Finite and Algorithmic Model Theory

Lecture 4 (Dresden 02.11.22, Short version with errors)

Lecturer: Bartosz "Bart" Bednarczyk

Technische Universität Dresden \& Uniwersytet Wroceawski

TECHNISCHE
 UNIVERSITÄT DRESDEN

European Research Council
Established by the European Commission

Today's agenda

Goal: Provide a game-theoretic framework for proving FO-inexpressivity (also in the finite!).

1. Quantifier rank of FO sentences.
2. Quantifier rank $\not \approx \#$ variable.
3. Definition of Ehrenfeucht-Fraïssé games (proof omitted)
4. Showcase 1: Games on sets (FO[Ø]-nondefinability of "even" strikes back)
5. Showcase 2: Games on linear orders ("even" is not FO[$\{<\}]$-definable)

Lecture based on chapters 3.1, 3.2, 3.6 of [Libkin's FMT Book]
6. Logical reductions, e.g. "even" $\notin \mathrm{FO}[\{<\}] \Longrightarrow$ "connectivity" $\notin \mathrm{FO}[\{\mathrm{E}\}]$

Measuring complexity of a formula: quantifier rank

The quantifier rank $\operatorname{qr}(\varphi)$ of φ is its depth of quantifier nesting.

- $\operatorname{qr}(\varphi):=0$ for atomic φ
- $\operatorname{qr}(\neg \varphi):=\operatorname{qr}(\varphi)$
- $\operatorname{qr}\left(\varphi \oplus \varphi^{\prime}\right):=\max \left(\operatorname{qr}(\varphi), \operatorname{qr}\left(\varphi^{\prime}\right)\right)$ for $\oplus \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$
- $\operatorname{qr}(\exists x \varphi)=\operatorname{qr}(\forall x \varphi):=\operatorname{qr}(\varphi)+1$

Examples:

$$
\begin{aligned}
& \qquad \operatorname{qr}(\exists \varphi \forall y \forall z \mathrm{R}(x, y, z))=3 \\
& \operatorname{qr}(\exists x[\mathrm{~A}(x) \wedge(\forall y \mathrm{R}(y)) \vee(\exists z \top)])=2 \\
& \text { for } \varphi \text { in PNF } \operatorname{qr}(\varphi)=\# \text { quantifiers. }
\end{aligned}
$$

Quantifier rank can be exponentially smaller than the total number of quantifiers.
$\varphi_{0}(x, y):=\mathrm{E}(x, y), \quad \varphi_{n+1}(x, y):=\exists z\left(\varphi_{n}(x, z) \wedge \varphi_{n}(z, y)\right) \quad \rightsquigarrow \operatorname{qr}\left(\varphi_{n}\right)=n$ but φ_{n} has $2^{n}-1$ quants.

Formulae with bounded quantifier rank

Let τ be a finite signature, and let $m \in \mathbb{N}$. $\mathrm{FO}_{m}[\tau]$ is set of all FO formulae over τ with q.r. $\leq m$.
Notation: $\mathfrak{A} \equiv_{m}^{\tau} \mathfrak{B}$ iff \mathfrak{A} and \mathfrak{B} satisfy precisely the same $\mathrm{FO}_{m}[\tau]$ sentences (τ often omitted).
Lemma (Finiteness of $\mathrm{FO}_{m}[\tau]$ with $\leq k$ variables)
The set of all $\mathrm{FO}_{m}[\tau]$ formulae with at most k free variables is finite up to logical equivalence.

Proof

Idea: characterise $\mathrm{FO}_{0}[\tau]$ with a "truth table" of equality between constants/variables + induction!

Ehrenfeucht-Fraïssé games

- Duration: m rounds.
- Playground: two τ-structures \mathfrak{A} and \mathfrak{B}.

- Two players: Spoil \exists r ($\mathrm{D} \exists \mathrm{vil} / \exists \mathrm{loise} / \exists \mathrm{ve} /$ Player I) vs Duplic \forall tor (\forall ngel $/ \forall$ belard $/ \forall$ dam/Player II)

Goal of $\forall: \mathfrak{A}, \mathfrak{B}$ "look the same". Goal of \exists : pinpoint the difference.

- During the i-th round:

1. \exists selects a structure (say $\mathfrak{A})$ and picks an element (say $a_{i} \in A$)
2. \forall replies with an element $\left(\right.$ say $\left.b_{i} \in B\right)$ in the other structure (in this case \mathfrak{B})
so that $\left(a_{1} \mapsto b_{1}, \ldots, a_{i} \mapsto b_{i}\right)$ is a partial isomorphism between \mathfrak{A} and \mathfrak{B}.

- \exists wins if \forall cannot reply with a suitable element. \forall wins if he survives m rounds.

Theorem (Fraïssé 1950 \& Ehrenfeucht 1961)

\forall has a winning strategy in m-round Ehrenfeucht-Fraïssé game on τ-structures \mathfrak{A} and \mathfrak{B} iff $\mathfrak{A} \equiv_{m}^{\tau} \mathfrak{B}$.

Playing Ehrenfeucht-Fraïssé games on sets

Consider an 3 -round play of E-F game on sets $\mathfrak{A}:=\{1,2,3\}, \mathfrak{B}:=\{a, b, c, d\}$.

$\mathfrak{A}:=$| $1 \mapsto d, 2 \mapsto b, 3 \mapsto c$ |
| :--- |
| Result: \forall wins, so $\mathfrak{A} \equiv_{3} \mathfrak{B}$. |$\quad \mathfrak{B}:=$ (a) @

Following the strategy "always reply with a fresh element", \forall wins any m-round game on sets of size $\geq m$.
Lemma (Even is not expressible in $\mathrm{FO}[\emptyset]$)
Proof Assume that such a φ exists. Let $m:=\operatorname{qr}(\varphi)$. Let $\mathfrak{A}($ resp. $\mathfrak{B})$ be an $2 m$ (resp. $2 m+1$) element set. By definition, we clearly have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \not \models \varphi$.
As we already noticed \forall has the winning strategy in any m-round E-F game. Thus $\mathfrak{A} \equiv_{m} \mathfrak{B}$ holds.
By collecting the inferred information, we conclude $\mathfrak{B} \models \varphi$. A contradiction!
General proof scheme for showing that \mathcal{P} is not $\mathrm{FO}[\tau]$-definable with Ehrenfeucht-Fraïssé games
infer $\mathfrak{B} \models \varphi$ ad absurdum φ exists \quad q.r. of $\varphi \quad$ craft τ-structures $\mathfrak{A} \models \varphi, \mathfrak{B} \not \models \varphi \quad$ play $\operatorname{qr}(\varphi)$-round game \quad E-F theorem contradiction!

Playing Ehrenfeucht-Fraïssé games on linear orders

$\mathfrak{A}:=$

- Who has the winning strategy in 2 rounds?

- In 3 rounds? more?

Lemma (Even is not expressible in $\mathrm{FO}[\{\leq\}]$)
Proof Suppose that φ exists. Let $m:=\operatorname{qr}(\varphi)$. Let $\mathfrak{A}($ resp. $\mathfrak{B})$ be linear orders of size $2^{m}\left(\right.$ resp. $\left.2^{m}+1\right)$. By definition, we clearly have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \nLeftarrow \varphi$.
What remains to be done is to show that \forall has the winning strategy in any m-round E-F game.
Thus $\mathfrak{A} \equiv \equiv_{m} \mathfrak{B}$ holds. By collecting the inferred information, we conclude $\mathfrak{B} \models \varphi$. A contradiction!
ad absurdum φ exists

q.r. of φ

craft τ-structures $\mathfrak{A} \models \varphi, \mathfrak{B} \not \models \varphi \quad$ play $\operatorname{qr}(\varphi)$-round game

infer $\mathfrak{B} \models \varphi$
E-F theorem contradiction!

Super Lemma About Linear Orders: I

Lemma (Sufficiently large linear orders look similar)

Any linearly ordered ${ }^{a}\{\leq\}$-structures $\mathfrak{A}, \mathfrak{B}$ of cardinality $\geq 2^{m}$ satisfy $\mathfrak{A} \equiv \equiv_{m}^{\{\leq\}} \mathfrak{B}$.
${ }^{a}$ We assume that $\mathfrak{A}, \mathfrak{B}$ interpret \leq as a linear order over the domain

- Let $\bar{a}:=\left(a_{-1}, a_{0}, \ldots, a_{i}\right)$ and $\bar{b}:=\left(b_{-1}, b_{0}, \ldots, b_{i}\right)$ be the history of the play after i-rounds.
- Dummy (-1)-th and 0 -th rounds of the game: select $\min /$ max elements of $\mathfrak{A}, \mathfrak{B}$.

This establishes an invariant that any freshly selected element is between some previously selected ones.

- We play as \forall : we want to guarantee that after the i-th round we have for all $I, k \leq i$:

1. $a_{k} \leq^{\mathfrak{A}} a_{l}$ iff $b_{k} \leq^{\mathfrak{B}} b_{l}$ (maintain the partial isomorphism).
2. If $\operatorname{dist}\left(a_{k}, a_{l}\right) \geq 2^{m-i}$ then $\operatorname{dist}\left(b_{k}, b_{l}\right) \geq 2^{m-i}$ ("play far if \exists plays far").
3. If $\operatorname{dist}\left(a_{k}, a_{l}\right)<2^{m-i}$ then $\operatorname{dist}\left(a_{k}, a_{l}\right)=\operatorname{dist}\left(b_{k}, b_{l}\right)$ ("play close if \exists plays close").
\forall should preserve these conditions

- Assume \exists picks $a_{i+1} \in A$. Let a_{l}, a_{k} be the closest such that $a_{l} \leq^{2 l} a_{i+1} \leq^{2 l} a_{k}$. Goal: Choose b_{i+1} $\mathfrak{A}:=$

$\mathfrak{B}:=$

Super Lemma About Linear Orders: II

Recall that \exists picked $a_{i+1} \in A$ and a_{l}, a_{k} are the closest such that $a_{l} \leq^{a t} a_{i+1} \leq^{2} a_{k}$.
$\mathfrak{A}:=$

$\mathfrak{B}:=$
$\cdots \rightarrow b_{l} \rightarrow \cdots \rightarrow \cdots \rightarrow \cdots \rightarrow b_{k} \rightarrow$

Inductive assumption for all $I, k \leq i$:

1. $a_{k} \leq^{\mathfrak{A}} a_{l}$ iff $b_{k} \leq{ }^{\mathfrak{B}} b_{l}$ (maintain the partial isomorphism).
2. If $\operatorname{dist}\left(a_{k}, a_{l}\right) \geq 2^{m-i}$ then $\operatorname{dist}\left(b_{k}, b_{l}\right) \geq 2^{m-i}$ ("play far if \exists plays far").
3. If $\operatorname{dist}\left(a_{k}, a_{l}\right)<2^{m-i}$ then $\operatorname{dist}\left(a_{k}, a_{l}\right)=\operatorname{dist}\left(b_{k}, b_{l}\right)$ ("play close if \exists plays close").

Case I: $\operatorname{dist}\left(a_{l}, a_{k}\right)<2^{m-i}$

Then by ind. ass. $\operatorname{dist}\left(a_{l}, a_{k}\right)=\operatorname{dist}\left(b_{l}, b_{k}\right)$, and hence $\left[a_{l}, a_{k}\right] \cong\left[b_{l}, b_{k}\right]$.
Pick b_{i+1} such that $b_{l} \leq^{\mathfrak{B}} b_{i+1} \leq^{\mathfrak{A}} b_{l} . \operatorname{dist}\left(a_{l}, a_{i+1}\right)=\operatorname{dist}\left(b_{l}, b_{i+1}\right)$, and $\operatorname{dist}\left(a_{k}, a_{i+1}\right)=\operatorname{dist}\left(b_{k}, b_{i+1}\right)$.

Super Lemma About Linear Orders: III

Inductive assumption for all $I, k \leq i$:

1. $a_{k} \leq^{\mathfrak{A}} a_{l}$ iff $b_{k} \leq{ }^{\mathfrak{B}} b_{l}$ (maintain the partial isomorphism).
2. If $\operatorname{dist}\left(a_{k}, a_{l}\right) \geq 2^{m-i}$ then $\operatorname{dist}\left(b_{k}, b_{l}\right) \geq 2^{m-i}$ ("play far if \exists plays far").
3. If $\operatorname{dist}\left(a_{k}, a_{l}\right)<2^{m-i}$ then $\operatorname{dist}\left(a_{k}, a_{l}\right)=\operatorname{dist}\left(b_{k}, b_{l}\right)$ ("play close if \exists plays close").
\forall should find a suitable b_{i+1}

Case II: $\operatorname{dist}\left(a_{l}, a_{k}\right) \geq 2^{m-i}$

Then by ind. ass. $\operatorname{dist}\left(b_{l}, b_{k}\right) \geq 2^{m-i}$. We have three cases.

- $x \geq 2^{m-i-1}$ and $y \geq 2^{m-i-1} \rightsquigarrow$ Take b_{i+1} to the middle between b_{l} and b_{k}.
- $x<2^{m-i-1}$ and $y \geq 2^{m-i-1} \rightsquigarrow b_{i+1}$ is the unique node to the right of b_{l} so that $\operatorname{dist}\left(b_{l}, b_{i+1}\right)=x$.
- $x \geq 2^{m-i-1}$ and $y<2^{m-i-1} \rightsquigarrow b_{i+1}$ is the unique node to the left of b_{k} so that $\operatorname{dist}\left(b_{i+1}, b_{k}\right)=y$.

More about Ehrenfeucht-Fraïssé games

There is an alternative approach to the previous proof by composing winning strategies. Key lemma:

Lemma (Composition lemma)

Let $\mathfrak{A}, \mathfrak{B}$ be linearly-ordered, with $a \in A, b \in B$ s.t. $\mathfrak{A}^{\leq a} \equiv_{m} \mathfrak{B}^{\leq b}$ and $\mathfrak{A}^{\geq a} \equiv_{m} \mathfrak{B} \geq b$. Then $\mathfrak{A} \equiv_{m} \mathfrak{B}$. We can compose strategies under:

1. Disjoint unions.

Consult a lecture by Anuj Dawar 9:50-19:20 [Youtube].
2. Ordered sums. as well as Thm. 3.6, Proof \#2 (p. 30-31) and Ex. 3.15 from [Libkin's book].
3. Products.

Algorithmic approach to Ehrenfeucht-Fraïssé games: Can we make E-F games computable? Input: First-Order φ over τ, finite structures $\mathfrak{A}, \mathfrak{B}$ and $m \in \mathbb{N}$.
Output: Is this the case that Duplication has the winning strategy in m-round E-F game? Is this problem decidable?: YES! and PSpACE-complete, c.f. [Pezzoli 1998]

A lot of open problems, e.g. "how difficult is to solve the above problem when $\mathfrak{A}, \mathfrak{B}$ are trees?" Consult excellent slides by [Angelo Montanari] for more!

Logical Reductions

If \mathcal{P} is not expressible, show that \mathcal{P}^{\prime} is not. Use case: "even" $\notin \mathrm{FO}[\{\leq\}]$ implies "connectivity" $\notin \mathrm{FO}[\{\leq\}]$

- Suppose $\varphi \in \operatorname{FO}[\{E\}]$ defines connectivity.
- From \leq we can define the succ. relation: $\operatorname{succ}(x, y):=(x<y) \wedge \forall z((z \leq x) \vee(y \leq z))$

- Prepare $\gamma(x, y)$ that holds if

1. y is the succ of succ of x, or
2. x is sec-to-last and y is the first w.r.t \leq, or

Reduction of parity to connectivity
3. x is the last one and y is the second w.r.t \leq.

Conclusion: $\neg \varphi[\mathrm{E} / \gamma]$ defined even. A contradiction!
Playing Ehrenfeucht-Fraïssé games is quite difficult. Can we simplify them?
Yes, with a notion of locality. Next 2-3 lectures!

Copyright of used icons and pictures

1. Universities/DeciGUT/ERC logos downloaded from the corresponding institutional webpages.
2. Idea icon created by Vectors Market - Flaticon flaticon.com/free-icons/idea.
3. Head icons created by Eucalyp - Flaticon flaticon.com/free-icons/head
4. Graph icons created by SBTS2018 - Flaticon flaticon.com/free-icons/graph
5. Angel icons created by Freepik - Flaticon flaticon.com/free-icons/angel
6. Devil icons created by Freepik and Pixel perfect - Flaticon flaticon.com/free-icons/devil
7. VS icons created by Freepik - Flaticon flaticon.com/free-icons/vs
8. Robot icon created by Eucalyp - Flaticon flaticon.com/free-icons/robot.
9. Figure 3.3. from Libkin's Book homepages.inf.ed.ac.uk/libkin/fmt/fmt.pdf
10. Warning icon created by Freepik - Flaticon flaticon.com/free-icons/warning.
