

International Center for Computational Logic

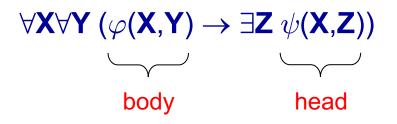
Sebastian Rudolph International Center for Computational Logic TU Dresden

Existential Rules – Lecture 4

Adapted from slides by Andreas Pieris and Michaël Thomazo Summer Term 2023

Syntax of Existential Rules

An existential rule is an expression



- X,Y and Z are tuples of variables of V
- $\varphi(X,Y)$ and $\psi(X,Z)$ are (constant-free) conjunctions of atoms

 \dots a.k.a. tuple-generating dependencies, and Datalog[±] rules

Syntax of Conjunctive Queries

A conjunctive query (CQ) is an expression

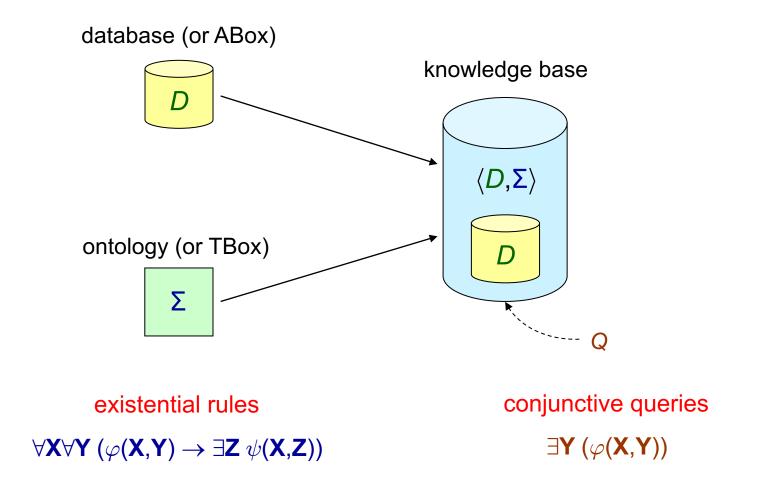
 $\exists \mathbf{Y} (\varphi(\mathbf{X}, \mathbf{Y}))$

- X and Y are tuples of variables of V
- $\varphi(X,Y)$ is a conjunction of atoms (possibly with constants)

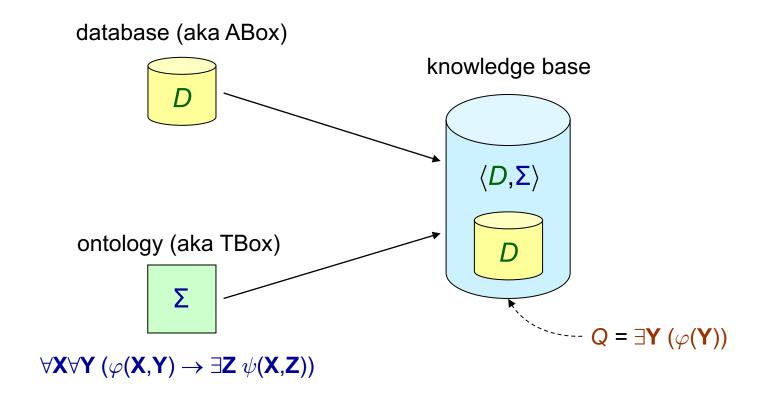
The most important query language used in practice

Forms the SELECT-FROM-WHERE fragment of SQL

Ontology-Based Query Answering (OBQA)



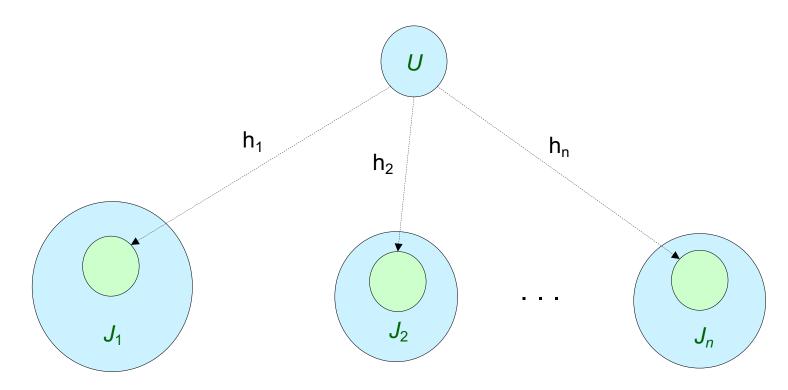
BCQ-Answering: Our Main Decision Problem



decide whether $D \land \Sigma \vDash Q$

Existential Rules – Lecture 2 – Sebastian Rudolph

Universal Models (a.k.a. Canonical Models)



An instance U is a universal model of $D \wedge \Sigma$ if the following holds:

1. *U* is a model of $D \wedge \Sigma$

2. $\forall J \in \text{models}(D \land \Sigma)$, there exists a homomorphism h_J such that $h_J(U) \subseteq J$

The Chase Procedure: Formal Definition

- Chase rule the building block of the chase procedure
- A rule $\sigma = \forall X \forall Y (\varphi(X,Y) \rightarrow \exists Z \psi(X,Z))$ is applicable to instance J if:
 - 1. There exists a homomorphism h such that $h(\varphi(X,Y)) \subseteq J$
 - 2. There is no $g \supseteq h_{|\mathbf{X}}$ such that $g(\psi(\mathbf{X},\mathbf{Z})) \subseteq J$

- Let $J_+ = J \cup \{g(\psi(X,Z))\}$, where $g \supseteq h_{|X}$ and g(Z) are "fresh" nulls not in J
- The result of applying σ to J is J_+ , denoted $J(\sigma,h)J_+$ single chase step

The Chase Procedure: Formal Definition

• A finite chase of D w.r.t. Σ is a finite sequence

```
D\langle \sigma_1, h_1 \rangle J_1 \langle \sigma_2, h_2 \rangle J_2 \langle \sigma_3, h_3 \rangle J_3 \dots \langle \sigma_n, h_n \rangle J_n
```

where no rule from Σ is applicable in J_n .

Then, chase(D, Σ) is defined as the instance J_n

all applicable rules will eventually be applied

• An infinite chase of D w.r.t. Σ is a fair finite sequence

 $D\langle \sigma_1, \mathbf{h}_1 \rangle J_1 \langle \sigma_2, \mathbf{h}_2 \rangle J_2 \langle \sigma_3, \mathbf{h}_3 \rangle J_3 \dots \langle \sigma_n, \mathbf{h}_n \rangle J_n \dots$

and chase(D, Σ) is defined as the instance $\bigcup_{k \ge 0} J_k$ (with $J_0 = D$)

least fixpoint of a monotonic operator - chase step

Query Answering via the Chase

Theorem: $D \wedge \Sigma \models Q$ iff $U \models Q$, where U is a universal model of $D \wedge \Sigma$

+

Theorem: chase(D, Σ) is a universal model of $D \wedge \Sigma$

Corollary: $D \land \Sigma \vDash Q$ iff $chase(D,\Sigma) \vDash Q$

=

- We can tame the first dimension of infinity by exploiting the chase procedure
- But, what about the second dimension of infinity? the chase may be infinite

Rest of the Lectrure

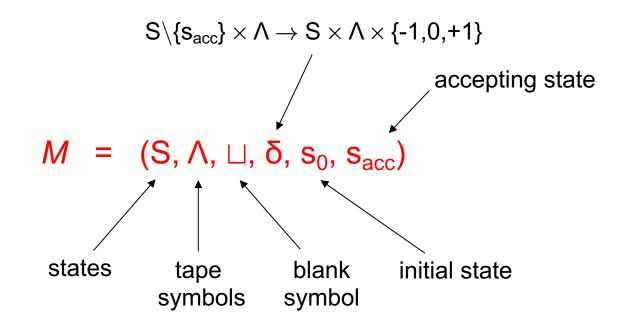
- Undecidability of BCQ-Answering
- Gaining decidability terminating chase
- Full Existential Rules
- Acyclic Existential Rules

Undecidability of BCQ-Answering

Theorem: BCQ-Answering is undecidable

Proof : By simulating a deterministic Turing machine with an empty tape

Deterministic Turing Machine (DTM)



 $\delta(s_1, \alpha) = (s_2, \beta, +1)$

IF at some time instant τ the machine is in sate s₁, the cursor points to cell κ , and this cell contains α THEN at instant τ +1 the machine is in state s₂, cell κ contains β , and the cursor points to cell κ +1

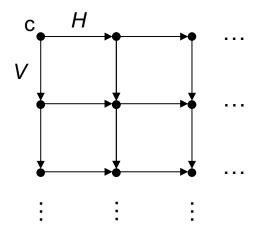
Undecidability of BCQ-Answering

Our Goal: Encode the computation of a DTM *M* with an empty tape

using a database D, a set Σ of existential rules, and a BCQ Q such that

 $D \wedge \Sigma \vDash Q$ iff *M* accepts

Build an Infinite Grid



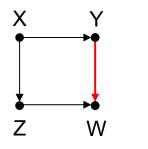
k-th horizontal line represents the *k*-th configuration of the machine

 $\forall X (Start(X) \rightarrow Node(X) \land Initial(X))$

 $D = {Start(c)}$

fixes the origin of the grid

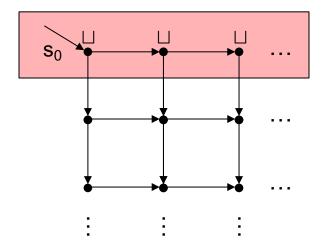
 $\forall X (Node(X) \rightarrow \exists Y (H(X,Y) \land Node(Y)))$



 $\forall X (Node(X) \rightarrow \exists Y (V(X,Y) \land Node(Y)))$

 $\forall X \forall Y \forall Z \forall W (H(X,Y) H(Z,W) V(X,Z) \rightarrow V(Y,W))$

Initialization Rules



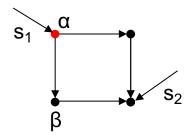
 $\forall X \forall Y (Initial(X) \land H(X,Y) \rightarrow Initial(Y))$

 $\forall X (Start(X) \rightarrow Cursor[s_0](X))$

 $\forall X (Initial(X) \rightarrow Symbol[\sqcup](X))$

Existential Rules – Lecture 2 – Sebastian Rudolph

Transition Rules

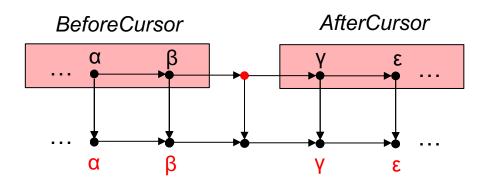


$\forall X \forall Y \forall Z \ (\textit{Cursor}[s_1](X) \land \textit{Symbol}[\alpha](X) \land \textit{V}(X,Y) \land \textit{H}(Y,Z) \rightarrow$

 $\textit{Cursor}[s_2](Z) \land \textit{Symbol}[\beta](Y) \land \textit{Mark}(X))$

Existential Rules – Lecture 2 – Sebastian Rudolph

Inertia Rules



 $\forall X \forall Y (Mark(X) \land H(X,Y) \rightarrow AfterCursor(Y))$

 $\forall X \forall Y (AfterCursor(X) \land H(X,Y) \rightarrow AfterCursor(Y))$

 $\forall X \forall Y (AfterCursor(X) \land Symbol[\alpha](X) \land V(X,Y) \rightarrow Symbol[\alpha](Y))$

...we have similar rules for the cells before the cursor

Accepting Rule

Once we reach the accepting state we accept

 $\forall X (\textit{Cursor}[s_{acc}](X) \rightarrow \textit{Accept}(X))$

 $D \land \Sigma \vDash \exists X Accept(X)$ iff the DTM *M* accepts

Existential Rules – Lecture 2 – Sebastian Rudolph

Undecidability of BCQ-Answering

Theorem: BCQ-Answering is undecidable

Proof : By simulating a deterministic Turing machine with an empty tape

...syntactic restrictions are needed!!!

Existential Rules – Lecture 2 – Sebastian Rudolph

Gaining Decidability

By restricting the database

- $\{Start(c)\} \land \Sigma \models Q$ iff the DTM *M* accepts
- The problem is undecidable already for singleton databases
- No much to do in this direction

By restricting the query language

- $D \land \Sigma \models \exists X Accept(X)$ iff the DTM *M* accepts
- The problem is undecidable already for atomic queries
- No much to do in this direction

By restricting the ontology language

- Achieve a good trade-off between expressive power and complexity
- Field of intense research
- Any ideas?

... force the chase to terminate

What is the Source of Non-termination?

$$\Sigma \\ \forall X (Person(X) \rightarrow \exists Y (hasParent(X,Y) \land Person(Y)))$$

chase(D, Σ) = $D \cup \{hasParent(Alice, z_1), Person(z_1), Person(z_1)$

 $hasParent(z_1, z_2), Person(z_2),$

 $hasParent(z_2, z_3), Person(z_3), \dots$

- 1. Existential quantification
- 2. Recursive definitions

Termination of the Chase

- Drop the existential quantification
 - We obtain the class of full existential rules
 - Very close to Datalog

- Drop the recursive definitions
 - We obtain the class of acyclic existential rules
 - o A.k.a. non-recursive existential rules

Full Existential Rules

• A full existential rule is an existential rule of the form

 $\forall \mathsf{X} \forall \mathsf{Y} (\varphi(\mathsf{X},\mathsf{Y}) \to \psi(\mathsf{X}))$

• We denote FULL the class of full existential rules

• A local property - we can inspect one rule at a time

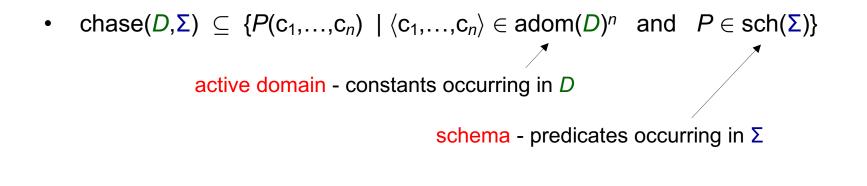
 \Rightarrow given Σ , we can decide in linear time whether $\Sigma \in \mathsf{FULL}$

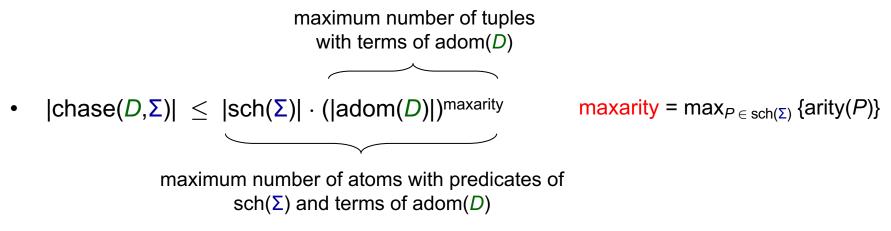
 $\Rightarrow \text{closed under union} - \Sigma_1 \in \text{FULL}, \, \Sigma_2 \in \text{FULL} \Rightarrow (\Sigma_1 \cup \Sigma_2) \in \text{FULL}$

Why does the chase terminate?

Full Existential Rules

- Consider a database D and a set $\Sigma \in \mathsf{FULL}$

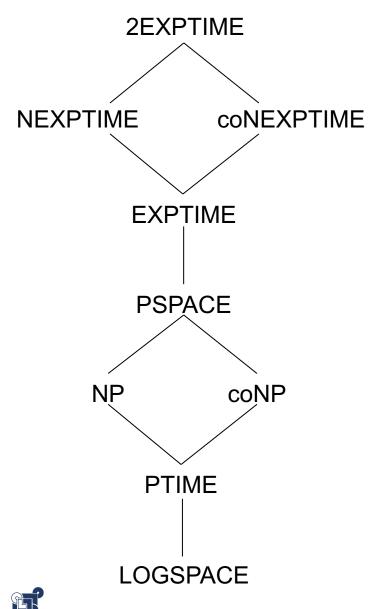




Complexity Measures for Query Answering

- Data complexity: is calculated by considering only the database as part of the input, while the ontology and the query are fixed
- Combined complexity: is calculated by considering, apart from the database, also the ontology and the query as part of the input
- Data complexity vs. Combined complexity
 - Data complexity tends to be a more meaningful measure ontologies and queries tend to be small; databases tend to be large
 - Nevertheless, the combined complexity is a relevant measure identifies the real source of complexity

Some Important Complexity Classes



Problems that can be solved by an algorithm that runs in double-exponential time

We need the power of non-determinism

Problems that can be solved by an algorithm that runs in exponential time

Problems that can be solved by an algorithm that uses a polynomial amount of memory

We need the power of non-determinism

Problems that can be solved by an algorithm that runs in polynomial time

Problems that can be solved by an algorithm that uses a logarithmic amount of memory

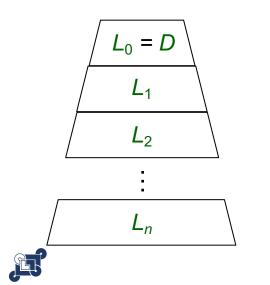
Theorem: BCQ-Answering under FULL is in PTIME w.r.t. the data complexity

Proof: Consider a database *D*, a set $\Sigma \in FULL$, and a BCQ Q

We apply the naïve algorithm:

- 1. Construct chase(D, Σ)
- 2. Check for the existence of a homomorphism h such that $h(Q) \subseteq chase(D, \Sigma)$

Step 1: We construct the chase level-by-level



- From L_k to L_{k+1}: for each σ ∈ Σ, find all the homomorphisms h such that h(body(σ)) ⊆ L_k, and add to L_k the set of atoms h(head(σ))
- Stop when $L_k = L_{k+1}$

 $|\Sigma| \cdot (|adom(D)|)^{\max(\Sigma)} \cdot \max(\Sigma) \cdot |L_k|$

Theorem: BCQ-Answering under FULL is in PTIME w.r.t. the data complexity

Proof: Consider a database *D*, a set $\Sigma \in FULL$, and a BCQ Q

We apply the naïve algorithm:

- 1. Construct chase(D, Σ)
- 2. Check for the existence of a homomorphism h such that $h(Q) \subseteq chase(D, \Sigma)$

Step 1: We construct the chase level-by-level in time

 $(k-1) \cdot |\Sigma| \cdot (|adom(D)|)^{\max variables(\Sigma)} \cdot \max body(\Sigma) \cdot |L|$

where $k, |L| \leq |chase(D, \Sigma)| \leq |sch(\Sigma)| \cdot (|adom(D)|)^{maxarity}$

Theorem: BCQ-Answering under FULL is in PTIME w.r.t. the data complexity

Proof: Consider a database *D*, a set $\Sigma \in FULL$, and a BCQ Q

We apply the naïve algorithm:

- 1. Construct chase(D, Σ)
- 2. Check for the existence of a homomorphism h such that $h(Q) \subseteq chase(D, \Sigma)$

Step 2: By applying similar analysis, we can show that the existence of h can be checked in time

```
(|adom(D)|)^{\#variables(Q)} \cdot |Q| \cdot |chase(D, \Sigma)|
```

where $|chase(D,\Sigma)| \leq |sch(\Sigma)| \cdot (|adom(D)|)^{maxarity}$

Theorem: BCQ-Answering under FULL is in PTIME w.r.t. the data complexity

Proof: Consider a database *D*, a set $\Sigma \in FULL$, and a BCQ Q

We apply the naïve algorithm:

- 1. Construct chase(D, Σ)
- 2. Check for the existence of a homomorphism h such that $h(Q) \subseteq chase(D, \Sigma)$

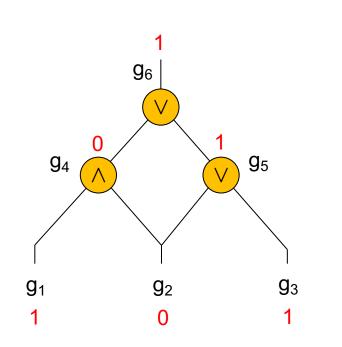
Consequently, in the worst case, the naïve algorithm runs in time

$$|\operatorname{sch}(\Sigma)| \cdot (|\operatorname{adom}(D)|)^{\max\operatorname{arity}}^2 \cdot |\Sigma| \cdot (|\operatorname{adom}(D)|)^{\max\operatorname{variables}(\Sigma)} \cdot \max\operatorname{body}(\Sigma) + (|\operatorname{adom}(D)|)^{\#\operatorname{variables}(Q)} \cdot |Q| \cdot |\operatorname{sch}(\Sigma)| \cdot (|\operatorname{adom}(D)|)^{\max\operatorname{arity}}$$

We cannot do better than the naïve algorithm

Theorem: BCQ-Answering under FULL is PTIME-hard w.r.t. the data complexity

Proof : By a LOGSPACE reduction from Monotone Circuit Value problem



Does the circuit evaluate to true?

encoding of the circuit as a database D $T(g_1)$ $T(g_3)$ $AND(g_4,g_1,g_2)$ $OR(g_5,g_2,g_3)$ $OR(g_6,g_4,g_5)$ evaluation of the circuit via a *fixed* set Σ

$$\begin{split} &\forall X \forall Y \forall Z \ (T(X) \land OR(Z,X,Y) \rightarrow T(Z)) \\ &\forall X \forall Y \forall Z \ (T(Y) \land OR(Z,X,Y) \rightarrow T(Z)) \\ &\forall X \forall Y \forall Z \ (T(X) \land T(Y) \land AND(Z,X,Y) \rightarrow T(Z)) \end{split}$$

Circuit evaluates to *true* iff $D \land \Sigma \vDash T(g_6)$

Combined Complexity of FULL

Theorem: BCQ-Answering under FULL is in EXPTIME w.r.t. the combined complexity

Proof: Consider a database *D*, a set $\Sigma \in FULL$, and a BCQ Q

We apply the naïve algorithm:

- 1. Construct chase(D, Σ)
- 2. Check for the existence of a homomorphism h such that $h(Q) \subseteq chase(D, \Sigma)$

By our previous analysis, in the worst case, the naïve algorithm runs in time

```
\begin{aligned} (|\operatorname{sch}(\Sigma)| \cdot (|\operatorname{adom}(D)|)^{\max\operatorname{arity}})^2 \cdot |\Sigma| \cdot (|\operatorname{adom}(D)|)^{\max\operatorname{variables}(\Sigma)} \cdot \operatorname{maxbody}(\Sigma) \\ + \\ (|\operatorname{adom}(D)|)^{\#\operatorname{variables}(\mathbb{Q})} \cdot |\mathbb{Q}| \cdot |\operatorname{sch}(\Sigma)| \cdot (|\operatorname{adom}(D)|)^{\max\operatorname{arity}} \end{aligned}
```


Combined Complexity of FULL

We cannot do better than the naïve algorithm

Theorem: BCQ-Answering under FULL is EXPTIME-hard w.r.t. the combined complexity

Proof : By simulating a deterministic exponential time Turing machine

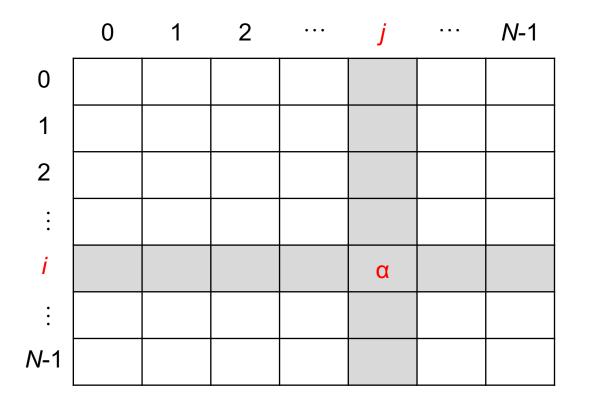
EXPTIME-hardness of FULL

Our Goal: Encode the exponential time computation of a DTM *M* on input

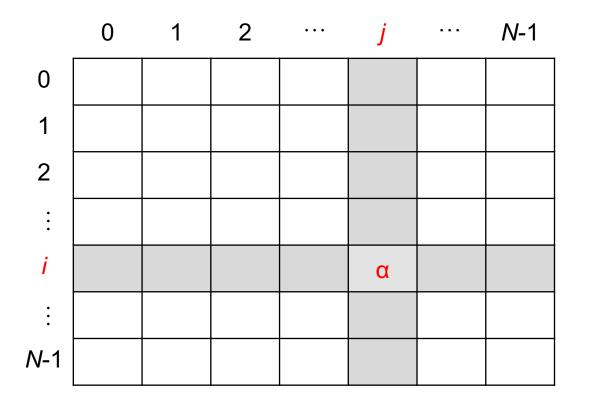
string *I* using a database *D*, a set $\Sigma \in FULL$, and a BCQ Q such that

 $D \wedge \Sigma \models Q$ iff *M* accepts *I* in at most $N = 2^m$ steps, where $m = |I|^k$

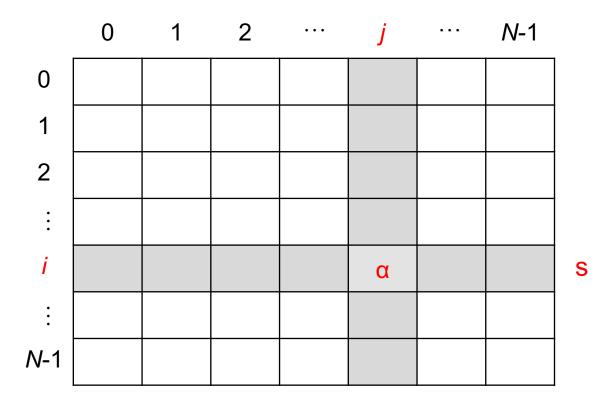
The Schema



Symbol[α](*i*,*j*) - at time instant *i*, cell *j* contains α

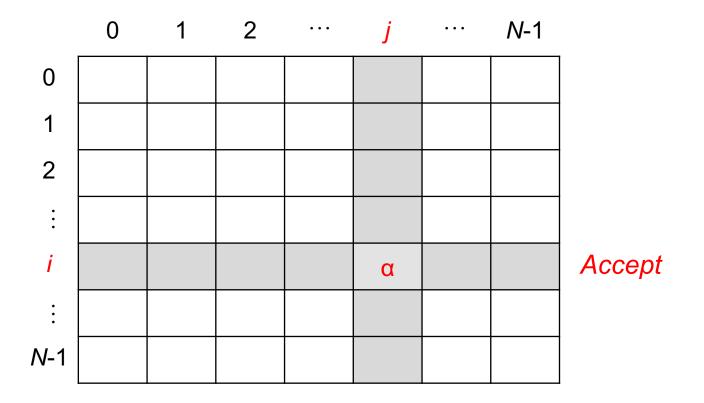


Cursor(i,j) - at time instant i, cursor points to cell j

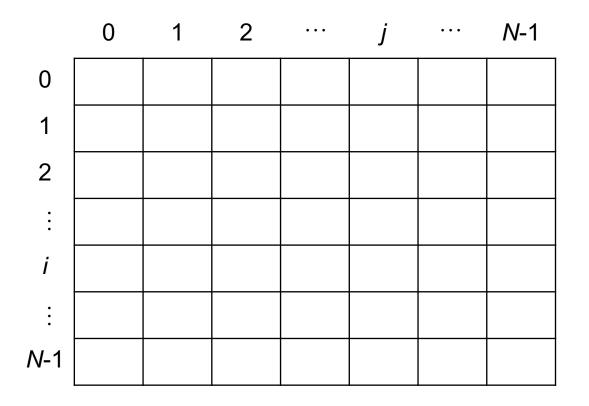


State[s](i) - at time instant i, the machine is in state s

Existential Rules – Lecture 2 – Sebastian Rudolph



Accept(i) - at time instant i, the machine accepts



First(0), *Succ*(0,1), *Succ*(1,2), *Succ*(2,3), ..., *Succ*(*N*-2,*N*-1)

will be defined later

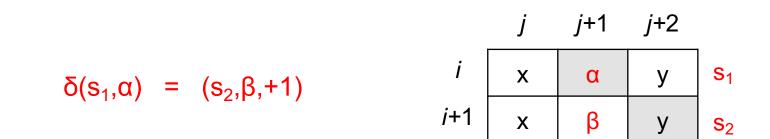
Initialization Rules

Assume that $I = \alpha_0 \dots \alpha_{n-1}$

 $\forall T (First(T) \rightarrow Symbol[\alpha_i](T,i) \land Cursor(T,T) \land State[s_0](T))$

 $\forall \mathsf{T} \forall \mathsf{C} \; (\textit{First}(\mathsf{T}) \land \prec (n-1,\mathsf{C}) \rightarrow \textit{Symbol}[\sqcup](\mathsf{T},\mathsf{C}))$

Transition Rules



 $\forall T \forall T_1 \forall C \forall C_1 (State[s_1](T) \land Cursor(T,C) \land Symbol[\alpha](T,C) \land Succ(T,T_1) \land Succ(C,C_1) \rightarrow \\ Symbol[\beta](T_1,C) \land Cursor(T_1,C_1) \land State[s_2](T_1))$

Inertia Rules

Cells that are not changed during the transition keep their old values

$$i \quad x \quad \alpha \quad y \quad s_1$$

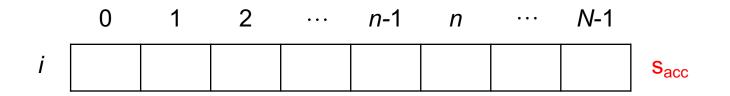
$$i+1 \quad x \quad \beta \quad y \quad s_2$$

 $\forall T \forall T_1 \forall C \forall C_1 (Symbol[\alpha](T,C) \land Cursor(T,C_1) \land \prec (C,C_1) \land Succ(T,T_1) \rightarrow Symbol[\alpha](T_1,C))$

 $\forall T \forall T_1 \forall C \forall C_1 (Symbol[\alpha](T,C) \land Cursor(T,C_1) \land \prec (C_1,C) \land Succ(T,T_1) \rightarrow Symbol[\alpha](T_1,C))$

Accepting Rule

Once we reach the accepting state we accept



 $\forall T \left(\textit{State}[s_{acc}](T) \rightarrow \textit{Accept}(T) \right)$

- *First*(0), *Succ*(0,1), *Succ*(1,2), *Succ*(2,3), ..., *Succ*(*N*-2,*N*-1)
- In fact, 0,...,N-1 are in binary form assume the N = 2^m, where m = 3
 First(0,0,0), *Succ*(0,0,0,0,0,1), *Succ*(0,0,1,0,1,0),..., *Succ*(1,1,0,1,1,1)
- Inductive definition of *First*_i and *Succ*_i

 $D = \{First_1(0), Last_1(1), Succ_1(0,1)\}$

*First*₂(0,0), *Last*₂(1,1), *Succ*₂(0,0,0,1), *Succ*₂(0,1,1,0), *Succ*(1,0,1,1)

 $\forall X (First_1(X) \land First_1(X) \rightarrow First_2(X,X))$

 $\forall X (Last_1(X), Last_1(X) \rightarrow Last_2(X,X))$

- *First*(0), *Succ*(0,1), *Succ*(1,2), *Succ*(2,3), ..., *Succ*(*N*-2,*N*-1)
- In fact, 0,...,N-1 are in binary form assume the N = 2^m, where m = 3
 First(0,0,0), *Succ*(0,0,0,0,0,1), *Succ*(0,0,1,0,1,0),..., *Succ*(1,1,0,1,1,1)
- Inductive definition of *First*_i and *Succ*_i

 $D = \{First_1(0), Last_1(1), Succ_1(0,1)\}$

*First*₂(0,0), *Last*₂(1,1), *Succ*₂(0,0,0,1), *Succ*₂(0,1,1,0), *Succ*(1,0,1,1)

 $\forall X \forall Y \forall Z (First_1(X), Succ_1(Y, Z) \rightarrow Succ_2(X, Y, X, Z))$

 $\forall X \forall Y \forall Z (Last_1(X), Succ_1(Y, Z) \rightarrow Succ_2(X, Y, X, Z))$

- *First*(0), *Succ*(0,1), *Succ*(1,2), *Succ*(2,3), ..., *Succ*(*N*-2,*N*-1)
- In fact, 0,...,N-1 are in binary form assume the N = 2^m, where m = 3
 First(0,0,0), *Succ*(0,0,0,0,0,1), *Succ*(0,0,1,0,1,0),..., *Succ*(1,1,0,1,1,1)
- Inductive definition of *First*_i and *Succ*_i

 $D = \{First_1(0), Last_1(1), Succ_1(0,1)\}$

*First*₂(0,0), *Last*₂(1,1), *Succ*₂(0,0,0,1), *Succ*₂(0,1,1,0), *Succ*(1,0,1,1)

 $\forall X \forall Y \forall Z \forall W (First_1(X), Last_1(Y), Succ_1(Z,W) \rightarrow Succ_2(Z,X,W,Y))$

 $D = \{First_1(0), Last_1(1), Succ_1(0,1)\}$

Inductive definition of *First*_{*i*+1} and *Succ*_{*i*+1}:

 $\forall \mathbf{X} \forall \mathbf{Y} (Succ_{i}(\mathbf{X}, \mathbf{Y}) \rightarrow Succ_{i+1}(\mathbf{Z}, \mathbf{X}, \mathbf{Z}, \mathbf{Y}))$

 $\forall \mathbf{X} \forall \mathbf{Y} \forall \mathbf{Z} \forall \mathbf{W} (Succ_1(\mathbf{Z}, \mathbf{W}) \land Last_i(\mathbf{X}) \land First_i(\mathbf{Y}) \rightarrow Succ_{i+1}(\mathbf{Z}, \mathbf{X}, \mathbf{W}, \mathbf{Y}))$

 $\forall \mathbf{X} \forall \mathbf{Z} (First_1(\mathbf{Z}) \land First_i(\mathbf{X}) \rightarrow First_{i+1}(\mathbf{Z}, \mathbf{X}))$

 $\forall \mathbf{X} \forall \mathbf{Z} (Last_1(\mathbf{Z}) \land Last_i(\mathbf{X}) \rightarrow Last_{i+1}(\mathbf{Z}, \mathbf{X}))$

Definition of \prec_m :

 $\forall \mathbf{X} \forall \mathbf{Y} (Succ_m(\mathbf{X}, \mathbf{Y}) \rightarrow \prec_m(\mathbf{X}, \mathbf{Y}))$

 $\forall \mathbf{X} \forall \mathbf{Y} \forall \mathbf{Z} (Succ_m(\mathbf{X}, \mathbf{Z}) \prec_m(\mathbf{Z}, \mathbf{Y}) \rightarrow \prec_m(\mathbf{X}, \mathbf{Y}))$

Concluding EXPTIME-hardness of FULL

- Several rules but polynomially many \Rightarrow feasible in polynomial time
- $D \land \Sigma \models \exists X Accept(X) \text{ iff } M \text{ accepts } I \text{ in at most } N \text{ steps}$
- Can be formally shown by induction on the time steps

Corollary: BCQ-Answering under FULL is EXPTIME-complete w.r.t. the combined complexity

Termination of the Chase

- Drop the existential quantification
 - We obtain the class of full existential rules
 - $\circ~$ Very close to Datalog

- Drop the recursive definitions
 - We obtain the class of acyclic existential rules

 \checkmark

o A.k.a. non-recursive existential rules

