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Abstract. We investigate the impact of non-regular path expressions
on the decidability of satisfiability checking and querying in description
logics. Our primary object of interest is ALCvpl, an extension of ALC with
path expressions using visibly-pushdown languages, which was shown to
be decidable by Löding et al. in 2007. The paper present a series of
undecidability results. We prove undecidability of ALCvpl with the seem-
ingly innocent Self operator. Then, we consider the simplest non-regular
(visibly-pushdown) language r#s# := {rnsn | n ∈ N}. We establish un-
decidability of the concept satisfiability problem for ALCreg extended
with nominals and r#s#, as well as of the query entailment problem for
ALC-TBoxes, where such non-regular atoms are present in queries.

1 Introduction

Formal ontologies play a crucial role in artificial intelligence, serving as the
backbone of various applications such as the Semantic Web, ontology-based in-
formation integration, and peer-to-peer data management. In reasoning about
graph-structured data, a significant role is played by description logics (DLs) [2],
a robust family of logical formalisms serving as the logical foundation of contem-
porary standardised ontology languages, including OWL 2 by the W3C [16,23].
Among many features present in extensions of the basic description logic ALC,
an especially useful one is ·reg, supported by popular Z-family of description
logics [10]. With ·reg one can specify regular path constraints, allowing the user
to navigate graph-structured data. In recent years many extensions of ALCreg
for ontology-engineering were proposed, see e.g. [6,11,30], and the complexity
landscape of their reasoning problems is now mostly well-understood [10,5,4]. In
fact, the logic ALCreg was already studied in 1979 by the formal-verification com-
munity [13], under the name of Propositional Dynamic Logic (PDL). Consult [12]
for a discussion on relationship between (extensions of) PDL and ALCreg.

Due to wideness of the spectrum of recognizable word languages, the question
of whether regularity constraints in path expressions of ALCreg can be lifted to
more expressive classes of languages received a lot of attention from researchers.
We call such extensions non-regular. After the first undecidability proof of satis-
fiability of ALCreg with context-free languages [20], several decidable cases were
identified. For instance, Koren and Pnueli [25] proved that ALCreg extended with
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the simplest non-regular language r#s# := {rnsn | n ∈ N} for fixed roles r , s is
decidable; while combining it with s#r# leads to undecidability [19]. This sur-
prises at first glance, but as it was shown later [29], PDL extended with a broad
class of input-driven context-free languages, called visibly pushdown languages [1],
remain decidable. This generalises all previously known decidability results, and
partially explains the reason behind known failures (e.g. the languages r#s# and
s#r# cannot be both visibly-pushdown under the same partition of the alphabet).

Our motivation and contribution. Despite the presence of a plethora of var-
ious results concerning non-regular extensions of PDL [25,18,22,21,8], no one
considered their extensions with popular features supported by W3C ontology
languages. Such extensions are, e.g. nominals (constants), inverse roles (inverse
programs), functionality (deterministic programs), and Self operator (self-loops).
The honourable exception is the unpublished undecidability result for ALCreg
extended with the language r#s(r−)# (with r− denoting the converse of r) from
Göller’s thesis [15]. The lack of results on entailment of non-regular queries over
ontologies is also intriguing, taking into account positive results for conjunctive
visibly-pushdown queries in the setting of relational-databases [28].
In this paper we contribute to a further understanding of the aforementioned ques-
tions. Our results are negative. For the first part of the paper, we investigate
ALCreg extended with r#s#. In Section 3 we prove that its extension with nomi-
nals has an undecidable satisfiability problem. In Section 4 we show that, already
for ALC, the query entailment problem of queries involving r#s#, is also undecid-
able. For the second part of the paper, we study ALCvpl, the extension of ALCreg
with visibly pushdown languages (that generalise r#s#). We show that adding
the seemingly innocent Self renders the logic undecidable.

Because of lack of space, the journal version of this paper contains
all missing proofs, extra pictures and expanded definitions.

2 Preliminaries

We assume familiarity with basics on description logic ALC [2, Sec. 2.1–2.3], regu-
lar and context-free languages, Turing machines and computability [33, Sec. 1–5].
As usual, N denotes non-negative integers, and Zn denotes the set {0, 1, . . . , n−1}.

Basics on ALC. We fix countably infinite pairwise disjoint sets of individual
names NI, concept names NC, and role names NR and introduce the description
logic ALC. Starting from NC and NR, the set CALC of ALC-concepts is built
using the following concept constructors: negation (¬C), conjunction (C ⊓ D),
existential restriction (∃r .C), and the top concept ⊤ with the grammar:

C, D ::= ⊤ | A | ¬C | C ⊓ D | ∃r .C,

where C, D ∈ CALC , A ∈ NC and r ∈ NR. We employ the following abbrevia-
tions: C ⊔ D := ¬(¬C ⊓ ¬D), ∀r .C := ¬∃r .¬C, ⊥ := ¬⊤, and C → D := ¬C ⊔ D.
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The semantics of ALC is defined via interpretations I := (∆I , ·I) composed of
a non-empty set ∆I called the domain of I and an interpretation function ·I
mapping individual names to elements of ∆I , concept names to subsets of ∆I ,
and role names to subsets of ∆I ×∆I . This mapping is then extended to concepts.

Name Syntax Semantics
top concept ⊤ ∆I

concept negation ¬C ∆I \ CI

concept intersection C ⊓ D CI ∩ DI

existential restriction ∃r .C {d | ∃e ∈ CI (d, e) ∈ rI}

An interpretation I satisfies a concept C (or I is a model of C, written: I |= C)
if CI ̸= ∅. A concept is satisfiable if it has a model. In the satisfiability problem we
ask, whether an input concept has a model. We consider three popular description-
logics features: nominals (O), functionality (F), and the Self operator (·Self). Their
semantics is recalled in the table below, assuming that r , s ∈ NR, and a ∈ NI.

Name Syntax Semantics
functionality func(r) I |= func(r) if ∀d∀e1∀e2

(
(d, e1) ∈ rI ∧ (d, e2) ∈ rI ⇒ e1 = e2

)
nominal {a} {aI}
self-operator ∃r .Self {d | (d, d) ∈ rI}

A path ρ in an interpretation I is a finite word in (∆I)∗. We usually enumerate its
components with ρ1, . . . , ρ|ρ|, where the number |ρ|−1 is called the length of ρ. We
say that ρ starts from (resp. ends in) d if ρ1 = d holds (resp. ρ|ρ| = d). If N ⊆ NI
is given, we call an element d ∈ ∆I N-named if d = aI holds for some a ∈ N.

ALC with path expressions. We treat Σall := NR ∪ {A? | A ∈ NC} as an infinite
alphabet. Let ALL and REG denote classes of all recognizable (resp. regular)
finite-word languages over finite subsets of Σall. For a language L and a path
ρ := ρ1ρ2 . . . ρnρn+1 in an interpretation I, we say that ρ is an L-path, if there
exists a word w := w1w2 . . . wn ∈ L such that for all i ≤ n we have either (i)
wi ∈ NR and (ρi, ρi+1) ∈ (wi)I , or (ii) wi has the form A?, ρi = ρi+1 and ρi ∈ AI .
Intuitively w either traverses roles or loops at an element to check the satisfaction
of concepts. We say that e ∈ ∆I is L-reachable from d ∈ ∆I (or that d L-
reaches e) if there is an L-path ρ that starts from d and ends in e. The logic
ALCall extends ALC with concept constructors of the form ∃L.C, where L ∈ ALL
and C is an ALCall-concept. Their semantics is as follows: (∃L.C)I is the set of
all d ∈ ∆I that can L-reach some e ∈ CI , and ∀L.C stands for ¬∃L.¬C. The
logic ALCreg (a.k.a. PDL [13]) is a restriction of ALCall to regular languages.

VPLs. The class of Visibly-pushdown languages (VPLs) [1] is a well-behaved
family of context-free languages, in which the usage of the stack in the under-
lying pushdown automata model is input-driven. A pushdown alphabet Σ is an
alphabet equipped with a partition (Σc, Σi, Σr). The elements of Σc, Σi, and Σr

are called, respectively, call letters, internal letters, and return letters. A visibly-
pushdown automaton (VPA) A over a pushdown alphabet Σ is a deterministic
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pushdown automaton that can push (resp. pop) a letter from its stack only
after reading a call (resp. return) symbol. A visibly one-counter automaton [3]
(VOCA) is a VPA that can use only a single stack letter. Given a VPA A, we
speak about words accepted by A, and the language L(A) of A defined in the
usual way. As an example, suppose that r ∈ Σc and s ∈ Σr. Then the language
r#s# := {rnsn | n ∈ N} is visibly-pushdown, but the language s#r# over the
same alphabet is not. What is more, every regular language is visibly-pushdown.
We present Σall as a pushdown alphabet ((NR)c, (NR)i ∪ {A? | A ∈ NC}, (NR)r).
The logic ALCvpl is defined as the restriction of ALCall to visibly-pushdown lan-
guages over finite subsets of Σall (note that the letters are equally partitioned for
all the languages). It is known that ALCvpl has 2ExpTime-complete [29] satis-
fiability problem. Finally, ALCr#s#

reg denotes the restriction of ALCvpl in which
the only allowed non-regular language is r#s# for fixed call r and return s.

3 Nominals lead to undecidability

We first establish undecidability of the satisfiability problem for ALCOr#s#
reg .

A domino tiling system is a triple D := (Col, T, ), where Col is a finite set
of colours, T ⊆ Col4 is a finite set of 4-sided tiles, and ∈ Col is a distinguished
colour called white. For brevity, we call a tile (cl, cd, cr, cu) ∈ T (i) left-border
if cl = , (ii) down-border if cd = , (iii) right-border if cr = , and (iii) up-border
if cu = . We say that t := (cl, cd, cr, cu) and t′ := (c′

l, c′
d, c′

r, c′
u) from T are (i)

H-compatible if cr = c′
l, and (ii) V-compatible if cu = c′

d. We say that D covers
Zn ×Zm (where n, m are positive integers) if there is a mapping ξ : Zn ×Zm → T
such that for all pairs (x, y) ∈ Zn × Zm with ξ(x, y) := (cl, cd, cr, cu) we have:

(TBor) x = 0 iff cl = ; x = n−1 iff cr = ; y = 0 iff cd = ; y = m−1 iff cu=
(THori) If (x+1, y) ∈ Zn × Zm then ξ(x, y) and ξ(x+1, y) are H-compatible.
(TVerti) If (x, y+1) ∈ Zn × Zm then ξ(x, y) and ξ(x, y+1) are V-compatible.

0 1 2 3

0

1

2

(a) Visualization of ξ.

r r r
r

r r r
r

r r r

ldI rdI

ruIluI

(b) The encoding of ξ as a D-snake I.

Fig. 1: If Col = { , , , } and T = Col4, the map ξ := {(0, 0) 7→ , (1, 0) 7→
, (2, 0) 7→ , (3, 0) 7→ , (0, 1) 7→ , (1, 1) 7→ , (2, 1) 7→ , (3, 1) 7→ , (0, 2) 7→
, (1, 2) 7→ , (2, 2) 7→ , (3, 2) 7→ } covers Z4 × Z3.

Intuitively, ξ : Zn ×Zm can be seen as a rectangle of size n × m coloured by unit
4-sided tiles (with coordinates corresponding to the left, down, right, and upper
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colour) from T, where sides of tiles of consecutive squares have matching colours,
and borders of the rectangle are white. Consult Figure 1a for more intuitions.

W.l.o.g. we will always assume that T does not contain tiles having more
than two white sides. A system D is solvable if there exist positive n, m ∈ N
for which D covers Zn × Zm. The problem of deciding if an input domino tiling
system is solvable is undecidable, which can be shown by a minor modification
of classical undecidability proofs for tilling problems, see e.g. [32, Lemma 3.9].

For a tiling system D := (Col, T, ) we encode mappings ξ from some Zn×Zm

to T in interpretations I as certain r+-paths ρ from ldI to ruI passing through
rdI and luI (using fresh names from NT

«
:= {ld,rd,lu,ru}) composed of elements

labelled with fresh concepts names from CT
«

:= {Ct | t ∈ T}, see Figure 1b.
Definition 1. An interpretation I is a D-snake for a tiling system D if:

(SPath) There is an r+-path ρ that starts in ldI , then passes through rdI , then
passes through luI and finishes in ruI .

(SNoLoop) No NT
«

-named element can r+-reach itself.
(SUniqTil) For every d r∗-reachable from ldI there is precisely one tile t ∈ T

such that d ∈ CI
t (we say that d is labelled by a tile t or that it carries t).

(SSpecTil) The NT
«

-named elements are unique elements r∗-reachable from ldI

that are labelled by tiles with two white sides. Moreover, we have that (a) ldI

carries a tile that is left-border and down-border, (b) rdI carries a tile that
is right-border and down-border, (c) luI carries a tile that is left-border and
up-border, (d) ruI carries a tile that is right-border and up-border.

(SHori) For all elements d different from ruI that are r∗-reachable from ldI and
labelled by some tile t := (cl, cd, cr, cu), there exists a tile t′ := (c′

l, c′
d, c′

r, c′
u)

for which all r-successors e of d carry the tile t′ and: (i) t, t′ are H-compatible,
(ii) if cd = then (cl ̸= iff c′

d = ), and (iii) if cu = then c′
u = .

(SLen) There is a unique N such that all r+-paths between ldI and rdI are of
length N−1. Moreover, rdI is the only element rN−1-reachable from ldI .

(SVerti) For all elements d that are r∗-reachable from ldI and labelled by some
t ∈ T that is not up-border, we have that (a) there exists a tile t′ ∈ T such
that all elements e rN-reachable (for N guaranteed by (SLen)) from d carry t′,
(b) t and t′ are V-compatible, (c) t is left-border (resp. right-border) iff t′ is.

If I satisfy all but the last two conditions, we call it a D-pseudosnake. The
key property of our encoding is summarised in the following lemma.
Lemma 2. A domino tiling system D is solvable iff there exists a D-snake.

While D-snakes are not directly axiomatizable in ALCOr#s#
reg , we at least see

how to express D-pseudosnakes. See full version of the paper for the proof.
Lemma 3. For every tiling system D := (Col, T, ), there is an ALCOr#s#

reg -
concept CD , that employs the role r, individual names from NT

«
and concept names

from CT
«

, such that for all I we have that I is a D-pseudosnake iff I |= CD .

Note that the property that pseudosnakes are missing in order to be proper
snakes, is the ability to measure. We tackle this issue by introducing “yardsticks”.
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Definition 4. Let T be a finite and non-empty set, and let NT
Ì

:= {st,md,mdt,endt |
t ∈ T} be composed of (pairwise different) individual names. A T-yardstick is
any interpretation I that satisfies all the conditions listed below.

(YDifNom) NT
Ì

-named elem. are pairwise-diffr. and (r + s)∗-reach. from stI .
(YNoLoop) No NT

Ì
-named element can (r + s)+-reach itself.

(YMid) mdI is the unique elem. with an s-successor that is r∗-reachable from stI .
(YSuccOfMid) s-successors of mdI are precisely {mdt | t ∈ T}-named elems.
(YReachMidT) For every t ∈ T we have that mdI

t can s∗-reach endI
t but it

cannot s∗-reach endI
t′ for all t′ ̸= t.

(YEqDst) The {endt | t ∈ T}-named elements are precisely the elements r#s#-
reachable from stI .

(YNoEqDst) No {endt | t ∈ T}-named element is r#s#-reachable from an
element (s + r)+-reachable from stI .

stI mdI

mdI
♡ endI

♡

mdI
♠ endI

♠

r
r

r
r

r

r

r

r

r
r

r

r

r s
s s s

s
s
s

s

s

s
s

An example {♡, ♠}-yardstick is depicted above. A “minimal” yardstick would
contain the grey nodes only. Lemma 5 justifies the name “yardstick”. Intuitively
it says that in any T-yardstick I, all s∗-paths from mdI to all endI

t have equal
length, to which we refer as the length of I.

Lemma 5. Let I be a T-yardstick. Then there exists a unique positive integer N
such that: (i) for all t ∈ T we have that endI

t is sN-reachable from mdI , and (ii)
for all t ∈ T we have that endI

t is sN−1-reachable from mdI
t .

Proof. Fix t⋆ ∈ T. By (YEqDst) we know that stI r#s#-reaches endI
t⋆

, and
let ρ := ρ1 . . . ρ2N+1 be a path witnessing it. We claim that N is the desired
length of I. First, note that N is greater than 0 by (YDifNom). Second, by the
semantics of r#s#, for all i ≤ N we have (ρi, ρi+1) ∈ rI and (ρN+i, ρN+i+1) ∈ sI .
Thus ρN+1 is r∗-reachable from stI and has an s-successor. These two facts
imply (by (YMid)) that ρN+1 is equal to mdI . It remains to show that all the
paths leading from mdI to some endt are of length N. Towards a contradiction,
assume that there is t′ ∈ T and an integer M ̸= N such that mdI sM-reaches endI

t′

via a path ρ′ := ρ′
1 . . . ρ′

M. We stress that ρ′
1 = mdI and ρ′

M = endI
t′ (by design

of ρ′), and ρ′
2 = mdI

t′ (by a conjunction of (YSuccOfMid) and (YReachMidT)).
To conclude the proof, it suffices to resolve the following two cases.

– Suppose that M < N. Then ρN+1−M (rMsM)-reaches (thus r#s#-reaches) endI
t′ ,

as witnessed by the path ρN+1−M . . . ρNρ′. Moreover ρN+1−M is r+-reachable
from stI , witnessed by the path ρ1 . . . ρN+1−M (note that its length is positive
by the inequality M < N). This contradicts (YNoEqDst).
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– Suppose that M > N. Consider the path ρ1 . . . ρNρ′
1 . . . ρ′

N. By design, such
a path witnesses that stI (rNsN)-reaches (and thus also r#s#-reaches) ρ′

N.
By (YEqDst) we infer that ρ′

N is then {endt | t ∈ T}-named. As ρ′
2 = mdI

t′ s+-
reaches ρ′

N, we infer that ρ′
N = endI

t′ (otherwise we would have a contradiction
with (YReachMidT)). But then endI

t′ s+-reaches itself via a path ρ′
N . . . ρM,

which is of positive length due to M > N. A contradiction with (YNoLoop).

This establishes Property (i). The satisfaction of Property (ii) is now immediate.

As the next step of our construction, we establish existence of arbitrary long
yardsticks, and axiomatise them with an ALCOr#s#

reg -concept. Indeed:

Lemma 6. For every finite non-empty set T and a positive integer N, there exists
a T-yardstick of length N. Moreover, there exists an ALCOr#s#

reg -concept CT
Ì

, that
employs only role names r , s and individual names from NT

Ì
, such that for all

interpretations I we have that I is a T-yardstick if and only if I |= CT
Ì

.

We next put pseudosnakes and yardsticks together, obtaining metricobras.
The intuition behind their construction is fairly simple: (i) we take a disjoint
union of a pseudosnake and a yardstick, (ii) we then connect (via the role s) every
element carrying a tile t with the interpretation of the corresponding nominal
mdt, and finally (iii) we synchronise the length of the underlying yardstick, say N,
with the length of the path between the interpretations of ld and rd. After such
“merging”, retrieving (SHori) is relatively easy: rather than testing if every N-
reachable element from some d carries a suitable tile t (for an a priori unknown N)
we can check instead whether d can r#s#-reach the interpretation of endt.

r r r

r

r r r r r r r

ldI rdI

ruIluI

cbraI

r

stI s

r r rr
mdI

r

mdI

s
s s

endI

s

. . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

s

mdI

s
s s

endI

sssss

s

Fig. 2: A fragment of an example D-metricobra representing ξ from Figure 1.
The upper part corresponds to a D-snake, and the lower part corresponds to a
T-yardstick. The distances between named elements are important.

Definition 7. Let D := (Col, T, ) be a domino tiling system and cbra be an
individual name. An interpretation I is a D-metricobra if it satisfies:
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(MInit) I is a D-pseudosnake and a T-yardstick, and cbraI has precisely two
successors: one r-successor, namely ldI , and one s-successor, namely stI .

(MTile) For every tile t ∈ T and every element d ∈ ∆I that is r∗-reachable
from ldI we have that d carries a tile t ∈ T if and only if d has a unique
s-successor and such a successor is equal to mdI

t .
(MSync) Let t be the tile of rdI . Then (a) cbraI r#s#-reaches endI

t and cannot
r#s#-reach any of endI

t′ for t′ ̸= t, (b) cbraI cannot r#s#-reach an elem.
that s+-reaches endI

t , (c) no elem. r∗-reachable from ldI r#s#-reaches endI
t .

(MVerti) For all elements d that are r∗-reachable from ldI and carry a tile t ∈ T
that is not up-border, we have that there exists a tile t′ ∈ T such that (a) t
and t′ are V-compatible, (b) t is left-border (resp. right-border) iff t′ is, and
(c) d can r#s#-reach endt′ but cannot reach r#s#-reach endt′′ for all t′′ ̸= t′.

We first provide an ALCOr#s#
reg -axiomatization of D-metricobras.

Lemma 8. There exists an ALCOr#s#
reg -concept CD such that for all interpre-

tations I we have that I is a D-metricobra if and only if (CD )I = {cbraI}.

Second, we relate D-snakes and D-metricobras as follows.
Lemma 9. Every D-metricobra is also a D-snake. Moreover, if a D-snake exists
then so does a D-metricobra.

By collecting all previous lemmas we infer the main theorem of the paper:
Theorem 10. A tiling system D is solvable iff the ALCOr#s#

reg -concept CD is
satisfiable. Thus, the concept satisfiability problem of ALCOr#s#

reg is undecidable.

4 Querying in ALCvpl

We next address the problem of query entailment under logical constraints. The C-
enriched Positive Existential Queries (abbreviated as C-PEQs) are defined with:

q, q′ ::= ⊥ | A(x) | r(x, y) | L(x, y) | q ∨ q′ | q ∧ q′,

where A ∈ NC, r ∈ NR, L ∈ C, and x, y are variables from a countably infinite
set NV. The semantics is defined as expected, e.g. L(x, y) evaluates to true
under a variable assignment η if and only if η(x) can L-reach η(y) in I. The ∅-
PEQs (or Positive Existential Queries) are well-known generalizations of (unions
of) conjunctive queries, i.e. PEQs in which disjunction is allowed only at the
outermost level. The REG-PEQs (or Positive Regular Path Queries) are among
the most popular query languages nowadays [14,31]. Finally, VPL-PEQs recently
received some attention in [28]. An interpretation I satisfies a query q (written
I |= q), if there exists an assignment η of variables (a match) from q to ∆I

under which q evaluates to true. A concept C entails a query q (written C |= q)
if all models of C satisfy q. In the C-PEQ entailment problem for a DL L we ask,
given an L-concept C and a C-PEQ q, whether C |= q holds.

By existing results on querying ALC [17, Lemma 8] and by the tree model
property of ALCvpl [29, Sec. 4.1], we obtain:
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Corollary 11. The entailment problem of REG-PEQs over ALCvpl-concepts is
complete for 2ExpTime.

Unfortunately, the relatively positive results of Corollary 11 do not transfer
beyond the class of REG-PEQs, especially if atoms of the form r#s#(x, y) are
present in the query. To justify this claim, we are going to provide a reduction
from the Octant Tiling Problem [7, Sec 3.1]. Roughly speaking, the ontology in
our reduction will define a grid labelled with tiles, while the query counterpart
will serve as a tool to detect mismatches in its lower triangle (a.k.a. octant) part.

r r r r
s s

s

s

s

s

s

s

s

s

. . .

. . .

. . .

. . .

. . .

. . .

Fig. 3: Visualisation of an octant-based interpretation.

Let D := (Col, T, ) be a domino tiling system (defined as in Section 3), and let
us call the set O := {(x, y) | x, y ∈ N, 0 ≤ y ≤ x} the octant. It is convenient for
our reduction to assume that T contains an all-border white tile , and all other
tiles from T are not right-border and not down-border. We say that D covers O
if there exists a mapping ξ : O → T such that for all pairs (x, y) ∈ O satisfy:

(OBord) ξ(0, 0) = , and ξ(1, 0) ̸= .
(OHori) The tiles ξ(x, y) and ξ(x+1, y) are H-compatible. In addition, whenever

ξ(x, y) = holds, the tile ξ(x+1, y) is left- and up-border.
(OVerti) If (x, y+1) ∈ O then ξ(x, y) and ξ(x, y+1) are V-compatible.

Note that D covers O if and only if it covers N × N, which is a consequence
of (OBord) and the specific use of white colour by tiles in T. The octant tiling
problem asks to decide, for an input domino tiling system D, whether D covers
the octant. This problem can easily be shown undecidable, as discussed in [7].

We again employ concepts from CT
«

, and the non-regular language r#s#.
We call a pointed interpretation (I, (0, 0)) octant-based if (i) ∆I = O, (ii) rI =
{((n, 0), (n+1, 0)) | n ∈ N}, (iii) sI = {((n, m), (n, m+1)) | n, m ∈ N, m < n},
and (iv) for every e ∈ ∆I there is a unique t ∈ T for which e ∈ CI

t . Consult
Figure 3 for a visualization. An octant-based I naturally encodes a mapping
ξ : O → T defined as (n, m) 7→ t for the unique tile carried by (n, m). For
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convenience, we say that I D-semicovers (resp. D-covers) the octant if such a
map ξ satisfies (OBord) and (OVerti) (resp. all (OBord), (OVerti), and (OHori)).
We analogously speak about grid-based pointed interpretations, which are defined
similarly to octant-based interpretations above, with the exception that their
domains are N × N and the condition m < n is removed from Item (iii).

Violations of the condition (OHori) by an octant-based interpretation will be
detected with a VPL-PEQ qD

▲ (to be defined next), which we visualise as follows.

. . .

. . . . . .

r r r r
s

s

s

s

s

s

x1 x2 y1 y2

z1 z2

n

n

nn

mismatch!

Fig. 4: Visualisation of the query qD
▲ (x1, x2, y1, y2, z1, z2). The variables z1, z2 are

mapped to elements that carry tiles violating (OHori); the fact that x1 and x2 lie
in consecutive columns is handled by means of r-connectedness of y1, y2; finally,
equi-height of z1 and z2 is ensured with non-regular atoms r#s#(xi, zi).

After the informal explanation, we provide the formal definition of qD
▲ .

qD
▲ :=

∨
t,t′ violating (OHori)

[
r(x1, x2) ∧ r∗(x2, y1) ∧ r(y1, y2) ∧ s∗(y1, z1) ∧ s∗(y2, z2)

∧r#s#(x1, z1) ∧ r#s#(x2, z2) ∧ Ct(z1) ∧ Ct′(z2)
]

By routine case analysis with a bit of calculations, we can show that:

Lemma 12. Let D := (Col, T, ) be a domino tilling system. If D covers the
octant, then there exist octant-based and grid-based interpretations D-covering
the octant. Moreover, for all octant-based or grid-based I that D-semicover the
octant, I ̸|= qD

▲ if and only if I actually D-covers the octant.

It is routine to define a ALCreg-concept CT
semicov stating that the starting

element carries , that every element carries exactly one tile, and that the tiles
of s-connected elements are V-compatible. Expanding CT

semicov with an ALCreg-
concept expressing that any element has an r-successor and an s-successor, leads
to a concept CD

■. This concept is especially useful as it defines grids that D-
semicovers the octant. (We note that the use of grids is crucial here, as ALCreg
cannot define octant-based structures but our queries look only at octants.)

The main property of our reduction is established below.
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Lemma 13. Let D := (Col, T, ) be a domino tilling system. Then CD
■ ̸|= qD

▲ if
and only if there is a grid-based interpretation I such that I |= CD

■ and I ̸|= qD
▲ .

Thus CD
■ ̸|= qD

▲ if and only if D covers the octant.

The concept CD
■ can be equivalently expressed as an ALC-TBox (cf. [2, Sec.

2.2.1]). By a combination of previously presented lemmas we thus infer:

Theorem 14. The VPL-PEQs entailment problem for ALCreg is undecidable.
This holds already for {r , r∗, s, s∗, r#s#}-PEQ entailment over ALC-TBoxes.

5 Seemingly innocent Self operator

We conclude the paper by showing yet another negative result. This time we tackle
the Self operator, a modelling feature supported by two profiles of the OWL 2
Web Ontology Language [24,26] and SROIQ. Recall that the Self operator
allows us to specify the situation when an element is related to itself by a binary
relationship, i.e. we interpret the concept ∃r .Self in an interpretation I as the set
of all those elements d for which (d, d) belongs to rI . In what follows, we provide
a reduction from an undecidable problem of non-emptiness of the intersection
of deterministic one-counter automata (DOCA) [34, p. 75]. Such an automata
model is similar to pushdown automata, but its stack alphabet is single-letter only.
The Self operator will be especially useful to introduce “disjunction” to paths.

Let Σ be an alphabet and w := (a1, ⋆1) . . . (an, ⋆n) be a word over Σ ×{c, r, i}.
We call the word π1(w) := a1 . . . an the projection of w. An important property
of DOCA is that they can be made visibly one-counter in the following sense.

Lemma 15. For any DOCA A over Σ, we can construct a VOCA Ã over
Σ̃ := (Σ×{c}, (Σ×{i})∪{x}, Σ×{r}) where x is a fresh internal letter, such that
all words in L(Ã) have the form ã1xã2x . . . xãn for ã1, . . . , ãn ∈ Σ×{c, i, r}, and
L(A) = {π1(w̃) | w̃ := ã1 . . . ãn, ã1x . . . xãn ∈ L(Ã)} holds.

We fix a finite alphabet Σ ⊆ NR. Moreover, fix two deterministic one-counter
automata A1 and A2 over Σ, as well as deterministic one-counter automata C1
and C2 recognizing the complement of their languages (they can be constructed
as DOCA are closed under complement). Finally, we construct their visibly-one-
counter counterparts Ã1, Ã2, C̃1, C̃2 over the pushdown alphabet Σ̃, as provided
by Lemma 15. We stress that the letter x, playing the role of a “separator”, is
identical for all of the aforementioned visibly-one-counter automata. We also
point out that the non-emptiness of L(Ã1) ∩ L(Ã2) is not equivalent to the
non-emptiness of L(A1) ∩ L(A1), as the projection of a letter a ∈ Σ̃ may be
used by A1 and A2 in different contexts (e.g. both as a call or as a return).

We are going to encode words accepted by one-counter automata by means
of word-like interpretations. A pointed interpretation (I, d) is Σ-friendly if for
every element e ∈ ∆I that is x∗-reachable from d in I there exists a unique
letter a ∈ Σ so that e carries ã-self-loops for all ã ∈ Σ̃ with π1(ã) = a, and no
self-loops for all other letters in Σ̃ (also including the “separator letter” x).
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dI

(a, c), (a, r)

(a, i)

(b, c), (b, r)

(b, i)

(b, c), (b, r)

(b, i)

(a, c), (a, r)

(a, i)

(c, c), (c, r)

(c, i)

x x x x

Fig. 5: An example Σ-friendly pointed (I, d) encoding the word abbac.

Σ-friendly interpretations can easily be axiomatised with an ALCSelf-concept CΣ
fr :

CΣ
fr := ∀x∗.

⊔
a∈Σ

⊔

b̸=a,b∈Σ,π1(ã)=a,π1(b̃)=b

(
[∃ã.Self] ⊓ ¬[∃b̃.Self] ⊓ ¬[∃x.Self]

)
.

Moreover, every x∗-path ρ in a Σ-friendly I represents a word in Σ∗ in the
following sense: the i-th letter of such a word is a if and only if the i-th element
of the path carries an (a, c)-self-loop. This is well-defined, as every element in
Σ-friendly I carries a (a, c)-self-loop for a unique letter a ∈ Σ. Consult Figure 5.

As a special class of Σ-friendly interpretations we consider Σ-metawords.
We say that (I, d) is a Σ-metaword if it is a Σ-friendly interpretation of the
domain Zn for some positive n ∈ N, the role name x is interpreted as the set
{(i, i+1) | 0 ≤ i ≤ n−2}, and all other role names are either interpreted as ∅ or
are subsets of the diagonal {(i, i) | i ∈ Zn} (or, put differently, they appear only
as self-loops). The example Σ-friendly I from Figure 5 is actually a Σ-metaword.
It is not too hard to see that for every word w ∈ Σ+ there is a Σ-metaword
representing w. A crucial observation regarding Σ-metawords is as follows. If an
element starting a Σ-metaword can {w̃}-reach some element (for some w̃ in the
language of Ã1), then the path ρ witnessing this fact satisfies ρi = ρi+1 for all
odd indices i and ρi + 1 = ρi+1 for all even indices i. Similar remarks apply to
Σ-friendly interpretations but the correspondence is not as elegant anymore.

As the next step of the construction, we are going to decorate Σ-friendly
interpretations with extra information on whether or not words represented by
paths are accepted by A1. This is achieved by means of the following concept

CA1 := CΣ
fr ⊓ ∀L(Ã1).AccA1 ⊓ ∀L(C̃1).¬AccA1 ,

for a fresh concept name AccA1 . We define CA2 analogously. We have that:

Lemma 16. If CA1 is satisfied by a Σ-friendly pointed interpretation (I, d), then
for every element e ∈ ∆I that is x∗-reachable from d via a path ρ we have that
e ∈ (AccA1)I iff the Σ-word represented by ρ belongs to L(A1). Moreover, after
reinterpreting the concept AccA1 , every Σ-metaword becomes a model of CA1 .

Lemma 17. CA1⊓CA2⊓∃x∗. (AccA1⊓AccA2) is satisfiable iff L(A1)∩L(A2) ̸=∅.

By the undecidability of the non-emptiness problem for intersection of one-
counter languages [34, p. 75], we conclude the last theorem of the paper.
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Theorem 18. The concept satisfiability problem for ALCSelf
vpl is undecidable, even

if only visibly-one-counter languages are allowed in concepts.

We stress that there is nothing special about DOCA used in the proof. In
fact, any automata model would satisfy our needs as long as it would (i) have
undecidable non-emptiness problem for the intersection of languages, (ii) enjoy
the analogue of Lemma 15, and (iii) be closed under complement. We leave it as
an open problem to see if there exists a single visibly-pushdown language L that
makes the concept satisfiability of ALCSelf

reg+L undecidable. Note that our proof
heavily relied on the availability of multiple visibly-one-counter languages.

6 Conclusions

We investigated the decidability status of extensions of ALCvpl (also known as
Propositional Dynamic Logic with Visibly Pushdown Programs) with popular
features supported by W3C ontology languages. Our results are negative: we
established undecidability of (fragments of) ALCvpl with nominals or self-loops,
and of the query entailment of non-regular queries even in the case of ALC-TBoxes.
We conclude with a list of open problems.

– Our undecidability proof for ALCvpl with Self relied on the availability of
multiple visibly-one-counter languages. Can this undecidability result be
improved? Is satisfiability of ALCr#s#

reg with Self already undecidable?
– Positive results regarding ALCvpl concern the concept satisfiability problem,

rather than the knowledge-base satisfiability problem. Is the later decidable
for ALCvpl? Classical techniques [12, p. 210] for incorporating ABoxes inside
concepts do not work, as the class of visibly-pushdown languages is not com-
positional (of “infinite memory”). The problem already occurs for ALCr#s#

reg .
– Is the extension of ALCvpl (or even ALCr#s#

reg ) with functionality or counting
decidable? Once more, classical techniques [12, p. 210] do not seem to be ap-
plicable due to the lack of “compositionality” in visibly-pushdown languages.
A good idea would be to investigate a model of graded visibly pushdown
tree automata, obtained by marrying graded alternating tree automata [27,
Sec. 3.1] and visibly pushdown tree automata [29, p. 55].

– Existing positive results on non-regular extensions of ALCreg, especially these
of Löding et al [29, Thm. 18], rely on the use of (potentially infinite) tree-like
models. Is the finite satisfiability problem for ALCvpl decidable? We stress
that already the case of ALCr#s#

reg is open.
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