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Abstract

The family of normal propositional modal logic systems is given a very systematic organ-
isation by their model theory. This model theory is generally given using frame semantics,
and it is systematic in the sense that for the most important systems we have a clean, exact
correspondence between their constitutive axioms as they are usually given in a Hilbert-
Lewis style and conditions on the accessibility relation on frames.

By contrast, the usual structural proof theory of modal logic, as given in Gentzen sys-
tems, is ad-hoc. While we can formulate several modal logics in the sequent calculus that
enjoy cut-elimination, their formalisation arises through system-by-system fine tuning to
ensure that the cut-elimination holds, and the correspondence to the formulation in the
Hilbert-Lewis systems becomes opaque.

This paper introduces a systematic presentation for the systems K, D, M, S4, and
S5 in the calculus of structures, a structural proof theory that employs deep inference.
Because of this, we are able to axiomatise the modal logics in a manner directly analogous
to the Hilbert-Lewis axiomatisation. We show that the calculus possesses a cut-elimination
property directly analogous to cut-elimination for the sequent calculus for these systems,
and we discuss the extension to several other modal logics.

Keywords: proof theory of modal logic, calculus of structures, deep inference, cut-
elimination.

1 Introduction

Modal logic has been one of the most fundamental advances in logic sinces Frege’s invention of
the quantifier, and indeed arguably the most important innovation of modern logic. We might
attribute this success to:

• The ability of modal notations to naturally accomodate key concepts needed in formal
description, most fundamentally concepts of mode and tense. While many propositional
modal logics can be encoded in first-order predicate logic in a straightforward way, for
many applications the modal systems are simpler and more useful;

• Most of the widely used modal logics being decidable;

• The normal modal logics possession of an elementary model theory in the form of frame
semantics (due to Kripke, Hintikka and Kanger, see [8]) that provides a systematic corre-
spondence between their constitutive axioms as they are usually given in Hilbert style and
conditions on the accessibility relation on frames1.

∗Revision of version accepted for Advances in Modal Logic 2004
†Corresponding author: cas@linearity.org, Department of Computer Science, Technische Universität, Dres-

den, Momsenstrasse, D-01062 Dresden, GERMANY.
1See Garson [12], and Blackburn, de Rijke and Venema [3] for readable accounts of this relationship.
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Let’s look at the toolkit available to the classical logician for propositional modal logic com-
pared to that for propositional logic. In propositional logic we characterise consequence relations
using Hilbert deductive systems, give our semantics using Boolean algebra valued models, pro-
vide decision procedures using tableau methods, and provide techniques for proof analysis using
sequent calculi in the mould of Gentzen.

In modal logic, close substitutes for the first three of these tools can be found: Hilbert systems
are extended in a standard way with rules to provide what we might call Hilbert-Lewis deductive
systems; Kripke or Beth frame semantics provides a sufficiently rich universe to provide models
for almost all modal logics we care about; and tableau systems can be extended to accomodate
modal logics. However, when it comes to proof analysis the situation is more fraught. A relatively
natural extension of Gentzen-style sequent calculi provides cut-free characterisations of several
important modal logics; however it fails to provide characterisations of others, and even in the
cases where sequent systems can be provided, these are arrived at in an ad-hoc manner2, and
the relationship to the Hilbert-Lewis calculus becomes opaque. It’s not an exaggeration to say
that, by and large, modal logicians have not found proof analysis to be worth the effort; this, no
doubt, is responsible for the omission of structural proof theory in texts such as Blackburn, de
Rijke and Venema [3].

In this paper we will provide a new proof theoretic basis for modal logic using the calculus of
structures introduced by Guglielmi [14]. This proof calculus provides a structural proof theory
in the sense of Gentzen for logical systems because it possesses a notion of cut-free proof directly
analogous to that for the sequent calculus. It possesses several properties that give proof theory
carried out in the calculus of structures important advantages over the traditional proof theory
carried out in structural proof theory, and which extend to the modal logic systems we cover. It
is our hope that these new possibilities for proof analysis can reinvigorate this neglected corner
of the modal logician’s toolkit.

The structure of the rest of this paper is as follows. In the next section we recall the
characterisation of a much studied ‘cube’ of 15 normal modal logics in Hilbert-Lewis deductive
systems, and describe the sequent calculus for just one of these, the system M (also known as
system T). In section 3 we present the calculus of structures for classical logic, introduce its
extension to system M, and talk about some of the most important analytical properties the
calculus has in detail, including cut-elimination. In section 4 we discuss the generalisation of
the structural proof theory to the other modal logics of the cube in both sequent calculus and
the calculus of structures. In section 5 we provide a critical and slightly philosophical discussion
comparing the achievements of this calculus to the rival calculus that is best placed to challenge
us in providing a highly general approach to proof analysis, namely Belnap’s display logic as
applied to modal logic by Wansing, as well as the more conservative but nevertheless highly
interesting approach of Pottinger’s hypersequent calculus as investigated by Avron. Finally,
section six provides a brief, critical summary of what has been achieved in this paper.

2 Proof theory of system M

Let us begin by establishing some terminology. A logical system is defined over a formal language
by a deductive system that determines its theory, a subset of the sentences of the language. Each
formula in the theory of a logical system is called a theorem. Logical systems are schematic, that
is they allow schematic letters that may stand in for arbitrary propositions, so the theory of a
logical system for a more restrictive language can naturally be projected to richer languages by
application of substitution. Two logical systems are equivalent if their theories are the same,

2I do not mean by this that the designer of sequent systems has no methodology available other than trial and
error, rather I mean that this methodology consists of a complex set of heuristics of low generality, and so falls
short of being systematic.
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they are distinct otherwise. If the theory of one logical system strictly contains the theory of
another, then we call the former system the stronger system.

We begin by showing how propositional modal logic is defined using Hilbert-Lewis deduc-
tive systems, as these proof calculi give the oldest and most common axiomatisations, and so
we may consider these axiomatisations as constituting a standard. The sentences of classical
propositional logic contain an inexhaustible supply of schematic letters, letters for truth and
falsity, which we indicate tt and ff, and are closed under the binary operators ⊃, ↔, ∧ and ∨
and the unary operator ¬. The Hilbert style axiomatisation of this logical system proceeds in
the standard way, where any substitution of propositions for schematic letters in the axioms
of the system may be used to start a derivation or add a new theorem to the derivation, and
non-axiomatic propositions may be obtained by modus ponens.

Hilbert-Lewis systems differ from Hilbert systems in that they possess (at least) a pair of
dual modalities, and characteristically are schematic not through the schematicity of the axioms,
but via the rule uniform substitution, which allows the schematic letters to be replaced by any
proposition; the consequences of this difference are that deductions are normally a little longer,
but it is slightly easier to define some metalogical apparatus; in any case the consequence relation
should be unaffected by this difference, and in this paper we will be casual about the difference,
defining axioms as sentences, but applying them as if they were schematic. In addition, all
of the Hilbert-Lewis systems in which we are here interested will have the single further rule
of necessitation: if ` p then ` �p, and will have the duality captured by the axiom DM:
¬� p ↔ �¬p.

Then the weakest normal modal logic K is axiomatised as a Hilbert-Lewis system by ex-
tending classical propositional logic with the axiom K: �(p ⊃ q) ⊃ (�p ⊃ �q). Naturally, this
corresponds to the class of frame models3 where there are no conditions imposed on the frame
accessibility relation.

We then obtain the stronger modal logics we are interested in by adding further axioms. All
of the most studied systems of modal logic arise by adding some subset of the following axioms:

Definition 1

1. Axiom D: �p ⊃ �p

2. Axiom T: �p ⊃ p

3. Axiom 4: �p ⊃ � � p

4. Axiom B: p ⊃ � � p

5. Axiom 5: �p ⊃ � � p

which correspond to constraining the accessibility relation to be serial (ie. there are always nodes
accessible from any node), reflexive, transitive, symmetric and Euclidean respectively. There are
a total of fifteen distinct logical systems obtainable, which we may organise in a lattice according
to the ‘stronger than’ relation, with the most important of these being:

1. K itself;

2. D, obtained by extending system K with rule D;

3. M, obtained by extending system K with rule T: note this system is often named T, a
nomenclature we avoid to prevent confusion with Gödel’s system T.

3We avoid the terminology of possible worlds, since we consider model systems lacking the T axiom, that cannot
reasonably be considered to be about possibility or contingency, and further we agree with Thomas Forster that
the language of possible world semantics is intoxicating to the careless and is best avoided[11]. Hence we call
Hintikka/Kripke/Kanger style semantics, frame semantics; we avoid formalising these but will need to talk about
the frame accessibility relation, which is given over nodes.
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4. S4, obtained by extending system M by rule 4;

5. B, obtained by extending system M by rule B;

6. S5, obtained by extending system M by rule 5, or equivalently by extending system M by
rules B and 4.

The strongest system from these modal logics that is perfectly straightforward to formulate in
a sequent system and to prove cut-free is system G-M (for Gentzen system M): we formulate4

this using Schütte’s approach of one-sided sequents. We make use of a dualising function in
formulating the syntax of the calculus: φ is defined recursively to be the De Morgan dual of the
formula φ:

¬A = A A ∧B = A ∨B tt = ff

p = ¬p A ∨B = A ∧B ff = tt

where p is a schematic letter, and A ⊃ B and A ↔ B are treated as derived connectives using the
standard encodings. The inferences of the system are given by trees generated by the following
inference rules, where the nodes are multisets of formulae (indicated by Γ,∆, with the notations
�Γ, �∆ indicating the result of prefixing each formula of the multiset appropriately):

Axiom and cut:
ax

` Γ, A, A

` Γ, A ` ∆, A
cut` Γ,∆

Contraction and weakening:

` Γ, A, A
contr` Γ, A

` Γ wk` Γ, A

Truth:
tt` tt

Logical connectives and modal operators:

` Γ, A, B
∨` Γ, A ∨B

` Γ, A ` Γ, B
∧` Γ, A ∧B

` Γ, A ¬
` Γ,¬A

` Γ, A
�1

` �Γ,�A

` Γ, A �1
` Γ, �A

The theorems of this system then are given by the concluding formulae of inferences where
the concluding sequent contains exactly one formula. It is easily shown that the sequent formu-
lation contains all the theorems of the Hilbert-Lewis formulation, and with the lightest touch of
ingenuity, modelling the multisets by disjunctions, the reverse containment can also be demon-
strated. We can also show the following theorem, where an inference rule or set of inference rules
are admissible if all theorems of the system may be proven without their use:

Theorem 2 The cut rule is admissible in the sequent calculus formalisation of system M.
4It is possible to show that, given very liberal constraints on the form of the sequent calculus, 2-sided (Gentzen

style) systems and 1-sided (Schütte style) systems characterise exactly the same consequence relations in the
presence of De Morgan dualities [20], and this demonstration generalises to hypersequents.
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This cut-elimination theorem is not really more complex to prove than that for its subsystem
of classical logic, though there is a novelty: since the inference rules for the modal operators
introduce ‘side-effects’; the rule �1 adds � modalities to side assumptions, which can then be
used in cuts. The new rule doesn’t interfere with permutability of cuts, however. These side
effects are related to an important sense in which these ‘modal Gentzen calculi’ go beyond
traditional Gentzen calculi: with the traditional calculi only a formula in the consequence, and
some subset of its subformulae in the premisses, are ‘touched’ by the logical rule: we can say that
the traditional calculus is strongly focussed; modal Gentzen calculi with rules such as �1 we call
strongly unfocussed, where we say a system is weakly unfocussed if it is not strongly focussed, and
is weakly focussed if it is not strongly unfocussed5. Later we will encounter weakly unfocussed
calculi.

3 The calculus of structures

Now we introduce a characterisation of the system M in the calculus of structures. As for
the single-sided sequent calculus, we make use of De Morgan dualities between connectives in
the formulation of the system. By convention, the calculus has a rather different notation for
formulae than is used in Hilbert-Lewis and Gentzen proof calculi: the calculus of structures
uses a bracket notation for the propositional logical connectives to suggest the associativity
and commutativity properties: the calculus treats structures that are equivalence classes of the
syntactic representations quotiented over these relations, and also quotiented over rules for units.
Conjunction is represented by ”(. . .)”, so (R,S) stands for the conjunction of R and S; likewise
disjunction is represented by ”[. . .]”. We also introduce a dualising operator in the same way as
for the single-sided sequent calculus.

So the formulae of the calculus of structures are built up from the units tt, ff , the schematic
letters, where for each schematic letter a we admit the complement a as a formula, and whenever
R1, . . . , Rn are formulae, so are [R1, . . . , Rn] and (R1, . . . , Rn). A formula context S{−} is
obtained from a formula by replacing any leaf (eg. a schematic letter) by ‘−’; then S{R} is the
formula obtained by replacing this − by the formula R. Curly braces are ommited when the
formula R is precisely of the form (R1, . . . , Rn) or [R1, . . . , Rn].

The duals of formulae are defined recursively, where the dual of each schematic letter is its
complement and vica versa, and

(R1, . . . , Rn) = [R1, . . . , Rn]

[R1, . . . , Rn] = (R1, . . . , Rn)

tt = ff ff = tt

so for any formula R, R = R.
The structures are the equivalence classes of formulae obtained by quotienting over

1. (Associativity)

[R1, . . . , Ri, [T1, . . . , Tj ], U1, . . . , Uk] = [R1, . . . , Ri, T1, . . . , Tj , U1, . . . , Uk]

and

(R1, . . . , Ri, (T1, . . . , Tj), U1, . . . , Uk) = (R1, . . . , Ri, T1, . . . , Tj , U1, . . . , Uk)

5The point of the terminology of focussing is to say that a calculus is focussed if each rule that deals with a
connective is only about that connective. As such this is related to the properties such as separation as defined
by Wansing [26], but neither strong nor weak focussedness is expressible in terms of Wansings properties, and
our interest here is technical, concerned with permutability of cut, rather that the meaning theoretic concerns of
Wansing.
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2. (Congruence) If R1 = R2 then S{R1} = S{R2}, for any formula context S{−};

3. (Commutativity) [R1, R2] = [R2, R1] and (R1, R2) = (R2, R1);

4. (Identities) R = [R,ff] and R = (R, tt).

The equations can be considered as being in the spirit of the equations Schütte introduced over
propositional formulae that ensure each formula is equal to its negation normal form, but they
go further, representing more complex, though still tractable, equivalences over formulae. Their
presence makes the calculus rather more difficult to master than the sequent calculus (especially
the identities present difficulties) but they make working with the system much easier once this
initial hurdle is passed, and normally ensure that important theorems avoid the trivial issues of
syntax that they would otherwise be burdened with.

Inferences are chains of applications of inference rules, where each inference rule has one
premise and one conclusion, which is a structure rather than a formula. All of the inference rules
are deep, which means that each rule is given by a pair of formulae specifying the premise and
conclusion that are both given with the same formula context. The inference rules for classical
logic, the system SKSg are given:

Interaction and cut rules:

S{tt}
i ↓

S[R,R]
S(R,R)

i ↑
S{ff}

The switch rule:
S([R, T ], U)

s
S[(R,U), T ]

The weakening rules:
S{ff}

w ↓
S{R}

S{R}
w ↑

S{tt}
And the contraction rules:

S[R,R]
c ↓

S{R}
S{R}

c ↑
S(R,R)

The theorems of this system are the formulae belonging to the structures that occur as
conclusions of inferences whose premise is the structure tt.

This system has many desirable properties:

1. The system is self dual: each rule labelled with ↑ takes form:

S{R}
∗ ↑

S{T}

matching by De Morgan duality the form of the corresponding rule labelled with ↓ takes
form:

S{T}
∗ ↓

S{R}
where rules not labelled with ↑ or ↓ are self-dual (so far we have seen just the switch rule).

2. The entire up-fragment, ie. the rules labelled with ↑, is admissible; that is, the full system
is equivalent to the system obtained by removing the whole up-fragment. This is shown by
Bruennler [6] and discussed in more detail below, by means of a translation from cut-free
proofs of the sequent calculus into proofs of system KSg, that is, system SKSg without
the rules of the up-fragment. Because the rule i ↑ closely models the cut rule, it is natural
to describe this admissibility result as cut-elimination for the calculus of structures.
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3. We can restrict the interaction, cut and weakening rules to atoms, by which we mean that
the applications of the rules using formulae R can be restricted to the case where R is an
atom (ie. a or a) both for system SKSg and the cut-free system KSg. Furthermore, when
adding to system SKSg the medial rule

S[(R,U), (T, V )]
m

S([R, T ], [U, V ])

we can also restrict the contraction rule to atoms. These restrictions are achieved by sim-
ple local transformations on inferences, as opposed to the complex global transformation
that we associate with cut-elimination. The system with these restrictions we call atomic
SKSg (analogously atomic KSg), or just SKS (analogously KS). An analogous restric-
tion to atoms can be achieved for the sequent calculus by similarly local transformations
in the case of the axiom and weakening rules, but for fundamental reasons of the shallow-
ness of inference cannot be achieved at all for contraction, and only by means of global
transformations in the case of cut.

4. System SKS enjoys important computational properties: it is local, and so too is its sub-
system KS, in the sense that looking at the inferences going either up or down, structure is
rearranged, or atoms introduced, abandoned or duplicated, but arbitrarily large substruc-
tures are never introduced, abandoned or duplicated. Brünnler also discusses an important
advantage corollary to locality and atomicity of cut: using deep inference he gets a finitary
variant of SKS by simple means (i.e. without cut elimination); this means that there are
only finitely different ways rules of the system can be applied to obtain a given conclusion,
which in principle means the calculus can be used for proof search. However, it is fair to
point out that these benefits do carry a cost: by contrast to the sequent calculus there are
a great many possible rules that one may apply during proof search, so one cannot read
off a tableaux algorithm from KS in the way one can for cut-free LK. Devising efficient
proof search algorithms that can take advantage of these properties is an important goal
of the program of research in the calculus of structures.

A thorough mathematical and conceptual examination of these properties and their impor-
tance is given in Bruennler’s [6]; a shorter discussion appears in [5].

We can extend this calculus to obtain the system M by allowing formulae of the form �R,
and �R, extending the equivalences defining structures with tt = �tt and ff = �ff and extending
the set of inferences as follows:

S{�[R, T ]}
k ↓

S[�R, �T ]
S{�R}

t ↓
S{R}

We call the system that extends system KSg with the above down rules KSg-M, and the
symmetric system extending system SKSg with both the down and up rules SKSg-M.

We show the equivalence of system SKSg-M to M in two steps. Firstly we show we can
map inferences of SKSg-M onto inferences of M:

Definition 3 We define the map −s from formulae of M onto structures of SKSg-M recur-
sively:

ps = p for p one of tt, ff, or a schematic letter;

(¬A)s = As (A ∧B)s = (As, Bs) (�A)s = �As

(A ∨B)s = [As, Bs] (�A)s = �As

Proposition 4

7



1. There is a map −h from structures of SKSg-M to formulae of M with the properties that
−hs is the identity map on structures, and for all formulae A, B, if A is a subformula of
B then either Ash is a subformula of Bsh or (¬A)sh is a subformula of (¬B)sh.

2. If As = Bs then ` A ↔ B is a theorem of M;

3. If R = As and A is a theorem of M, then R is a theorem of SKSg-M;
Proof Part 1 follows from defining the obvious recursive map from the formulae of SKSg-M,
and observing that for any structure we may choose a lexically simplest representative formula
(given some total order on atoms and their complements), to obtain the reverse map which is
easily verified to have the desired properties.

Part 2 follows easily from the observation that −s is bijective when restricted to disjunctive
normal forms.

To prove part 3, we must first prove that each axiom of M maps onto a theorem of SKSg-M,
which is a straightforward exercise in the construction of inferences in the calculus of structures:
for didactic reasons we recommend the reader works through at least two cases, for example
(A ⊃ B ⊃ C) ⊃ (A ⊃ C) ⊃ B ⊃ C, and axiom K, and then show that inferences of the Hilbert-
Lewis calculus map onto inferences of SKSg-M by considering the three inference rules. To see
that inferences making use of uniform substitutivity are modelled in SKSg-M we need simply
observe that the inference rules of SKSg-M are schematic. In the other two rules proceed by
an induction on the lenth of proofs. ��

^

Theorem 5 M and SKSg-M are equivalent.
Proof For each inference rule of KSg-M, which takes the general form:

S{R}
∗

S{T}

we show that Rh ⊃ Th is a theorem of M. The dual rules map onto these from the theorem of
classical logic: (A ⊃ B) ↔ (¬B ⊃ ¬A). The following lemma is a straightforward exercise in
theoremhood over K:

Lemma 6 If A ⊃ B is a theorem of M, then so are:

1. A ∧ C ⊃ B ∧ C;

2. A ∨ C ⊃ B ∨ C;

3. �A ⊃ �B;

4. �A ⊃ �B.

from which, by an induction on the makeup of formula contexts S{−}, we obtain for each
inference rule (S{R})h ⊃ (S{T})h. Then inferences of KSg-M can be mapped onto chains of
applications of modus ponens, starting from the theorem tt. ��

^

Theorem 7 The up-fragment of SKSg-M is admissible.
Proof We show this by mapping cut-free proofs of G-M onto proofs of KSg-M, following
just the same technique as [5], that is, for each rule of G-M

Γ1 . . . Γn

∆

we must find an inference of KSg-M with premise �i(Γs
1, . . . ,Γ

s
n) for some i and conclusion

∆s, where we extend the mapping −s from formulae to sequents by considering sequents to be
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disjunctions of their constituent formulae, and where the notation �iA indicates the formulae
obtained from A by prefixing � to it i times. These proofs are straightforward; the only case
where we need i to be nonzero is mapping �1; the rule then maps onto a number of applications
of the k ↓ rule equal to the number of formulae in Γ. We can then use these inferences to
construct our map on cut-free proofs recursively. ��

^

Lastly if we add the following rules:

S[�R, �T ]
j ↓

S{�[R, T ]}
S{ff}

uw ↓
S{�ff}

S[�R,�T ]
l ↓

S{�[R, T ]}
we can restrict cut, interaction, contraction and weakening to atoms, and so obtain a local
system, which we call KS-M.

4 Systems K, D, S4, and S5

We can extend the account of the structural proof theory that we have given of M to the systems
K, D, and S4 quite analogously. First we consider the axiomatisation of these systems in the
sequent calculus: define two new inference rules:

` �Γ, A
�2

` �Γ,�A

` Γ, A �2
` �Γ, �A

Then we obtain our axiomatisations as follows:

1. G-K is obtained by dropping rule �1 from G-M;

2. G-D is obtained from G-M by substituting rule �2 for �1;

3. G-S4 is obtained from G-M by substituting rule �2 for �1;

Theorem 8 Each of these systems is equivalent to the matching Hilbert system, and for each,
the cut rule is admissible.
Proof For G-K and G-D the proofs are quite analogous to that for G-M. G-S4 is similarly
shown to be equivalent to the matching system S4; the cut-elimination proof is more subtle
because many of the usual permutations on cuts fail, a fact that is unfortunately rather glossed
over in the literature. Cf. Ohnishi and Matsumoto, and Valenti [17, 23, 24]. ��

^

Our axiomatisation in the calculus of structures proceeds by defining the inference rules:

S{�R}
d

S{�R}
S{� �R}

4 ↓
S{�R}

Then we obtain the equivalent systems:

1. KSg-K is KSg-M without the t ↓ rule;

2. KSg-D is KSg-K together with the d ↓ rule;

3. KSg-S4 is KSg-K and the t ↓ and 4 ↓ rules;

4. SKSg-K, SKSg-D, and SKSg-S4 are the symmetric versions of the above.

Note that inclusion of an axiom in the Hilbert system corresponds to inclusion of a down
rule in the corresponding system in the calculus of structures.
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Theorem 9 The analogs of Proposition 4 and Theorem 5 hold for each of SKSg-K, SKSg-D,
and SKSg-S4.

The axiomatisation of systems S5 and B in the one-sided sequent calculus present serious
difficulties, however. For example, it is possible to axiomatise S5 by replacing the rule �1 of
G-M by any one of the following three rules6:

` �Γ,�∆, A
�3

` �Γ,�∆,�A

` Γ,�∆, A
�4

` �Γ,�∆,�A

` �Γ,∆, A
�5

` �Γ,�∆,�A

This system can be mapped onto a reasonable axiomatisation of KSg-S5 which we axiomatise
as KSg-S4 plus the following rule:

S{�� R}
b ↓

S{R}
We can show that the theories of the systems S5, the three possible formulations of G-S5 and

SKSg-S5 are equivalent, and that cut-free proofs of G-S5 map onto KSg-S5, but unfortunately
cut-elimination for all three variants of G-S5 fails:

Proposition 10

1. The axiomatisations of G-S5 formulated using rules �3 and �5 have no up-fragment free
proof of ¬A ∨� �A, a theorem of S5.

2. The axiomatisation of G-S5 formulated using rule �4 has no cut-free proof of ¬��A∨�A,
a theorem of S5.

Proof The are cut-bearing proofs for part 1 with cut formula �A, and for part 2 with cut
formula � �A, for which in each case all the side formulae have � as their main operator, which
in each case is the principal conclusion of the appropriate �i rule. ��

^

While cut-free sequent systems for S5 have appeared in the literature; for example [4], these
formulations do not take the simple form of the sequent systems treated in this paper, possessing
either sophisticated rules that expose proof structure (either explicitly as in Braüner’s connec-
tions between formula, or tacitly by some form of extra-logical labelling), or introduce some kind
of deep inference that involves judgements with more sophisticated structure than Gentzen’s se-
quents. We have not heard of any truly cut-free sequent formulation of B in a Gentzen-style
sequent calculus.

We can axiomatise system B in the calculus of structure by adding b ↓ to KSg-M to obtain
KSg-B, and likewise SKSg-B. Here our inference rules dealing with the modal operators find
themselves in a one-one relationship to four of the five axioms given in the lattice of Hilbert
systems described in Definition 1; we can extend this to rule 5 with the inference rule:

S{�� R}
5 ↓

S{�R}

Conjecture 11 For all of the systems of the cube characterised by adding any subset of the
modal down rules we have described above, cut is admissible.

6The first of these three alternatives, using �3 is the one-sided analogue of the two-sided sequent formulation
of S5 due to Ohnishi and Matsumoto, [17].
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Note that though there are fifteen systems of the cube, there are thirty-two possible ways of
characterising them; all of these characterisations are conjectured to allow cut elimination.

In particular we make an observation.

Theorem 12 KSg-S5 is cut-free.

We will discuss this result in section five, which provides the strongest of several pices of
evidence for the conjecture, when we treat hypersequents.

The approach to proofs we have so far outlined are proofs by translation which leverage
known cut elimination proofs for the sequent calculus. It is also possible to prove cut elimination
directly, although non-constructively, by semantic means. The advantage of this method is that
it is as systematic as the the formalisation in the calculus of structures; the disadvantages are,
besides non-constructivity, that such methods give only limited proof-theoretic insight, and so
far are restricted to fewer axioms than are needed to describe the systems of the cube.

Let us introduce two new Hilbert-Lewis axioms:

Definition 13

1. Axiom W5: �� p ⊃ � � p

2. Axiom C4: � � p ⊃ �p

Then we have W5,C4 ` 5, 5 ` W5, and T ` C4; these new axioms then are weak versions
of 5 and T that combine to provide the inferential strength of axiom 5. Each of these can be
incorporated into the calculus of structures as follows:

S{�� R}
w5 ↓

S{� � R}
S{� � R}

c4 ↓
S{�R}

Conjecture 14 For all 128 possibilities of adding some subset of the seven rules d ↓, t ↓, 4 ↓,
b ↓, c4 ↓, and w5 ↓ to KSg the up-fragment is admissible.

Obviously this conjecture is stronger than the first, and so far the evidence for it is weaker.
At least a subsystem generated by four of the above seven rules is known to be cut-free by a
semantic argument. It appears to be the case that the semantic argument works for systems
described by axioms that correspond to rooted conditions on the frame accessibility relation; that
is, conditions that can be described by a Π0

2 formula where the universal quantifiers describe a
tree of arcs across nodes, and the existential quantifiers assert the existence of arcs each of which
either originates from the root of the tree, or which originates from a node that is existentially
asserted and distinct from any in the original tree. The rules that correspond to rooted conditions
we call rooted, these that don’t we call unrooted.

Theorem 15 For each of the 10 systems described by some subset of the four unrooted rules
d ↓, t ↓, 4 ↓, and c4 ↓, the up-fragment is admissible.

To repeat, this theorem is proven by semantic means that we believe extend to all systems
described by rooted rules. Additionally the six systems that can be formalised without the c4 ↓
rule can all be proven by means of translation from known systems in the sequent calculus (four
of which are the systems discussed in most depth at the beginning of this section).
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5 Display logic and hypersequents

As remarked before, the most obvious rival to our calculus is the application of display logic to
modal logic as investigated by Wansing [26]. Modal display logic is modular in the sense that
we seek, and it has a syntactic cut elimination that ensures any properly presented system (that
is, a ‘properly displayable’ system) is cut-free, in the true sense of guaranteeing analytic normal
forms. It embraces classes of calculi that we do not know how to express satisfactorily in the
calculus of structures, namely calculi without De Morgan duality, such as intuitionistic logic7.
And indeed these strengths come from a property display logic possesses similar to a property
of the calculus of structures, namely, the manipulations on structures allow the logical rules to
be applied at effectuvely unbounded depths, or in other words, display logic is also a calculus of
deep inference.

Given all this, one might reasonably ask – why pursue another calculus of deep inference?
Our answer is that we believe that for the purposes of proof analysis, the design of the calculus of
structures will ultimately lead to technically better results, essentially for the following reason:
display logic wishes to combine the sophisticated notion of proof structure one obtains with deep
inference with the traditional approach to proof analysis based on the subformula property. The
result is that display logic leads a double life, with the subformula property holding on formulae,
the leaves of the structures display logic manipulates, but not able to say anything about the fully
fledged structures which is really where all the action happens. A second consequence is that
display logic seeks to embrace constraints on its presentations, such as Došen’s principle, that
appear to be necessary to get reasonable results from subformla-property-based proof analysis.
Even so, the proof analysis does not seem to be as effective as in the propositional case: in the
sequent calculus one can simply read of a tableu mechanism from a cut-free sequent calculus; in
display logic, the procedure, or perhaps better heuristic, is more fraught. To be blunt, some of
the technical advantages that flow from the subformula property in the context of the sequent
calculus do not flow from the property that display logicians call ‘subformula property’; perhaps,
by analogy, the meaning-theoretic parallels depend upon a certain amount of optimistic charity.

By contrast the calculus of structures makes no distinction between logical and structural
rules, which brings simplicity; constraints such as Došen’s principle, or some of the properties of
systems described by Wansing like separation, symmetry and explicitness simply make no sense
in this context; and seeks to substitute a wholly novel methodology of proof analysis, with some
striking properties that improve on Gentzen-family calculi, such as atomicity.

Additionally there is a technical disadvantage of display logic for our investigation into sys-
tems of modal logic: display logic appears to be most naturally a tense logic, in that in intro-
ducing a modality, one obtains not only introduction rules for that modality and its De Morgan
dual, but also the reverse modalities in the tense logical sense (so four modal operators, rather
than the expected two). Hence, whereas when one has a proof in KS-S5 each structure occur-
ing in the inference corresponds to a theorem of S58, in display logic the axiom dealing for 5
is expressed in terms of tense logic (due to the conversion of modal axioms to rules involving
primitive tense formula, following the results of Marcus Kracht [15]), and so the judgements
apprearing in the tree of a proof may be assertions not of S5 but of S5t, its tensed extension.
By conservativity, we know that we have the right theorems, but conservativity of theoremhood
does not map into conservativity of cut-free provability; there is still a problem unsolved. In
particular, if consider these kind of results adequate, then the problem of cut elimination for
modal logic becomes mostly a solved problem: we simply use calculi that embed modal logics in
sequent calculi for geometric theories, such as pioneered by Alex Simpson[?].

Certainly there is room for dispute over the relative merits of the two approaches to providing
a structural proof theory for modal logic; however we think it is important to recognise firstly

7Though there are logics expressible in the calculus of structures which it appears that display logic cannot
express at all, such as system NEL [13], due to the branching nature of proofs in display logic

8By means of the translation −h described in section three.
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that the ultimate test of health of a proof calculus will lie in its usefulness to logicians not
interested in proof theory for proof theory’s sake; secondly that in providing a toolkit for proof
analysis display logic and the calculus of structures are not necessarily rivals, but may instead
be complementary formalisms.

We also wish to discuss hypersequents as they have been treated by Arnon Avron. These
extend the sequent calculus, allowing several strands of inference to accur in parallel, and to
communicate by means of certain ‘external’ structural rules (the familiar structural rules are
called ‘internal’, we will call rules that act locally upon a sequent internal also). We note that for
the modal logics in which we are interested, the 2-sided hypersequents Avron treats are equivalent
to 1-sided hypersequents; thus we may describe the general hypersequent ` Γ1| . . . | ` Γn by the
structure [�[Γs

1], . . . ,�[Γs
1]]. Avron captures the system S5 in the hypersequent system HS5

by giving internal rules corresponding to the rules for S4, together with, in addition to external
contraction and weakening, a modalised splitting rule (we give our 1-sided variant):

G| ` �Γ1, �Γ2,Γ3
MS

G| ` �Γ1, �Γ2| ` Γ3

All internal rules map easily onto the rules for S4, just in a deeper context of the form
[�{−}, R], and the external weakening and contraction rules are straightforwardly modelled by
w ↓ and c ↓; all that remains is to capture the modalised splitting rule, which can be modelled
by the 4 ↓, 5 ↓ and s rules. By these means, cut free proofs of system HS5 are mapped to
cut-free proofs of KSg-S5, thus establishing the theorem described in section four.

Let us note, though, that the modalised splitting rule does not fix all of the problems arising
due to lack of expressiveness of the cut-free sequent calculus. In particular, the modalised
splitting rule gives the inferential strength of the 5 axiom only by also giving the inferential
strength of the 4 axiom as well. To be more precise, hypersequent systems with the modalised
splitting rule cannot be used to axiomatise systems B, KB, DB, K5 or D5, and it has not
be shown how the inferential strength of unrooted axioms can be achieved in a hypersequent
calculus other than by means of modalised splitting. Thus, while hypersequents achieve an
important result, one that we depend upon for the results of this paper, the means by which it
achieves the goals appears to be fundamentally limited.

6 Review

The most important achievement of this paper bas been to provide a novel, modular approach
to the proof theory of modal logic that begins to allow the kind of powerful proof analysis
described by Brünnler for several important modal logics (those for which we can prove up-
fragment admissibility), and for which we have reason to hope can be extended to all the modal
logic systems we have described. Furthermore we hope that our readers will find the system to
be elegant and provocative.

The most serious defect of the account given here from the point of view of formal aesthetics
is that our proofs are external: our methods for showing cut-elimination are so far a rather
underpowered semantical technique or by means of translations from a quite separate theory,
so though we could pedantically claim to have provided a syntactic proof of cut-elimination,
the proof is quite as external as with semantical proofs of cut-elimination. Furthermore, we are
mostly left without resources to deal with the cases where we do not have appropriate cut-free
axiomatisations, such as for system B. Nonetheless, it must be emphasised that these are defects
of our knowledge of how to prove results; to the best of this limited knowledge, the family of
proof systems are in excellent shape: no rival calculus appears to describe as many systems so
simply.

There are three principal avenues to explore in search of the missing proof techniques. The
first is to try to extend the semantic proofs; Avron’s paper on hypersequents succeeds in providing
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a semantical proof of cut elimination for HS5 and it is possible the technique can be adpated
and generalised. Second, Guglielmi [14] introduces a technique, called splitting, that may be
regarded as the preferred way to give internal, syntactic proofs of cut-elimination in the calculus
of structures, and in joint work with one of the authors (in preparation) has shown how this
technique may be extended to deal with the case of SKS. Lastly, a very syntactically involved
technique of permutability of rules can be applied to prove cut elimination; two proofs of this
nature are due to Strassburger [22], as well as a proof by Brünnler [6]. Of these approaches, a
splitting proof would be the most valuable.

A further issue relates to the role of proof analysis in the toolkit of the modal logician. The
single most important application of proof analysis in propositional logic has been its crucial role
in influencing the design of tableau methods. With modal logics, the ad hoc nature of sequent
characterisations has been reflected by an equally ad hoc methodology for the design of modal
tableau. Furthermore the designers of modal tableau have found it necessary to resort to ugly
techniques equivalent to ‘analytic’ cut (a proof with an analytic cut is by virtue of this cut not
analytic; this is perhaps the most misleading piece of nomenclature in proof theory), so indeed
the degree of disorder among modal tableau is greater than among modal sequent calculi. The
most obvious and useful test of a claim to have provided a worthy modal proof theory is leverage
the theory to providing a principled approach to modal tableau. The application of the calculus
of structures to the design of such systems is under intensive investigation, making use of insights
flowing from Dale Miller’s ‘proof search as computation’ slogan [7, 16].

Resources

Implementation Ozan Kahrmanogullari has begun a project implementing proof search for the modal
logics in this paper, using the Maude implementation of term rewriting logic. The current state of
the project can be found at: http://www.informatik.uni-leipzig.de/~ozan/maude cos.html.

Mailing list There is an active mailing list describing current developments in the calculus of structures
and other related formalisms. Subscription information can be found at:

http://alessio.guglielmi.name/frogs/ ,

and an archive of past messages is available at:

http://news.gmane.org/gmane.science.mathematics.frogs .

Additionally, a continually updated summary of papers published on the proof theory of modal
logic in the calculus of structures can be found at:

http://alessio.guglielmi.name/res/cos/#ML .
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