
Computational
Logic ∴ Group

Existential Rules – Lecture 4

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 2

Syntax of Existential Rules

• X,Y and Z are tuples of variables of V

• ' (X,Y) and Ã(X,Z) are (constant-free) conjunctions of atoms

An existential rule is an expression

body head

8X8Y (' (X,Y) ® 9Z Ã(X,Z))

…a.k.a. tuple-generating dependencies, and Datalog± rules

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 3

Syntax of Conjunctive Queries

• X and Y are tuples of variables of V

• ' (X,Y) is a conjunction of atoms (possibly with constants)

A conjunctive query (CQ) is an expression

9Y (' (X,Y))

The most important query language used in practice

Forms the SELECT-FROM-WHERE fragment of SQL

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 4

Ontology-Based Query Answering (OBQA)

D

Σ

hD,Σi

D

database (or ABox)

ontology (or TBox)

Q

knowledge base

existential rules

8X8Y (' (X,Y) ® 9Z Ã(X,Z))

conjunctive queries

9Y (' (X,Y))

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 5

BCQ-Answering: Our Main Decision Problem

D

Σ

hD,Σi

D

database (aka ABox)

ontology (aka TBox)

Q = 9Y (' (Y))

knowledge base

8X8Y (' (X,Y) ® 9Z Ã(X,Z))

decide whether D ^ Σ ² Q

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 6

Universal Models (a.k.a. Canonical Models)

U

J1 J2

. . .
Jn

. . .

h1
h2

hn

An instance U is a universal model of D ^ Σ if the following holds:

1. U is a model of D ^ Σ

2. 8J 2 models(D ^ Σ), there exists a homomorphism hJ such that hJ(U) µ J

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 7

The Chase Procedure: Formal Definition

• Chase rule - the building block of the chase procedure

• A rule σ = 8X8Y ('(X,Y) ® 9Z Ã(X,Z)) is applicable to instance J if:

1. There exists a homomorphism h such that h('(X,Y)) µ J

2. There is no g ¶ h|X such that g(Ã(X,Z)) µ J

• Let J+ = J [{g(Ã(X,Z))}, where g ¶ h|X and g(Z) are “fresh” nulls not in J

• The result of applying σ to J is J+, denoted Jhσ,hiJ+ - single chase step

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 8

The Chase Procedure: Formal Definition

• A finite chase of D w.r.t. Σ is a finite sequence

Dhσ1,h1iJ1hσ2,h2iJ2hσ3,h3iJ3 ... hσn,hniJn

where no rule from Σ is applicable in Jn .

Then, chase(D,Σ) is defined as the instance Jn

• An infinite chase of D w.r.t. Σ is a fair finite sequence

Dhσ1,h1iJ1hσ2,h2iJ2hσ3,h3iJ3 ... hσn,hniJn ...

and chase(D,Σ) is defined as the instance [k ¸ 0 Jk (with J0 = D)

all applicable rules will eventually be applied

least fixpoint of a monotonic operator - chase step

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 9

Query Answering via the Chase

Theorem: D ^ Σ ² Q iff U ² Q, where U is a universal model of D ^ Σ

+

Theorem: chase(D, Σ) is a universal model of D ^ Σ

=

Corollary: D ^ Σ ² Q iff chase(D,Σ) ² Q

• We can tame the first dimension of infinity by exploiting the chase procedure

• But, what about the second dimension of infinity? - the chase may be infinite

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 10

Rest of the Lectrure

• Undecidability of BCQ-Answering

• Gaining decidability - terminating chase

• Full Existential Rules

• Acyclic Existential Rules

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 11

Undecidability of BCQ-Answering

Theorem: BCQ-Answering is undecidable

Proof : By simulating a deterministic Turing machine with an empty tape

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 12

Deterministic Turing Machine (DTM)

M = (S, Λ, t, δ, s0, sacc)

states tape
symbols

blank
symbol

S\{sacc} £ Λ ! S £ Λ £ {-1,0,+1}

initial state

accepting state

δ(s1, α) = (s2, β, +1)

IF at some time instant τ the machine is in sate s1, the cursor

points to cell κ, and this cell contains α

THEN at instant τ+1 the machine is in state s2, cell κ contains β,

and the cursor points to cell κ+1

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 13

Undecidability of BCQ-Answering

Our Goal: Encode the computation of a DTM M with an empty tape

using a database D, a set Σ of existential rules, and a BCQ Q such that

D ^ Σ ² Q iff M accepts

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 14

Build an Infinite Grid

k-th horizontal line represents the

k-th configuration of the machine

8X (Start(X) ® Node(X) ^ Initial(X))

8X (Node(X) ® 9Y (H(X,Y) ^ Node(Y)))

8X (Node(X) ® 9Y (V(X,Y) ^ Node(Y)))

8X8Y8Z8W (H(X,Y) H(Z,W) V(X,Z) ® V(Y,W))

D = {Start(c)}

fixes the origin of the grid

X Y

Z W

H

V

c

…

…

…

… … …

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 15

…

…

…

… … …

Initialization Rules

s0
t t t

8X8Y (Initial(X) ^ H(X,Y) ® Initial(Y))

8X (Start(X) ® Cursor[s0](X))

8X (Initial(X) ® Symbol[t](X))

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 16

Transition Rules

δ(s1,α) = (s2,β,+1)
s1

α

s2
β

8X8Υ8Ζ (Cursor[s1](X) ^ Symbol[α](X) ^ V(X,Y) ^ H(Y,Z) ®

Cursor[s2](Z) ^ Symbol[β](Y) ^ Mark(X))

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 17

Inertia Rules

…we have similar rules for the cells before the cursor

α β γ ε
BeforeCursor AfterCursor

α β γ ε

…

…

…

…

8X8Y (Mark(X) ^ H(X,Y) ® AfterCursor(Y))

8X8Y (AfterCursor(X) ^ H(X,Y) ® AfterCursor(Y))

8X8Y (AfterCursor(X) ^ Symbol[α](X) ^ V(X,Y) ® Symbol[α](Υ))

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 18

Accepting Rule

Once we reach the accepting state we accept

8X (Cursor[sacc](X) ® Accept(X))

D ^ Σ ² 9X Accept(X) iff the DTM M accepts

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 19

Undecidability of BCQ-Answering

Theorem: BCQ-Answering is undecidable

Proof : By simulating a deterministic Turing machine with an empty tape

…syntactic restrictions are needed!!!

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 20

Gaining Decidability

By restricting the database
• {Start(c)} ^ Σ ² Q iff the DTM M accepts
• The problem is undecidable already for singleton databases
• No much to do in this direction

By restricting the query language
• D ^ Σ ² 9X Accept(X) iff the DTM M accepts
• The problem is undecidable already for atomic queries
• No much to do in this direction

By restricting the ontology language
• Achieve a good trade-off between expressive power and complexity
• Field of intense research
• Any ideas?

… force the chase to terminate

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 21

What is the Source of Non-termination?

person(Alice)

8X (Person(X) ® 9Y (hasParent(X,Y) ^ Person(Y)))

D

Σ

chase(D,Σ) = D [{hasParent(Alice, z1), Person(z1),

hasParent(z1, z2), Person(z2),

hasParent(z2, z3), Person(z3), …

1. Existential quantification

2. Recursive definitions

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 22

Termination of the Chase

• Drop the existential quantification

o We obtain the class of full existential rules

o Very close to Datalog

• Drop the recursive definitions

o We obtain the class of acyclic existential rules

o A.k.a. non-recursive existential rules

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 23

Full Existential Rules

• A full existential rule is an existential rule of the form

• We denote FULL the class of full existential rules

• A local property - we can inspect one rule at a time

) given Σ, we can decide in linear time whether Σ2 FULL

) closed under union - Σ1 2 FULL, Σ2 2 FULL) (Σ1 [Σ2) 2 FULL

• Why does the chase terminate?

8X8Y (' (X,Y) ® Ã(X))

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 24

Full Existential Rules

• Consider a database D and a set Σ2 FULL

• chase(D,Σ) µ {P(c1,…,cn) | hc1,…,cni 2 adom(D)n and P 2 sch(Σ)}

• |chase(D,Σ)| · |sch(Σ)| · (|adom(D)|)maxarity

active domain - constants occurring in D

schema - predicates occurring in Σ

maximum number of tuples
with terms of adom(D)

maximum number of atoms with predicates of
sch(Σ) and terms of adom(D)

maxarity = maxP 2 sch(Σ) {arity(P)}

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 25

Complexity Measures for Query Answering

• Data complexity: is calculated by considering only the database as part of the

input, while the ontology and the query are fixed

• Combined complexity: is calculated by considering, apart from the database,

also the ontology and the query as part of the input

• Data complexity vs. Combined complexity

o Data complexity tends to be a more meaningful measure - ontologies and

queries tend to be small; databases tend to be large

o Nevertheless, the combined complexity is a relevant measure - identifies

the real source of complexity

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 26

Some Important Complexity Classes

Problems that can be solved by an algorithm
that uses a polynomial amount of memory

PSPACE

Problems that can be solved by an algorithm
that runs in exponential time

EXPTIME

Problems that can be solved by an algorithm
that runs in double-exponential time

2EXPTIME

We need the power of non-determinismNP coNP

NEXPTIME coNEXPTIME We need the power of non-determinism

LOGSPACE

Problems that can be solved by an algorithm
that runs in polynomial time

PTIME

Problems that can be solved by an algorithm
that uses a logarithmic amount of memory

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 27

Data Complexity of FULL

Theorem: BCQ-Answering under FULL is in PTIME w.r.t. the data complexity

Proof: Consider a database D, a set Σ2 FULL, and a BCQ Q

We apply the naïve algorithm:

1. Construct chase(D,Σ)

2. Check for the existence of a homomorphism h such that h(Q) µ chase(D,Σ)

Step 1: We construct the chase level-by-level

L1

L0 = D

L2

Ln

…

• From Lk to Lk +1: for each σ 2 Σ, find all the

homomorphisms h such that h(body(σ)) µ Lk, and

add to Lk the set of atoms h(head(σ))

• Stop when Lk = Lk +1

|Σ| · (|adom(D)|)maxvariables(Σ) · maxbody(Σ) · |Lk|

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 28

Data Complexity of FULL

Theorem: BCQ-Answering under FULL is in PTIME w.r.t. the data complexity

Proof: Consider a database D, a set Σ2 FULL, and a BCQ Q

We apply the naïve algorithm:

1. Construct chase(D,Σ)

2. Check for the existence of a homomorphism h such that h(Q) µ chase(D,Σ)

Step 1: We construct the chase level-by-level in time

(k-1) · |Σ| · (|adom(D)|)maxvariables(Σ) · maxbody(Σ) · |L|

where k, |L| · |chase(D,Σ)| · |sch(Σ)| · (|adom(D)|)maxarity

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 29

Data Complexity of FULL

Theorem: BCQ-Answering under FULL is in PTIME w.r.t. the data complexity

Proof: Consider a database D, a set Σ2 FULL, and a BCQ Q

We apply the naïve algorithm:

1. Construct chase(D,Σ)

2. Check for the existence of a homomorphism h such that h(Q) µ chase(D,Σ)

Step 2: By applying similar analysis, we can show that the existence of h can be

checked in time

(|adom(D)|)#variables(Q) · |Q| · |chase(D,Σ)|

where |chase(D,Σ)| · |sch(Σ)| · (|adom(D)|)maxarity

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 30

Data Complexity of FULL

Theorem: BCQ-Answering under FULL is in PTIME w.r.t. the data complexity

Proof: Consider a database D, a set Σ2 FULL, and a BCQ Q

We apply the naïve algorithm:

1. Construct chase(D,Σ)

2. Check for the existence of a homomorphism h such that h(Q) µ chase(D,Σ)

Consequently, in the worst case, the naïve algorithm runs in time

(|sch(Σ)| · (|adom(D)|)maxarity)2 · |Σ| · (|adom(D)|)maxvariables(Σ) · maxbody(Σ)

+

(|adom(D)|)#variables(Q) · |Q| · |sch(Σ)| · (|adom(D)|)maxarity

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 31

Data Complexity of FULL

Theorem: BCQ-Answering under FULL is PTIME-hard w.r.t. the data complexity

Proof : By a LOGSPACE reduction from Monotone Circuit Value problem

We cannot do better than the naïve algorithm

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 32

Data Complexity of FULL

Circuit evaluates to true iff D ^ Σ ² T(g6)

encoding of the circuit as a database D

T(g1) T(g3)

AND(g4,g1,g2) OR(g5,g2,g3) OR(g6,g4,g5)

evaluation of the circuit via a fixed set Σ

8Χ8Υ8Ζ (T(X) ^ OR(Z,X,Y) ® T(Ζ))

8Χ8Υ8Ζ (T(Y) ^ OR(Z,X,Y) ® T(Ζ))

8Χ8Υ8Ζ (T(X) ^ T(Y) ^ AND(Z,X,Y) ® T(Ζ))
Does the circuit evaluate to true?

^ _

_

g4 g5

g6

g1 g2 g3
1 0 1

0 1

1

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 33

Combined Complexity of FULL

Theorem: BCQ-Answering under FULL is in EXPTIME w.r.t. the combined complexity

Proof: Consider a database D, a set Σ2 FULL, and a BCQ Q

We apply the naïve algorithm:

1. Construct chase(D,Σ)

2. Check for the existence of a homomorphism h such that h(Q) µ chase(D,Σ)

By our previous analysis, in the worst case, the naïve algorithm runs in time

(|sch(Σ)| · (|adom(D)|)maxarity)2 · |Σ| · (|adom(D)|)maxvariables(Σ) · maxbody(Σ)

+

(|adom(D)|)#variables(Q) · |Q| · |sch(Σ)| · (|adom(D)|)maxarity

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 34

Combined Complexity of FULL

Theorem: BCQ-Answering under FULL is EXPTIME-hard w.r.t. the combined
complexity

Proof : By simulating a deterministic exponential time Turing machine

We cannot do better than the naïve algorithm

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 35

EXPTIME-hardness of FULL

Our Goal: Encode the exponential time computation of a DTM M on input

string I using a database D, a set Σ 2 FULL, and a BCQ Q such that

D ^ Σ ² Q iff M accepts I in at most N = 2m steps, where m =|I|k

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 36

The Schema

0 1 2 j N-1

0

1

2

i α

N-1

Symbol[α](i,j) - at time instant i, cell j contains α

…

…

…

…

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 37

The Schema

0 1 2 j N-1

0

1

2

i α

N-1

…

…

Cursor(i,j) - at time instant i, cursor points to cell j

…

…

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 38

The Schema

0 1 2 j N-1

0

1

2

i α

N-1

…

…

State[s](i) - at time instant i, the machine is in state s

…

…

s

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 39

The Schema

0 1 2 j N-1

0

1

2

i α

N-1

…

…

Accept(i) - at time instant i, the machine accepts

…

…

Accept

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 40

The Schema

0 1 2 j N-1

0

1

2

i

N-1

…

…

…

…

First(0), Succ(0,1), Succ(1,2), Succ(2,3), …, Succ(N-2,N-1)

Á - transitive closure of Succ
will be defined later

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 41

Initialization Rules

0 1 2 n-1 n N-1

0 α0 α1 α2 … αn-1 t … t

… …

Assume that I = α0…αn-1

s0

8T8C (First(T) ^ Á(n-1,C) ® Symbol[t](T,C))

8T (First(T) ® Symbol[αi](T,i) ^ Cursor(T,T) ^ State[s0](T))

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 42

Transition Rules

j j+1 j+2

i x α y

i+1 x β y

s1

s2

δ(s1,α) = (s2,β,+1)

8T8T18C8C1 (State[s1](T) ^ Cursor(T,C) ^ Symbol[α](T,C) ^ Succ(T,T1) ^ Succ(C,C1) ®

Symbol[β](T1,C) ^ Cursor(T1,C1) ^ State[s2](T1))

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 43

8T8T18C8C1 (Symbol[α](T,C) ^ Cursor(T,C1) ^ Á(C1,C) ^ Succ(T,T1) ® Symbol[α](T1,C))

Inertia Rules

8T8T18C8C1 (Symbol[α](T,C) ^ Cursor(T,C1) ^ Á(C,C1) ^ Succ(T,T1) ® Symbol[α](T1,C))

Cells that are not changed during the transition keep their old values

j j+1 j+2

i x α y

i+1 x β y

s1

s2

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 44

Accepting Rule

Once we reach the accepting state we accept

8Τ (State[sacc](T) ® Accept(Τ))

0 1 2 n-1 n N-1

i sacc

… …

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 45

Defining First, Succ and Á

• First(0), Succ(0,1), Succ(1,2), Succ(2,3), …, Succ(N-2,N-1)

• In fact, 0,…,N-1 are in binary form - assume the N = 2m, where m = 3

First(0,0,0), Succ(0,0,0,0,0,1), Succ(0,0,1,0,1,0),…, Succ(1,1,0,1,1,1)

• Inductive definition of Firsti and Succi

D = {First1(0), Last1(1), Succ1(0,1)}

First2(0,0), Last2(1,1), Succ2(0,0,0,1), Succ2(0,1,1,0), Succ(1,0,1,1)

8Χ (First1(X) ^ First1(X) ® First2(X,X))

8Χ (Last1(X), Last1(X) ® Last2(X,X))

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 46

8Χ8Υ8Ζ (Last1(X),Succ1(Y,Z) ® Succ2(X,Y,X,Z))

Defining First, Succ and Á

• First(0), Succ(0,1), Succ(1,2), Succ(2,3), …, Succ(N-2,N-1)

• In fact, 0,…,N-1 are in binary form - assume the N = 2m, where m = 3

First(0,0,0), Succ(0,0,0,0,0,1), Succ(0,0,1,0,1,0),…, Succ(1,1,0,1,1,1)

• Inductive definition of Firsti and Succi

D = {First1(0), Last1(1), Succ1(0,1)}

First2(0,0), Last2(1,1), Succ2(0,0,0,1), Succ2(0,1,1,0), Succ(1,0,1,1)

8Χ8Υ8Ζ (First1(X),Succ1(Y,Z) ® Succ2(X,Y,X,Z))

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 47

Defining First, Succ and Á

• First(0), Succ(0,1), Succ(1,2), Succ(2,3), …, Succ(N-2,N-1)

• In fact, 0,…,N-1 are in binary form - assume the N = 2m, where m = 3

First(0,0,0), Succ(0,0,0,0,0,1), Succ(0,0,1,0,1,0),…, Succ(1,1,0,1,1,1)

• Inductive definition of Firsti and Succi

D = {First1(0), Last1(1), Succ1(0,1)}

First2(0,0), Last2(1,1), Succ2(0,0,0,1), Succ2(0,1,1,0), Succ(1,0,1,1)

8Χ8Υ8Ζ8W (First1(X), Last1(Y),Succ1(Z,W) ® Succ2(Z,X,W,Y))

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 48

Defining First, Succ and Á

D = {First1(0), Last1(1), Succ1(0,1)}

8Χ8Υ (Succi(X,Y) ® Succi+1(Z,X,Z,Y))

8Χ8Υ8Z8W (Succ1(Z,W) ^ Lasti(X) ^ Firsti(Y) ® Succi+1(Z,X,W,Y))

8X8Z (First1(Z) ^ Firsti(X) ® Firsti+1(Z,X))

8X8Z (Last1(Z) ^ Lasti(X) ® Lasti+1(Z,X))

Inductive definition of Firsti+1 and Succi+1:

Definition of Ám:

8Χ8Υ (Succm(X,Y) ® Ám(X,Y))

8Χ8Υ8Z (Succm(X,Z) Ám(Z,Y) ® Ám(X,Y))

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 49

Concluding EXPTIME-hardness of FULL

• Several rules but polynomially many) feasible in polynomial time

• D ^ Σ ² 9X Accept(X) iff M accepts I in at most N steps

• Can be formally shown by induction on the time steps

Corollary: BCQ-Answering under FULL is EXPTIME-complete w.r.t. the

combined complexity

Existential Rules – Lecture 2 – Sebastian Rudolph Slide 50

Termination of the Chase

• Drop the existential quantification

o We obtain the class of full existential rules

o Very close to Datalog

• Drop the recursive definitions

o We obtain the class of acyclic existential rules

o A.k.a. non-recursive existential rules

P

