

Artificial Intelligence, Computational Logic

PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE

Lecture 9 Evolutionary Algorithms

Sarah Gaggl

Agenda

- Introduction
- Uninformed Search versus Informed Search (Best First Search, A* Search, Heuristics)
- 3 Local Search, Stochastic Hill Climbing, Simulated Annealing
- Tabu Search
- 5 Answer-set Programming (ASP)
- 6 Constraint Satisfaction Problems (CSP)
- Evolutionary Algorithms/ Genetic Algorithms
- 8 Structural Decomposition Techniques (Tree/Hypertree Decompositions)

- Motivation
- 2 Structure of EAs
- 3 Components of EAs
- Working of EAs
- 5 Conclusion

Motivation

- Search algorithms so far modified (resp. constructed) one single solution.
- Process a complete solution or construct the final solution from smaller building blocks.
- There is a single best solution to be improved.

Motivation

- Search algorithms so far modified (resp. constructed) one single solution.
- Process a complete solution or construct the final solution from smaller building blocks.
- There is a single best solution to be improved.

New Idea

- Work on a population of solutions
- Let the solutions compete against each other
- Use random variation to search for new solutions

Rabbits and Foxes

- Some rabbits are faster and smarter they don't get eaten by foxes
- They do what rabbits do best: make more rabbits
- Breeding mixes the rabbits' genetic material
- Every once in a while: mutation
- Over generations, rabbits become faster and smarter

Rabbits and Foxes ctd.

- The same happens with foxes
- They are forced to get better at finding a meal

Rabbits and Foxes ctd.

- Motivation
- 2 Structure of EAs
- 3 Components of EAs
- Working of EAs
- 5 Conclusion

Evolutionary Algorithms (EAs)

- A population of individuals exists in an environment with limited resources
- Competition for resources causes selection of fitter individuals that are better adapted to environment
- These individuals act as seeds for generation of new individuals through recombination and mutation
- New individuals have their fitness evaluated and compete (possibly also with parents) for survival
- Over time natural selection causes a rise in the fitness of the population

Evolutionary Algorithms (EAs)

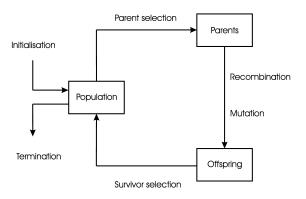
- A population of individuals exists in an environment with limited resources
- Competition for resources causes selection of fitter individuals that are better adapted to environment
- These individuals act as seeds for generation of new individuals through recombination and mutation
- New individuals have their fitness evaluated and compete (possibly also with parents) for survival
- Over time natural selection causes a rise in the fitness of the population

Facts on EAs

- EAs are generate and test algorithms
- They are stochastic and population-based
- Variation operators (recombination and mutation) create necessary diversity
- Selection reduces diversity and acts as a force pushing quality

- Motivation
- 2 Structure of EAs
 General Schema
 - Pseudo-Code
- 3 Components of EAs
 - Representation
 - Evaluation Function
 - Population
 - Parent Selection Mechanism
 - Variation Operators
 - Survivor Selection
 - Initialization/Termination
- Working of EAs
- 5 Conclusion

General Schema of EAs



- Motivation
- 2 Structure of EAs
 - General Schema
 - Pseudo-Code
- 3 Components of EAs
 - Representation
 - Evaluation Function
 - Population
 - Parent Selection Mechanism
 - Variation Operators
 - Survivor Selection
 - Initialization/Termination
- Working of EAs
- 5 Conclusion

Structure of an EA

Algorithm 1: evolutionary algorithm

INITIALISE population with random candidate solutions
EVALUATE each candidate
while not TERMINATION-CONDITION is satisfied do
SELECT parents
RECOMBINE pairs of parents
MUTATE the resulting offspring
EVALUATE new candidates
SELECT individuals for the next generation
end while

Types of EAs

Historically different types of EAs have been associated with different representations.

Binary strings: Genetic Algorithms

Real-valued vectors: Evolution Strategies

• Finite state machines: Evolutionary Programming

Trees: Genetic Programming

Types of EAs

Historically different types of EAs have been associated with different representations.

Binary strings: Genetic Algorithms

Real-valued vectors: Evolution Strategies

• Finite state machines: Evolutionary Programming

Trees: Genetic Programming

Technically

- choose representation to suit problem
- choose variation operators to suit representation
- selection operators only use fitness so they are independent of representation

- Motivation
- 2 Structure of EAs
- 3 Components of EAs
- Working of EAs
- 5 Conclusion

Components of EAs

- Representation (definition of individuals)
- Evaluation function (or fitness function)
- Population
- Parent selection mechanism
- Variation operators, recombination and mutation
- Survivor selection mechanism (replacement)

Necessary

- Initialisation procedure
- Termination condition

- Motivation
- 2 Structure of EAs

 General Schema
 - Pseudo-Code
- 3 Components of EAs
 - Representation
 - Evaluation Function
 - Population
 - Parent Selection Mechanism
 - Variation Operators
 - Survivor Selection
 - Initialization/Termination
- Working of EAs
- 5 Conclusion

Representation

- Candidate solutions (individuals) exist in phenotype space
- They are encoded in chromosomes, which exist in genotype space
 - Encoding: phenotype → genotype (not necessarily one-to-one)
 - Decoding: genotype → phenotype (mutst be one-to-one)
- Chromosomes contain genes, which are in (usually fixed) positions called loci (sing. locus) and have a value (allele)

Representation

- Candidate solutions (individuals) exist in phenotype space
- They are encoded in chromosomes, which exist in genotype space
 - Encoding: phenotype → genotype (not necessarily one-to-one)
 - Decoding: genotype → phenotype (mutst be one-to-one)
- Chromosomes contain genes, which are in (usually fixed) positions called loci (sing. locus) and have a value (allele)

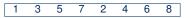
To find global optimum, every feasible solution must be represented in genotype space.

Representation

- Candidate solutions (individuals) exist in phenotype space
- They are encoded in chromosomes, which exist in genotype space
 - Encoding: phenotype \rightarrow genotype (not necessarily one-to-one)
 - Decoding: genotype → phenotype (mutst be one-to-one)
- Chromosomes contain genes, which are in (usually fixed) positions called loci (sing. locus) and have a value (allele)

To find global optimum, every feasible solution must be represented in genotype space.

Example (8-Queens)



- Phenotype: a board configuration
- Genotype: a permutation of the numbers 1-8

- Motivation
- 2 Structure of EAs
 - General Schema
 - Pseudo-Code
- 3 Components of EAs
 - Representation
 - Evaluation Function
 - Population
 - Parent Selection Mechanism
 - Variation Operators
 - Survivor Selection
 - Initialization/Termination
- Working of EAs
- 5 Conclusion

Evaluation (Fitness) Function

- Represents the requirements the population should adopt to
- aka quality function or objective function
- Assigns a single real-valued fitness to each phenotype which forms the basis for selection
- Typically we talk about fitness being maximized

Evaluation (Fitness) Function

- Represents the requirements the population should adopt to
- aka quality function or objective function
- Assigns a single real-valued fitness to each phenotype which forms the basis for selection
- Typically we talk about fitness being maximized

Example (8-Queens ctd.)

- Penalty of one queen: number of queens she can check
- Penalty of a configuration: sum of penalties of all queens
- ⇒ Penalty needs to be minimized
- ⇒ Fitness of a configuration: inverse penalty to be maximized

- Motivation
- 2 Structure of EAs
 - General Schema
 - Pseudo-Code
- 3 Components of EAs
 - Representation
 - Evaluation Function
 - Population
 - Parent Selection Mechanism
 - Variation Operators
 - Survivor Selection
 - Initialization/Termination
- Working of EAs
- 5 Conclusion

Population

- Holds (representations of) possible solutions
- Usually has a fixed size and is a multiset of genotypes
- Some sophisticated EAs also assert a spatial structure on the population e.g. a grid
- Selection operators usually take whole population into account i.e. reproductive probabilities are relative to current generation
- Diversity of a population refers to the number of different solutions
- No single measure for diversity exists
- Typically one refers to number of different fitness values/phenotypes/genotypes present

- Motivation
- 2 Structure of EAs
 - General Schema
 - Pseudo-Code
- 3 Components of EAs
 - Representation
 - Evaluation Function
 - Population
 - Parent Selection Mechanism
 - Variation Operators
 - Survivor Selection
 - Initialization/Termination
- Working of EAs
- 5 Conclusion

Parent Selection Mechanism

- Distinguish among individuals based on their quality allow better individuals to become parents of next generation
- Individual is a parent if it has been selected to create offspring
- Responsible for pushing quality improvements
- Usually probabilistic
 - high quality solutions more likely to become parents than low quality
 - BUT: not guaranteed
 - even worst in current population has non-zero probability of becoming a parent
- Stochastic nature can aid escape from local optima

Parent Selection Mechanism

individuals to become parents of next generation

Distinguish among individuals based on their quality – allow better

- Individual is a parent if it has been selected to create offspring
- Responsible for pushing quality improvements
- Usually probabilistic
 - high quality solutions more likely to become parents than low quality
 - BUT: not guaranteed
 - even worst in current population has non-zero probability of becoming a parent
- Stochastic nature can aid escape from local optima

Example (8-Queens ctd.)

Pick 5 parents randomly and take the two best to generate offspring.

- Motivation
- 2 Structure of EAs
 - General Schema
 - Pseudo-Code
- 3 Components of EAs
 - Representation
 - Evaluation Function
 - Population
 - Parent Selection Mechanism
 - Variation Operators
 - Survivor Selection
 - Initialization/Termination
- Working of EAs
- Conclusion

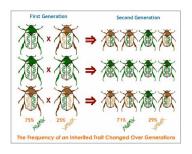
Variation Operators

- Role is to generate new candidate solutions
- Usually divided into two types according to their arity

Arity 1: mutation operator

Arity >1: recombination operator; arity=2 typically called crossover

- Debate about relative importance of recombination and mutation
 - Nowadays most EAs use both
 - Choice of particular variation operator is representation dependent



Mutation

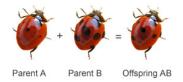


- Acts on one genotype and delivers another
- Element of randomness is essential and differentiates if from other unary heuristic operators
- Generating a child amounts to stepping to a new point in search space
- ⇒ Mutation may guarantee connectedness of search space

Mutation

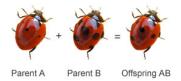
- Acts on one genotype and delivers another
- Element of randomness is essential and differentiates if from other unary heuristic operators
- Generating a child amounts to stepping to a new point in search space
- ⇒ Mutation may guarantee connectedness of search space

Recombination



- Merges information from parents into offspring
- Choice of what information to merge is stochastic
- Most offspring may be worse, or the same as parents
- Hope that some are better by combining elements of genotypes that lead to good traits

Recombination



- Merges information from parents into offspring
- Choice of what information to merge is stochastic
- Most offspring may be worse, or the same as parents
- Hope that some are better by combining elements of genotypes that lead to good traits

Note

- Variation operators are representation dependent
- Different representations require different variation operators

Combine two permutations into two new permutations

- Choose random crossover point
- Copy fist parts into children
- Create second part by inserting values from other parent
 - in order they appear there
 - beginning after crossover point
 - skipping values already in child

Combine two permutations into two new permutations

- Choose random crossover point
- Copy fist parts into children
- Create second part by inserting values from other parent
 - in order they appear there
 - beginning after crossover point
 - skipping values already in child

Note

Offspring needs to be a permutation (as genotype is permutation)!

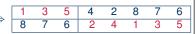
Combine two permutations into two new permutations

- Choose random crossover point
- Copy fist parts into children
- Create second part by inserting values from other parent
 - in order they appear there
 - beginning after crossover point
 - skipping values already in child

Note

Offspring needs to be a permutation (as genotype is permutation)!

1	3	5	7	2	4	6	8
8	7	6	5	4	3	2	1

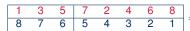


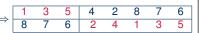
Combine two permutations into two new permutations

- Choose random crossover point
- Copy fist parts into children
- Create second part by inserting values from other parent
 - in order they appear there
 - beginning after crossover point
 - skipping values already in child

Note

Offspring needs to be a permutation (as genotype is permutation)!





Children inherit genetic material from both parents!

Outline

- Motivation
- 2 Structure of EAs
 - General Schema
 - Pseudo-Code
- 3 Components of EAs
 - Representation
 - Evaluation Function
 - Population
 - Parent Selection Mechanism
 - Variation Operators
 - Survivor Selection
 - Initialization/Termination
- Working of EAs
- 5 Conclusion

Survivor Selection

- aka replacement
- Most EAs use fixed population size
- Often deterministic
 - Fitness-based: e.g. rank parents and offspring and take the best
 - Age-based: make as many offspring as parents and delete all parents
 - Combinations of the former two (elitism)

Survivor Selection

- aka replacement
- Most EAs use fixed population size
- Often deterministic
 - Fitness-based: e.g. rank parents and offspring and take the best
 - Age-based: make as many offspring as parents and delete all parents
 - Combinations of the former two (elitism)

Example (8-Queens ctd.)

Merge population and offspring – rank them according to fitness – delete the worst two.

Outline

- Motivation
- 2 Structure of EAs

 General Schema
 - Pseudo-Code
- 3 Components of EAs
 - Representation
 - Evaluation Function
 - Population
 - Parent Selection Mechanism
 - Variation Operators
 - Survivor Selection
 - Initialization/Termination
- Working of EAs
- 5 Conclusion

Initialization/Termination

Initialization

- Usually done at random
- Needs to ensure even spread and mixture of possible allele values
- Can include existing solutions, or sue problem-specific heuristics to seed the population

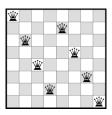
Initialization/Termination

Initialization

- Usually done at random
- Needs to ensure even spread and mixture of possible allele values
- Can include existing solutions, or sue problem-specific heuristics to seed the population

Termination Condition

- Checked every iteration
- Reaching some (known/hoped for) fitness
- Reaching some maximum allowed number of generations
- Reaching some minimum level of diversity
- Reaching some specified number of generations without fitness improvement



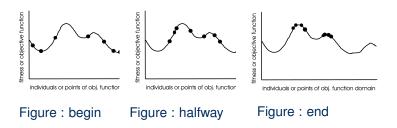
- Initial population: randomly generated permutations
- Termination condition: solution or 10000 fitness evaluations
- Population size: 100
- Recombination probability: 100%
- Mutation probability: 80%

Outline

- Motivation
- 2 Structure of EAs
- 3 Components of EAs
- 4 Working of EAs
- Conclusion

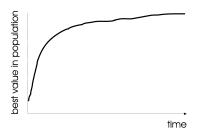
Working of EAs

Typical progress of an EA illustrated in terms of population distribution

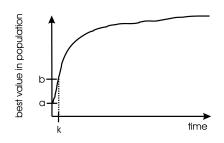


Working of EAs ctd.

Typical progress in terms of development of best fitness value within population in time.

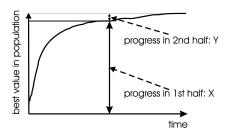


No Need for Heuristic Initialisation



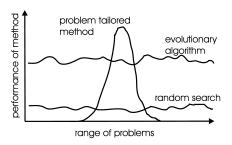
- Level *a*: best fitness in a randomly initialised population
- Level b: heuristic initialisation
- After k generations same level reached

Termination Conditions



- Divide the run into two equally long sections
- Fitness increases in the first half X
- Progress in second half *Y* is much smaller
- Due to anytime behaviour, efforts spent after a certain time may not result in better solution quality

Performance from Global Perspective



- Performance on a wide range of problems
- EAs are robust problem solving tools
- For most problems a problem-specific tool may
 - perform better than a generic search algorithm on most instances
 - have limited utility
 - not do well on all instances
- EAs provide an evenly good performance over a range of problems and instances

Outline

- Motivation
- 2 Structure of EAs
- 3 Components of EAs
- Working of EAs
- 5 Conclusion

Summary

- Idea for EAs come from evolution theory
- Components
 - Representation (definition of individuals)
 - Evaluation function (or fitness function)
 - Population
 - Parent selection mechanism
 - Variation operators, recombination and mutation
 - Survivor selection mechanism (replacement)
 - Initialisation and termination condition
- Performance

References

Zbigniew Michalewicz and David B. Fogel. How to Solve It: Modern Heuristics, volume 2. Springer, 2004.

A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing, Springer, 2003.