, VL 19
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Resolution: Beispiel (2)

Zusammen mit der Klauselform flir F erhalten wir die Klauseln:
(1) {W(xn), Lx)}

(2)  {=L(x1), L(x1)}

3) (W), W}

@) {=Lx1), ~Wxp)}

S {=Wx), W(x3), L(x4)}

(6) {=L(xs), ~W(fe(x1,x2,x3,X4,%5))}

(7) {=L(xs), =L(f7(x1,x2, X3, X4, X5))}

®) (=W}

O {La)} (H+@®) {xi—a}
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Resolution: Beispiel (2)

Zusammen mit der Klauselform flir F erhalten wir die Klauseln:
(1) {W(xn), Lx)}

©))
(10)

L(a)} MH+@®) {xi~al
—L(f7(x1, X2, X3, X4, @)} O+ {xs+al

(2)  {=L(x1), L(x1)}
3) (W), W}
@) {=Lx1), ~Wxp)}
S {=Wx), W(x3), L(x4)}
(6) {=L(xs), ~W(fe(x1,x2,x3,X4,%5))}
(7) {=L(xs), =L(f7(x1,x2, X3, X4, X5))}
®) (=W}
{
{
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Resolution: Beispiel (2)

Zusammen mit der Klauselform flir F erhalten wir die Klauseln:

(1) {W(xn), Lx)}

(2)  {=L(x1), L(x1)}

3) W), =W}

@) {=Lx1), ~Wxp)}

S {=Wx), W(x3), L(x4)}

(6)  {—=L(x5), ~W(fos(x1,x2,X3, X4, %5))}

(7) {=L(xs), =L(f7(x1,x2, X3, X4, X5))}

®) (=W}

O {La)} (H+@®) {xi—a}
(10)  {=L(f7(x1, X2, X3, X4, @)} D+ x5 al

Problem:
® Das Literal =L(f7(x1, x2, x3, X4, @)) bedeutet ,es gibt Nicht-Ligner® (bezeichnet mit
Termen der Form f5(xy, x2, X3, X4, @)).

® Dies sollte z.B. mit (1) ,Jeder Nicht-Lugner ist Wahrheitssager” resolvieren.
® Aber {L(f7(x1,x2,X3,X4,a)), L(x1)} hat keinen Unifikator ...

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 8 von 28


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Varianten von Klauseln

Wir wissen: ¥x.(F A G) = (Vx.F A VYx.G)
In Klauselform kann man sich also die Allquantoren direkt vor jeder einzelnen Klausel
denken:

(1) Yx {W(x1), Lxp)}
(2)  VYxi{=L(x), L(xD)}

(10) vxl,XQ,)C3,X4.{_|L(f7(X1,XZ,X3,X4,a))}
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Varianten von Klauseln

Wir wissen: ¥x.(F A G) = (Vx.F A VYx.G)

In Klauselform kann man sich also die Allquantoren direkt vor jeder einzelnen Klausel
denken:

(1) Yx {W(x1), Lxp)}

(2)  Vxi{=Lx), L(x))}

(10) Vxl,xz,x3,x4.{—|L(f7(x1,xz,x3,x4,a))}
Daher darf man die Variablen jeder Klausel einheitlich umbenennen, unabhangig von
jeder anderen Klausel, z.B.

{—|L(f7(.X1,X2,X3,X4,a))} ~> {_'L(f7(x/1ax;7xgax:ua))}

Klauseln, die durch eineindeutige Umbenennung von Variablen entstanden sind, nennt
man Varianten (einer Klausel).

~> Wir bilden bei der Resolution Varianten, um Konflikie von Variablen zu vermeiden.
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Resolution: Beispiel (3)

Mit einer Variante von Klausel (11) gelingt die Resolution:

6]
©))
3
“
&)
(6)
@)
®)
©))
(10)

{W(x1), L(x1)}

{=L(x1), L(x1)}

{(W(x), ~W(xp))

{=L(x1), =W(x))}

{(=W(x2), W(x3), L(x4)}

{=L(x5), =W(fe(x1, X2, X3, X4, X5))}
{=L(xs), =L f7(x1, X2, X3, X4, X5))}

{=W(a)}
{L(a)} D+ @) {x1—a
{_'L(ﬁ(x’px,zaxé)x:p a))} 9+ () {xs > a}
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Resolution: Beispiel (3)

Mit einer Variante von Klausel (11) gelingt die Resolution:

6]
©))
3
“
&)
(6)
@)
®)
©))
(10)
an

{W(x1), L(x1)}

{=L(x1), L(x1)}

{(W(x), ~W(xp))

{=L(x1), =W(x))}

{(=W(x2), W(x3), L(x4)}

{=L(x5), =W(fe(x1, X2, X3, X4, X5))}
{=L(xs), =L f7(x1, X2, X3, X4, X5))}

{=W(a)}
{L(a)} D+ @) {x1—a
{_'L(ﬁ(x’px,zaxé)x:p a))} 9+ () {xs > a}

{W(fr(xp, x5, x5, x,a)) - (1) + (10) {xy = fr(x], x5, x5, ), @)}
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Resolution: Beispiel (3)
Mit einer Variante von Klausel (11) gelingt die Resolution:

(1) {W(x), L(xp)}

(2)  {=L(x), L(x1)}

) (W), "W}

@) {=L(x), "W}

(5) {(=Wx2), W(x3), L(x4)}

(6) {=L(xs), ~W(fe(x1,x2,X3,Xs,%5))}

() {=L(xs), =L(f7(x1, x2, X3, X4, X5))}

& (-Ww}

9 (L)} (1) + () {x1 = a}
(10)  {=L(f7(x], x5, x5, x4, ) (9) +(7) {xs = a}

D AW(fr(x}, x5, x5, x5, @)} (1) + (10) {xp = f7(x], x5, x5, ],
(12)  {W(x3), L(x4)} (D) +(5) {x2 = fr(x}, x5, X3, %,
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Resolution: Beispiel (3)
Mit einer Variante von Klausel (11) gelingt die Resolution:

(1) {W(x), L(xp)}

(2)  {=L(x), L(x1)}

) (W), "W}

@) {=L(x), "W}

(5) {(=Wx2), W(x3), L(x4)}

(6) {=L(xs), ~W(fe(x1,x2,X3,Xs,%5))}

() {=L(xs), =L(f7(x1, x2, X3, X4, X5))}

& (-Ww}

9 (L)} (1) + () {x1 = a}
(10)  {=L(f7(x], x5, x5, x4, ) (9) +(7) {xs = a}

AL AW, x5, x5, x,a)) - (1) + (10) {xy = fr(x], x5, x5, X,
(12)  {W(x3), L(x4)} (D) +(5) {x2 = fr(x}, x5, X3, %,
(13)  {L(xa)} (12) + (@) {x3 = a}
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Resolution: Beispiel (3)

Mit einer Variante von Klausel (11) gelingt die Resolution:

6]
©))
3
“
&)
(6)
@)
®)
©))
(10)
an
12)
13)
(14)

{W(x1), L(x1)}

{=L(x1), L(x1)}

{(W(x), ~W(xp))

{=L(x1), =W(x))}

{(=W(x2), W(x3), L(x4)}

{=L(x5), =W(fe(x1, X2, X3, X4, X5))}
{=L(xs), =L f7(x1, X2, X3, X4, X5))}

{=W(a)}
{L(a)} D+ @) {x1—a
{_'L(f7(x’1 ,x'z,xé,x;, a))} 9+ () {xs > a}

{(W(fr(x}, x5, x5, xp,a) (1) + (10) {xy = f7(x], x5, x5, %), @)}
{W(x3), L(x4)} (11) + (5) {xa o fr(x], x5, X5, x), @)}
{L(x4)} (12)+®) {x3 > a}

{} (13) + (10) {xq4 P fr(x], x5, x5, X}, @)}
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Resolution: Beispiel (4)

Wir haben durch Resolution die leere Klausel {} abgeleitet.

Die leere Klausel bezeichnen wir auch mit L:
® Sie steht flr die leere Disjunktion,
e d.h. fur eine unerflllbare (falsche) Behauptung.

~> Wir haben gezeigt, dass die Klauselmenge unerfillbar ist.
~> Die geprtfte logische Konsequenz F | Yz.W(z) gilt.
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Quiz: Resolutionsschritte in der Pradikatenlogik

Die Resolvente von zwei Klauseln der Form
Ky ={Ay,...,A,,L,...,L} und K, = {ﬂA’l,...,ﬂA;n,Lll,...,Lé,},

ist die Klausel
{Lio,...,Lko,Lio,. .., Lo},

wobei o der allgemeinste Unifikator von {Ay,...,A,, A, ..., A},} ist und Li,LJf beliebige Literale sind.

Quiz: Welche der folgenden Resolventen sind korrekt berechnet? ...
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Der Resolutionsalgorithmus

Eingabe: Eine Formel F.
® Wandle F in Klauselform um ~» Klauselmenge Ky
e Firallei>0:
- K1 =K
Fir alle Klauseln Ky, K, € K;:
¢ Bilde von K; und K, Varianten K| und K’,, welche keine Variablen
gemeinsam haben.
* Bilde alle méglichen Resolventen von K| und K’ und fige diese zu
¥Ki+1 hinzu.
Falls L € %1, dann terminiere und gib ,unerfillbar® aus.
Falls K; = K1, dann terminiere und gib ,erfullbar” aus.

Anmerkung 1: K| = K; ist erlaubt und manchmal notwendig.
Anmerkung 2: K| = K; und/oder K, = K, ist méglich, sofern die Varianten keine
gemeinsamen Variablen haben.
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Korrektheit des Resolutionsalgorithmus (1)

Wir wollen den folgenden Satz schrittweise beweisen:

Resolutionssatz: Sei F eine pradikatenlogische Formel und K; (i > 0) die vom Re-
solutionsalgorithmus ermittelten Klauselmengen. Dann sind die folgenden Aussagen
aquivalent:

e F st unerfillbar.
® Es gibt ein £ >0 mit L € K.
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Korrektheit des Resolutionsalgorithmus (1)

Wir wollen den folgenden Satz schrittweise beweisen:

Resolutionssatz: Sei F eine pradikatenlogische Formel und K; (i > 0) die vom Re-
solutionsalgorithmus ermittelten Klauselmengen. Dann sind die folgenden Aussagen
aquivalent:

e F st unerfillbar.
® Es gibt ein £ >0 mit L € K.

Beweis (Korrektheit): Wir zeigen die Korrektheit eines einzelnen Resolutionsschrittes;
die Behauptung folgt per Induktion tber die Schrittzahl. Wir unterscheiden Klauseln K
vom Satz VK, fir den sie stehen (eine Disjunktion mit allquantifizierten Variablen).

Wir hatten bereits erkannt, dass Varianten von Klauseln deren logische Konsequenzen
sind (in der Notation des Algorithmus: YK, VK| und YK; | VK3).

Wir zeigen noch die Korrektheit des reinen Resolutionsschrittes.
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Korrektheit des Resolutionsalgorithmus (2)

Beweis (Korrektheit, Fortsetzung): Gegeben:
e Klauseln Ky = {Ay,..., Ay, Ly, ..., Liyund Ky = {=A],...,=A]  L],..., L}}
* (allgemeinster) Unifikator o der Menge {Ay,...,A,,A,... A}
® zugehtrige Resolvente K = {L 0, ..., Lo, Lo, ..., Lo}
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Korrektheit des Resolutionsalgorithmus (2)

Beweis (Korrektheit, Fortsetzung): Gegeben:
e Klauseln Ky = {Ay,..., Ay, Ly, ..., Liyund Ky = {=A],...,=A]  L],..., L}}
* (allgemeinster) Unifikator o der Menge {Ay,...,A,,A,... A}
® zugehtrige Resolvente K = {L 0, ..., Lo, Lo, ..., Lo}
Sei I eine beliebige Interpretation.
® Angenommen, es gilt 7 £ VK| A VK.
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Korrektheit des Resolutionsalgorithmus (2)

Beweis (Korrektheit, Fortsetzung): Gegeben:
e Klauseln Ky = {Ay,..., Ay, Ly, ..., Liyund Ky = {=A],...,=A]  L],..., L}}
* (allgemeinster) Unifikator o der Menge {Ay,...,A,,A,... A}
® zugehtrige Resolvente K = {L 0, ..., Lo, Lo, ..., Lo}
Sei I eine beliebige Interpretation.
® Angenommen, es gilt 7 £ VK| A VK.
® Dann gilt auch 7 E V(K 0) A Y(K,0). (o konkretisiert die Allaussagen.)
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Korrektheit des Resolutionsalgorithmus (2)

Beweis (Korrektheit, Fortsetzung): Gegeben:
e Klauseln Ky = {Ay,..., Ay, Ly, ..., Liyund Ky = {=A],...,=A]  L],..., L}}
* (allgemeinster) Unifikator o der Menge {Ay,...,A,,A,... A}
® zugehtrige Resolvente K = {L 0, ..., Lo, Lo, ..., Lo}

Sei I eine beliebige Interpretation.
® Angenommen, es gilt 7 £ VK| A VK.
® Dann gilt auch 7 E V(K 0) A Y(K,0). (o konkretisiert die Allaussagen.)
o Also gilt fir alle Zuweisungen Z: 1,Z E (K 0) A (Ky0)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 15 von 28


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Korrektheit des Resolutionsalgorithmus (2)

Beweis (Korrektheit, Fortsetzung): Gegeben:
e Klauseln Ky = {Ay,..., Ay, Ly, ..., Liyund Ky = {=A],...,=A]  L],..., L}}
* (allgemeinster) Unifikator o der Menge {Ay,...,A,,A,... A}
® zugehtrige Resolvente K = {L 0, ..., Lo, Lo, ..., Lo}
Sei I eine beliebige Interpretation.
® Angenommen, es gilt 7 £ VK| A VK.
® Dann gilt auch 7 E Y(K 0) A Y(K,0). (0 konkretisiert die Allaussagen.)
o Also gilt fir alle Zuweisungen Z: 1,Z E (K 0) A (Ky0)
* Fall1: 7, Z Ao (A0 =...=4A,0).
Danngilt 7, Z E Lo V...V Ljo,unddamit 7, Z £ K
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Korrektheit des Resolutionsalgorithmus (2)

Beweis (Korrektheit, Fortsetzung): Gegeben:
e Klauseln Ky = {Ay,..., Ay, Ly, ..., Liyund Ky = {=A],...,=A]  L],..., L}}
* (allgemeinster) Unifikator o der Menge {Ay,...,A,,A,... A}
® zugehtrige Resolvente K = {L 0, ..., Lo, Lo, ..., Lo}

Sei I eine beliebige Interpretation.
® Angenommen, es gilt 7 £ VK| A VK.
® Dann gilt auch 7 E Y(K 0) A Y(K,0). (0 konkretisiert die Allaussagen.)
o Also gilt fir alle Zuweisungen Z: 1,Z E (K 0) A (Ky0)

* Fall1: 7, Z Ao (A0 =...=4A,0).
Danngilt 7, Z E Lo V...V Ljo,unddamit 7, Z £ K
* Fall2: 7, Z Ao (=Ao=...=A,0).

Danngit 7, ZE LioVv...VLo,unddamit 7, Z E K
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Korrektheit des Resolutionsalgorithmus (2)

Beweis (Korrektheit, Fortsetzung): Gegeben:
e Klauseln Ky = {Ay,..., Ay, Ly, ..., Liyund Ky = {=A],...,=A]  L],..., L}}
* (allgemeinster) Unifikator o der Menge {Ay,...,A,,A,... A}
® zugehtrige Resolvente K = {L 0, ..., Lo, Lo, ..., Lo}
Sei I eine beliebige Interpretation.
® Angenommen, es gilt 7 £ VK| A VK.
® Dann gilt auch 7 E Y(K 0) A Y(K,0). (0 konkretisiert die Allaussagen.)
o Also gilt fir alle Zuweisungen Z: 1,Z E (K 0) A (Ky0)

e Fall1: 7, ZF Ao (Ao =...=A),0).
Danngilt 7, Z E Lo V...V Ljo,unddamit 7, Z £ K
* Fall2: 7, Z Ao (=Ao=...=A,0).

Danngit 7, ZE LioVv...VLo,unddamit 7, Z E K
® Also gilt 7 E VK.
Da I beliebig war, gilt also YK; A VK, E VK.
Das heif3t: Jede Resolvente ist logische Konsequenz der resolvierten Klauseln.
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Vollstéandigkeit des Resolutionsalgorithmus

Resolutionssatz: Sei F eine pradikatenlogische Formel und K; (i > 0) die vom Re-
solutionsalgorithmus ermittelten Klauselmengen. Dann sind die folgenden Aussagen
aquivalent:

e [ ist unerfillbar.

® Es gibt ein £ >0 mit L € K.

Bisher gezeigt: Die zweite Aussage impliziert die erste (Korrektheit).

Vollstéandigkeit ist die Umkehrung davon (die erste Aussage impliziert die zweite):
e Jeder Widerspruch wird irgendwann durch Resolution gefunden.

® Das ist nicht so offensichtlich — wir miissen dazu etwas weiter ausholen ...
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Wir hatten gestern erwdhnt, dass ein junger Mann, der mit einer
Gruppe von Bergsteigern in der Umgebung von La Bérarde unterwegs
war, bei einem Sturz ums Leben kam. Es handelte sich um M. Jacques
Herbrand, wohnhaft in der Rue Viollet-le-duc 10 in Paris.

M. Herbrand war am Sonntag mit drei Gefdhrten - den Herren Jean
Brille, Pierre Delair und Henri Guigner - aufgebrochen, um Les
Bans zu besteigen. Beim Abstieg loste sich ein Kletterhaken, an
dem das Seil befestigt war, und nahm eine kleine Plattform mit
sich, auf der sich M. Herbrand befand, welcher in den Abgrund
stirzte. Ein Bergungstrupp ist aufgebrochen um den Leichnam zu
suchen und hofft ihn heute zu erreichen.

- Le Temps, Dienstag, 30. Juli 1931
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Jacques Herbrand
12.02.1908 - 27.07.1931



Pradikatenlogische Modelle

Wir wollen zeigen:

Wenn es kein Modell flr eine Formel gibt, dann leitet Resolution L ab.

Problem: Interpretationen sind sehr allgemeine Strukturen.
® Eine beliebige Menge kann als Doméane verwendet werden.
® Die systematische Betrachtung von Interpretationen ist daher schwierig.
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Pradikatenlogische Modelle

Wir wollen zeigen:

Wenn es kein Modell flr eine Formel gibt, dann leitet Resolution L ab.

Problem: Interpretationen sind sehr allgemeine Strukturen.
® Eine beliebige Menge kann als Doméane verwendet werden.
® Die systematische Betrachtung von Interpretationen ist daher schwierig.

Idee von Herbrand (und Skolem und Gédel):

,oemantik aus Syntax*

Konstruktion von Modellen direkt aus den Formeln, welche sie erfiillen sollen.
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Herbrand-Universum

Der Kern von Herbrands Idee ist eine ,syntaktische* Doméne:

Sei a eine beliebige Konstante. Das Herbrand-Universum Ay fiir eine Formel F ist die
Menge aller variablenfreien Terme, die man mit Konstanten und Funktionssymbolen in
F und der zusatzlichen Konstante a bilden kann:

® qg¢ AF,
® ¢ e Ar fur jede Konstante aus F,

® f(t1,...,t,) € Ap fur jedes n-stellige Funktionssymbol aus F und alle Terme
t,...,ty € Ap.

Anmerkung: Das Herbrand-Universum ist immer abzahlbar, manchmal endlich und
niemals leer.
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Herbrand-Universum

Der Kern von Herbrands Idee ist eine ,syntaktische* Doméne:

Sei a eine beliebige Konstante. Das Herbrand-Universum Ay fiir eine Formel F ist die
Menge aller variablenfreien Terme, die man mit Konstanten und Funktionssymbolen in
F und der zusatzlichen Konstante a bilden kann:

® qg¢ AF,
® ¢ e Ar fur jede Konstante aus F,

® f(t1,...,t,) € Ap fur jedes n-stellige Funktionssymbol aus F und alle Terme
t,...,ty € Ap.

Anmerkung: Das Herbrand-Universum ist immer abzahlbar, manchmal endlich und
niemals leer.

Beispiel: Fir die Formel F = p(f(x),y, g(z)) ergibt sich das Herbrand-Universum
Ar ={a,f(a), g(a),f(f(@),f(g(@), g(f(@), g(g(@),.. .}
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Herbrand-Interpretationen

Mit dem Herbrand-Universum als Doméane kann man Interpretationen definieren, die
Terme ,durch sich selbst” interpretieren:

Eine Herbrand-Interpretation fir eine Formel F ist eine Interpretation 7, fur die gilt:
o AT = Ap ist das Herbrand-Universum von F;
e fiir jeden Term t € Ap gilt ¢/ = 1.

I ist genau dann ein Herbrand-Modell fir F, wenn zudem qilt 7 | F.

Anmerkung: Die Definition stellt Bedingungen an Grundbereich und Terminterpretation,
aber sie lasst auch viele Freiheiten (z.B. die Interpretation von Pradikatensymbolen).
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Beispiel

Betrachten wir wieder die (skolemisierte) Formel F = Yx.hatVater(x, f(x)).

Es ergibt sich das Herbrand-Universum Ar = {a, f(a),f(f(a)),...}.
Alle Herbrand-Interpretationen stimmen auf der Doméane und (dem relevanten Teil) der
Terminterpretation Uberein.

e 7, mit hatVater’! = 0 ist kein Herbrand-Modell.

e 7, mit hatVater’> = {(1,f(1)) | t € Ar} ist ein Herbrand-Modell.

® 7, mit hatVater’> = Ay x Ar ist ein Herbrand-Modell.
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Syntax vs. Semantik

Bei Herbrand-Interpretationen kann man semantische Elemente (wie sie in
Zuweisungen vorkommen) durch syntaktische Elemente (wie sie in Substitutionen
vorkommen) ausdriicken:

Lemma: Fir jede Herbrand-Interpretation 7, jede Zuweisung Z fir 7, jeden Term
t € AT und jede Formel F gilt:

I, Zx>tEF gdw. I, ZEF{x— 1} (©)

(Ohne Beweis; einfach.)

Anmerkung: Man kann ein entsprechendes Resultat auch fir Nicht-Herbrand-Interpretationen
zeigen. Dann muss man lediglich den Term auf der linken Seite durch /< ersetzen.
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ErfUllbar + Skolem = Erflllbarkeit bei Herbrand

Satz: Ein Satz F in Skolemform ist genau dann erfiillbar, wenn F ein Herbrand-Modell
hat.
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ErfUllbar + Skolem = Erflllbarkeit bei Herbrand

Satz: Ein Satz F in Skolemform ist genau dann erfiillbar, wenn F ein Herbrand-Modell
hat.

Beweis: (<): Klar, da Herbrand-Modelle auch Modelle sind.
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ErfUllbar + Skolem = Erflllbarkeit bei Herbrand

Satz: Ein Satz F in Skolemform ist genau dann erfiillbar, wenn F ein Herbrand-Modell
hat.

Beweis: (<): Klar, da Herbrand-Modelle auch Modelle sind.

(=): Sei I = F ein Modell fir F. Wir definieren eine Herbrand-Interpretation J wie folgt:
Pl =y e @ [y ept)

Anmerkung: Die ¢; sind variablenfrei, daher ist t;’ wohldefiniert.

Behauptung: 7 ist ein Herbrand-Modell von F.
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Beweis (Fortsetzung)

Behauptung: 7 ist ein Herbrand-Modell von F.

F ist in Skolemform, hat also die Form Vx,...,x,.G, wobei G quantorenfrei ist.
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Beweis (Fortsetzung)

Behauptung: 7 ist ein Herbrand-Modell von F.

F ist in Skolemform, hat also die Form Vx,...,x,.G, wobei G quantorenfrei ist.
® Wegen 7 | F giltalso I, Z E G fUr jede Zuweisung Z fir 1.
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Beweis (Fortsetzung)

Behauptung: 7 ist ein Herbrand-Modell von F.

F ist in Skolemform, hat also die Form Vx,...,x,.G, wobei G quantorenfrei ist.
® Wegen 7 | F giltalso I, Z E G fUr jede Zuweisung Z fir 1.

® Speziell gilt also fur alle #1,...,t, € Ar:
- I,{let{,...,ant,{}lzG.
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Beweis (Fortsetzung)

Behauptung: 7 ist ein Herbrand-Modell von F.

F ist in Skolemform, hat also die Form Vx,...,x,.G, wobei G quantorenfrei ist.
® Wegen 7 | F giltalso I, Z E G fUr jede Zuweisung Z fir 1.
® Speziell gilt also fur alle #1,...,t, € Ar:

- I, {x Ht{,...,ant,{}lzG.
— Daraus folgt 7 = G{x; — 11,...,x, — t,} (@analog zu Lemma ¢).
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Beweis (Fortsetzung)

Behauptung: 7 ist ein Herbrand-Modell von F.

F ist in Skolemform, hat also die Form Vx,...,x,.G, wobei G quantorenfrei ist.
® Wegen 7 | F giltalso I, Z E G fUr jede Zuweisung Z fir 1.
® Speziell gilt also fur alle #1,...,t, € Ar:

- I, {x Ht{,...,xn >t EG.
— Daraus folgt I = G{x; — 11,...,x, — t,} (analog zu Lemma ¢).
— Daraus folgt J E G{x; = t1,...,x, b t,}.
(Fur Atome G folgt das direkt aus der Definition; die Aussage kann leicht auf gréBere

Boolesche Verkniipfungen von Atomen verallgemeinert werden — formal durch
strukturelle Induktion.)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 19 Folie 25 von 28


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beweis (Fortsetzung)

Behauptung: 7 ist ein Herbrand-Modell von F.

F ist in Skolemform, hat also die Form Vx,...,x,.G, wobei G quantorenfrei ist.
® Wegen 7 | F giltalso I, Z E G fUr jede Zuweisung Z fir 1.
® Speziell gilt also fur alle #1,...,t, € Ar:

- I, {x Ht{,...,xn >t EG.

— Daraus folgt I = G{x; — 11,...,x, — t,} (analog zu Lemma ¢).

— Daraus folgt J E G{x; = t1,...,x, b t,}.
(Fur Atome G folgt das direkt aus der Definition; die Aussage kann leicht auf gréBere
Boolesche Verkniipfungen von Atomen verallgemeinert werden — formal durch
strukturelle Induktion.)

— Daraus folgt 7, {x; = t1,...,x, = t,} E G (Lemma ¢).

Dar,...,t, € Ap beliebig gewahlt waren, folgt also J E F. O
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Gegenbeispiel

Der Satz gilt nicht unbedingt, wenn Formeln nicht in Skolemform sind:

Beispiel: Die folgende Formel ist offensichtlich erflllbar:

Ax.p(x) A Ay.—p(y)

Die Formel verwendet aber keine Funktionen oder Konstanten.
~» Das Herbrand-Universum ist {a}.

Aber keine Interpretation 7 mit Doméane {a} ist Modell der Formel, da in diesem Fall
entweder p? = 0 oder (-p)’ = 0 ist.

Zum Vergleich die Skolemform der Formel dieses Beispiels:
plc) A =p(d)

Hier gibt es zwei (Skolem-)Konstanten im Herbrand-Universum.
~» Es gibt ein Herbrand-Modell mit dieser Domane.
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Zusammenfassung und Ausblick

Die pradikatenlogische Resolution ist ein Semi-Entscheidungsverfahren fur die
Unerflllbarkeit logischer Formeln.

Man kann Erfillbarkeit auf Erfillbarkeit Gber ,syntaktisch definierten®
Herbrand-Modellen reduzieren. (Fortsetzung folgt .. .)

Was erwartet uns als néchstes?
® Beweis der Vollstandigkeit der Resolution
® | ogik Uber endlichen Interpretationen und ihre praktische Anwendung
® Godel
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