Finite and Algorithmic Model Theory Lecture 4 (Dresden 02.11.22, Short version with errors)

Lecturer: Bartosz "Bart" Bednarczyk

TECHNISCHE UNIVERSITÄT DRESDEN & UNIWERSYTET WROCŁAWSKI

European Research Council Established by the European Commission

Today's agenda

Goal: Provide a game-theoretic framework for proving FO-inexpressivity (also in the finite!).

- 1. Quantifier rank of FO sentences.
- **2.** Quantifier rank $\neq \#$ variable.
- 3. Definition of Ehrenfeucht-Fraïssé games (proof omitted)
- **4.** Showcase 1: Games on sets (FO[\emptyset]-nondefinability of "even" strikes back)
- **5.** Showcase 2: Games on linear orders ("even" is not FO[{<}]-definable)
- **6.** Logical reductions, e.g. "even" \notin FO[{ $\{<\}$] \implies "connectivity" \notin FO[{ $\{E\}$]

Lecture based on chapters 3.1, 3.2, 3.6 of [Libkin's FMT Book]

Feel free to ask questions and interrupt me!

Don't be shy! If needed send me an email (bartosz.bednarczyk@cs.uni.wroc.pl) or approach me after the lecture! Reminder: this is an advanced lecture. Target: people that had fun learning logic during BSc studies!

Measuring complexity of a formula: quantifier rank

The quantifier rank $qr(\varphi)$ of φ is its depth of quantifier nesting.

- $qr(\varphi) := 0$ for atomic φ • $qr(\neg \varphi) := qr(\varphi)$
- $qr(\varphi \oplus \varphi') := max(qr(\varphi), qr(\varphi'))$ for $\oplus \in \{\land, \lor, \rightarrow, \leftrightarrow\}$
- $qr(\exists x \varphi) = qr(\forall x \varphi) := qr(\varphi) + 1$

Examples: $qr(\exists \varphi \forall y \forall z \ R(x, y, z)) = 3$ $qr(\exists x [A(x) \land (\forall y R(y)) \lor (\exists z \top)]) = 2$ for φ in PNF $qr(\varphi) = #quantifiers.$

Quantifier rank can be exponentially smaller than the total number of quantifiers.

 $\varphi_0(x,y) := \mathbb{E}(x,y), \quad \varphi_{n+1}(x,y) := \exists z \ (\varphi_n(x,z) \land \varphi_n(z,y)) \quad \rightsquigarrow \ \mathsf{qr}(\varphi_n) = n \text{ but } \varphi_n \text{ has } 2^n - 1 \text{ quants.}$

Formulae with bounded quantifier rank

Let τ be a *finite* signature, and let $m \in \mathbb{N}$. FO_m[τ] is set of all FO formulae over τ with q.r. $\leq m$. Notation: $\mathfrak{A} \equiv_m^{\tau} \mathfrak{B}$ iff \mathfrak{A} and \mathfrak{B} satisfy precisely the same FO_m[τ] sentences (τ often omitted). Lemma (Finiteness of FO_m[τ] with $\leq k$ variables)

The set of all $FO_m[\tau]$ formulae with at most k free variables is finite up to logical equivalence. **Proof**

Idea: characterise $FO_0[\tau]$ with a "truth table" of equality between constants/variables + induction! Bartosz "Bart" Bednarczyk Finite and Algorithmic Model Theory (Lecture 4 Dresden Short)

Ehrenfeucht-Fraïssé games

 $\mathfrak{A} :=$

- Duration: *m* rounds.
- Playground: two τ -structures \mathfrak{A} and \mathfrak{B} .
- Two players: Spoil $\exists r (D \exists vil / \exists loise / \exists ve / Player I) vs Duplic \forall tor (<math>\forall ngel / \forall belard / \forall dam / Player II)$

- During the *i*-th round:
- **1.** \exists selects a structure (say \mathfrak{A}) and picks an element (say $a_i \in A$)
- **2.** \forall replies with an element (say $b_i \in B$) in the other structure (in this case \mathfrak{B})
 - so that $(a_1 \mapsto b_1, \ldots, a_i \mapsto b_i)$ is a partial isomorphism between \mathfrak{A} and \mathfrak{B} .
- \exists wins if \forall cannot reply with a suitable element. \forall wins if he survives *m* rounds.

Theorem (Fraïssé 1950 & Ehrenfeucht 1961)

 \forall has a winning strategy in *m*-round Ehrenfeucht-Fraïssé game on τ -structures \mathfrak{A} and \mathfrak{B} iff $\mathfrak{A} \equiv_m^{\tau} \mathfrak{B}$.

Goal of \forall : $\mathfrak{A}, \mathfrak{B}$ "look the same". Goal of \exists : pinpoint the difference.

Playing Ehrenfeucht-Fraïssé games on sets

Consider an 3-round play of E-F game on sets $\mathfrak{A} := \{1, 2, 3\}$, $\mathfrak{B} := \{a, b, c, d\}$.

 $\mathfrak{A} := \bigoplus_{i=1}^{n} \bigoplus_{j=1}^{n} \bigoplus_{j=1}^$

Following the strategy "always reply with a fresh element", \forall wins any *m*-round game on sets of size $\geq m$.

Lemma (Even is not expressible in $FO[\emptyset]$)

Proof Assume that such a φ exists. Let $m := qr(\varphi)$. Let \mathfrak{A} (resp. \mathfrak{B}) be an 2m (resp. 2m+1) element set. By definition, we clearly have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \not\models \varphi$.

As we already noticed \forall has the winning strategy in any *m*-round E-F game. Thus $\mathfrak{A} \equiv_m \mathfrak{B}$ holds. By collecting the inferred information, we conclude $\mathfrak{B} \models \varphi$. A contradiction!

Playing Ehrenfeucht-Fraïssé games on linear orders

• In 3 rounds? more?

Lemma (Even is not expressible in $FO[\{\leq\}]$)

Proof Suppose that φ exists. Let $m := qr(\varphi)$. Let \mathfrak{A} (resp. \mathfrak{B}) be linear orders of size 2^m (resp. 2^m+1). By definition, we clearly have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \not\models \varphi$.

What remains to be done is to show that \forall has the winning strategy in any *m*-round E-F game.

Thus $\mathfrak{A} \equiv_m \mathfrak{B}$ holds. By collecting the inferred information, we conclude $\mathfrak{B} \models \varphi$. A contradiction!

Super Lemma About Linear Orders: I

Lemma (Sufficiently large linear orders look similar)

Any linearly ordered^{*a*} { \leq }-structures $\mathfrak{A}, \mathfrak{B}$ of cardinality $\geq 2^m$ satisfy $\mathfrak{A} \equiv_m^{\{\leq\}} \mathfrak{B}$.

<code>aWe</code> assume that $\mathfrak{A},\mathfrak{B}$ interpret \leq as a linear order over the domain

- Let $\overline{a} := (a_{-1}, a_0, \dots, a_i)$ and $\overline{b} := (b_{-1}, b_0, \dots, b_i)$ be the history of the play after *i*-rounds.
- Dummy (-1)-th and 0-th rounds of the game: select min/max elements of $\mathfrak{A}, \mathfrak{B}$.

This establishes an invariant that any freshly selected element is between some previously selected ones.

• We play as \forall : we want to guarantee that after the *i*-th round we have for all $I, k \leq i$:

1. $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism). 2. If dist $(a_k, a_l) \geq 2^{m-i}$ then dist $(b_k, b_l) \geq 2^{m-i}$ ("play far if \exists plays far"). 3. If dist $(a_k, a_l) < 2^{m-i}$ then dist $(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close"). • Assume \exists picks $a_{i+1} \in A$. Let a_l, a_k be the closest such that $a_l \leq^{\mathfrak{A}} a_{i+1} \leq^{\mathfrak{A}} a_k$. Goal: Choose b_{i+1} $\mathfrak{A} := \cdots \rightarrow a_l \rightarrow \cdots \rightarrow a_k \rightarrow \cdots \qquad \mathfrak{B} := \cdots \rightarrow b_l \rightarrow \cdots \rightarrow \cdots \rightarrow b_k \rightarrow \cdots$

induction

Super Lemma About Linear Orders: II

Recall that \exists picked $a_{i+1} \in A$ and a_i, a_k are the closest such that $a_i \leq^{\mathfrak{A}} a_{i+1} \leq^{\mathfrak{A}} a_k$.

Inductive assumption for all $l, k \leq i$:

1. $a_k \leq^{\mathfrak{A}} a_l$ iff $b_k \leq^{\mathfrak{B}} b_l$ (maintain the partial isomorphism).

2. If dist $(a_k, a_l) \ge 2^{m-i}$ then dist $(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far"). **3.** If dist $(a_k, a_l) < 2^{m-i}$ then dist $(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close").

a suitable b_{i+1}

 \forall should find

$$\mathfrak{A} := \underbrace{\operatorname{dist}(a_l, a_k) < 2^{m-i}}_{a_l} \qquad \mathfrak{B} := \underbrace{\operatorname{dist}(b_l, b_k) = \operatorname{dist}(a_l, a_k)}_{b_l} \xrightarrow{\mathbf{A}_l} \cdots \xrightarrow{\mathbf{A}_{k-1}} \cdots \xrightarrow{\mathbf{A}_{k-$$

Cooperations (a, b) < 0m-i

Then by ind. ass. dist $(a_l, a_k) = dist(b_l, b_k)$, and hence $[a_l, a_k] \cong [b_l, b_k]$.

Pick b_{i+1} such that $b_l \leq^{\mathfrak{B}} b_{i+1} \leq^{\mathfrak{A}} b_l$. dist $(a_l, a_{i+1}) = \operatorname{dist}(b_l, b_{i+1})$, and dist $(a_k, a_{i+1}) = \operatorname{dist}(b_k, b_{i+1})$.

Super Lemma About Linear Orders: III

Inductive assumption for all $l, k \leq i$: \forall should find **1.** $a_k <^{\mathfrak{A}} a_l$ iff $b_k <^{\mathfrak{B}} b_l$ (maintain the partial isomorphism). a suitable b_{i+1} **2.** If dist $(a_k, a_l) \ge 2^{m-i}$ then dist $(b_k, b_l) \ge 2^{m-i}$ ("play far if \exists plays far"). **3.** If dist $(a_k, a_l) < 2^{m-i}$ then dist $(a_k, a_l) = dist(b_k, b_l)$ ("play close if \exists plays close"). **Case II:** dist $(a_l, a_k) \ge 2^{m-i}$ $\operatorname{dist}(a_l,a_k) < 2^{m-i}$ by assump: dist $(a_l, a_k) \ge 2^{m-i}$ $\mathfrak{B} :=$ $\mathfrak{A} :=$ X V \forall wins! Then by ind. ass. dist $(b_l, b_k) \ge 2^{m-i}$. We have three cases.

• $x \ge 2^{m-i-1}$ and $y \ge 2^{m-i-1} \rightsquigarrow$ Take b_{i+1} to the middle between b_l and b_k .

• $x < 2^{m-i-1}$ and $y \ge 2^{m-i-1} \rightsquigarrow b_{i+1}$ is the unique node to the right of b_i so that dist $(b_i, b_{i+1}) = x$.

• $x \ge 2^{m-i-1}$ and $y < 2^{m-i-1} \rightsquigarrow b_{i+1}$ is the unique node to the left of b_k so that $dist(b_{i+1}, b_k) = y$.

More about Ehrenfeucht-Fraïssé games

There is an alternative approach to the previous proof by composing winning strategies. Key lemma:

Lemma (Composition lemma)

Let $\mathfrak{A}, \mathfrak{B}$ be linearly-ordered, with $a \in A, b \in B$ s.t. $\mathfrak{A}^{\leq a} \equiv_m \mathfrak{B}^{\leq b}$ and $\mathfrak{A}^{\geq a} \equiv_m \mathfrak{B}^{\geq b}$. Then $\mathfrak{A} \equiv_m \mathfrak{B}$. We can compose strategies under:

Disjoint unions.
Consult a lecture by Anuj Dawar 9:50-19:20 [Youtube].
Ordered sums. as well as Thm. 3.6, Proof #2 (p. 30-31) and Ex. 3.15 from [Libkin's book].
Products.

Algorithmic approach to Ehrenfeucht-Fraïssé games: Can we make E-F games computable? Input: First-Order φ over τ , finite structures $\mathfrak{A}, \mathfrak{B}$ and $m \in \mathbb{N}$. Output: Is this the case that Duplication has the winning strategy in *m*-round E-F game? Is this problem decidable?: YES! and PSPACE-complete, c.f. [Pezzoli 1998]

A lot of open problems, e.g. "how difficult is to solve the above problem when \mathfrak{A} , \mathfrak{B} are trees?" Consult excellent slides by [Angelo Montanari] for more!

Logical Reductions

If \mathcal{P} is not expressible, show that \mathcal{P}' is not. Use case: "even" $\notin \mathsf{FO}[\{\leq\}]$ implies "connectivity" $\notin \mathsf{FO}[\{\leq\}]$

- Suppose $\varphi \in \mathsf{FO}[\{ E \}]$ defines connectivity.
- $\bullet~\mbox{From} \leq$ we can define the succ. relation:

 $\operatorname{succ}(x,y) := (x < y) \land \forall z \ ((z \le x) \lor (y \le z))$

- Prepare $\gamma(x, y)$ that holds if
- **1.** y is the succ of succ of x, or
- **2.** *x* is sec-to-last and *y* is the first w.r.t \leq , or
- **3.** *x* is the last one and *y* is the second w.r.t \leq .
- Note: γ defines a graph on the elements of the linear order!
- \bullet Observation: graph defined by γ is connected iff the underlying linear order is odd.

Conclusion: $\neg \varphi[E/\gamma]$ defined even. A contradiction!

Playing Ehrenfeucht-Fraïssé games is quite difficult. Can we simplify them? Yes, with a notion of locality. Next 2–3 lectures!

Reduction of parity to connectivity

Copyright of used icons and pictures

1. Universities/DeciGUT/ERC logos downloaded from the corresponding institutional webpages. 2. Idea icon created by Vectors Market — Flaticon flaticon.com/free-icons/idea. **3.** Head icons created by Eucalyp — Flaticon flaticon.com/free-icons/head **4.** Graph icons created by SBTS2018 — Flaticon flaticon.com/free-icons/graph **5.** Angel icons created by Freepik — Flaticon flaticon.com/free-icons/angel 6. Devil icons created by Freepik and Pixel perfect — Flaticon flaticon.com/free-icons/devil **7.** VS icons created by Freepik — Flaticon flaticon.com/free-icons/vs **8.** Robot icon created by Eucalyp — Flaticon flaticon.com/free-icons/robot. 9. Figure 3.3. from Libkin's Book homepages.inf.ed.ac.uk/libkin/fmt/fmt.pdf **10.** Warning icon created by Freepik - Flaticon flaticon.com/free-icons/warning.