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Syntax of Existential Rules

• X,Y and Z are tuples of variables of V

• ' (X,Y) and Ã(X,Z) are (constant-free) conjunctions of atoms

An existential rule is an expression

body head

8X8Y (' (X,Y) ® 9Z Ã(X,Z))

…a.k.a. tuple-generating dependencies, and Datalog± rules
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Syntax of Conjunctive Queries

• X and Y are tuples of variables of V

• ' (X,Y) is a conjunction of atoms (possibly with constants)

A conjunctive query (CQ) is an expression

9Y (' (X,Y))

The most important query language used in practice

Forms the SELECT-FROM-WHERE fragment of SQL
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Ontology-Based Query Answering (OBQA)

D

Σ

hD,Σi

D

database (or ABox)

ontology (or TBox) 

Q

knowledge base

existential rules

8X8Y (' (X,Y) ® 9Z Ã(X,Z))

conjunctive queries

9Y (' (X,Y))
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BCQ-Answering: Our Main Decision Problem

D

Σ

hD,Σi

D

database (aka ABox)

ontology (aka TBox) 

Q = 9Y ('  (Y))

knowledge base

8X8Y ('  (X,Y) ® 9Z Ã(X,Z))

decide whether D ^ Σ ² Q
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Universal Models (a.k.a. Canonical Models)

U

J1 J2

. . . 
Jn

. . . 

h1
h2

hn

An instance U  is a universal model of D ^ Σ if the following holds:

1. U is a model of D ^ Σ

2. 8J 2 models(D ^ Σ), there exists a homomorphism hJ such that hJ(U) µ J
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The Chase Procedure: Formal Definition

• Chase rule - the building block of the chase procedure

• A rule σ = 8X8Y ('(X,Y) ® 9Z Ã(X,Z)) is applicable to instance J if:

1. There exists a homomorphism h such that h('(X,Y)) µ J

2. There is no g ¶ h|X such that g(Ã(X,Z)) µ J

• Let J+ = J [ {g(Ã(X,Z))}, where g ¶ h|X and g(Z) are “fresh” nulls not in J

• The result of applying σ to J is J+, denoted Jhσ,hiJ+  - single chase step
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The Chase Procedure: Formal Definition

• A finite chase of D w.r.t. Σ is a finite sequence

Dhσ1,h1iJ1hσ2,h2iJ2hσ3,h3iJ3  ... hσn,hniJn

where no rule from Σ is applicable in Jn . 

Then, chase(D,Σ) is defined as the instance Jn

• An infinite chase of D w.r.t. Σ is a fair finite sequence

Dhσ1,h1iJ1hσ2,h2iJ2hσ3,h3iJ3  ... hσn,hniJn ...  

and chase(D,Σ) is defined as the instance [k ¸ 0 Jk (with J0 = D)

all applicable rules will eventually be applied

least fixpoint of a monotonic operator - chase step
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Query Answering via the Chase

Theorem: D ^ Σ ² Q  iff U ² Q, where U is a universal model of D ^ Σ

+

Theorem: chase(D, Σ) is a universal model of D ^ Σ

=

Corollary: D ^ Σ ² Q   iff chase(D,Σ) ² Q

• We can tame the first dimension of infinity by exploiting the chase procedure

• But, what about the second dimension of infinity? - the chase may be infinite
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Rest of the Lectrure

• Undecidability of BCQ-Answering

• Gaining decidability - terminating chase

• Full Existential Rules

• Acyclic Existential Rules
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Undecidability of BCQ-Answering

Theorem: BCQ-Answering is undecidable

Proof : By simulating a deterministic Turing machine with an empty tape
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Deterministic Turing Machine (DTM)

M =   (S, Λ, t, δ, s0, sacc)

states tape 
symbols

blank
symbol

S\{sacc} £ Λ ! S £ Λ £ {-1,0,+1}

initial state

accepting state

δ(s1, α) = (s2, β, +1)

IF at some time instant τ the machine is in sate s1, the cursor 

points to cell κ, and this cell contains α

THEN at instant τ+1 the machine is in state s2, cell κ contains β, 

and the cursor points to cell κ+1
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Undecidability of BCQ-Answering

Our Goal: Encode the computation of a DTM M with an empty tape 

using a database D, a set Σ of existential rules, and a BCQ Q such that 

D ^ Σ ² Q iff M accepts
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Build an Infinite Grid

k-th horizontal line represents the 

k-th configuration of the machine

8X (Start(X) ® Node(X) ^ Initial(X))

8X (Node(X) ® 9Y (H(X,Y) ^ Node(Y)))

8X (Node(X) ® 9Y (V(X,Y) ^ Node(Y)))

8X8Y8Z8W (H(X,Y) H(Z,W) V(X,Z) ® V(Y,W))

D = {Start(c)}

fixes the origin of the grid

X Y

Z W

H

V

c

…

…

…

… … …
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…

…

…

… … …

Initialization Rules

s0
t t t

8X8Y (Initial(X) ^ H(X,Y) ® Initial(Y))

8X (Start(X) ® Cursor[s0](X))

8X (Initial(X) ® Symbol[t](X))
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Transition Rules

δ(s1,α)   =   (s2,β,+1)
s1

α

s2
β

8X8Υ8Ζ (Cursor[s1](X) ^ Symbol[α](X) ^ V(X,Y) ^ H(Y,Z) ®

Cursor[s2](Z) ^ Symbol[β](Y) ^ Mark(X))



Existential Rules – Lecture 2 – Sebastian Rudolph Slide 17

Inertia Rules

…we have similar rules for the cells before the cursor

α β γ ε
BeforeCursor AfterCursor

α β γ ε

…

…

…

…

8X8Y (Mark(X) ^ H(X,Y) ® AfterCursor(Y))

8X8Y (AfterCursor(X) ^ H(X,Y) ® AfterCursor(Y))

8X8Y (AfterCursor(X) ^ Symbol[α](X) ^ V(X,Y) ® Symbol[α](Υ))
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Accepting Rule

Once we reach the accepting state we accept

8X (Cursor[sacc](X) ® Accept(X))

D ^ Σ ² 9X Accept(X) iff the DTM M accepts
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Undecidability of BCQ-Answering

Theorem: BCQ-Answering is undecidable

Proof : By simulating a deterministic Turing machine with an empty tape

…syntactic restrictions are needed!!!
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Gaining Decidability

By restricting the database
• {Start(c)} ^ Σ ² Q iff the DTM M accepts
• The problem is undecidable already for singleton databases
• No much to do in this direction

By restricting the query language
• D ^ Σ ²  9X Accept(X) iff the DTM M accepts
• The problem is undecidable already for atomic queries
• No much to do in this direction

By restricting the ontology language
• Achieve a good trade-off between expressive power and complexity
• Field of intense research
• Any ideas?

… force the chase to terminate
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What is the Source of Non-termination?

person(Alice)

8X (Person(X) ® 9Y (hasParent(X,Y) ^ Person(Y)))

D

Σ

chase(D,Σ) = D [ {hasParent(Alice, z1), Person(z1),

hasParent(z1, z2), Person(z2),

hasParent(z2, z3), Person(z3), …

1. Existential quantification

2. Recursive definitions
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Termination of the Chase

• Drop the existential quantification

o We obtain the class of full existential rules

o Very close to Datalog

• Drop the recursive definitions

o We obtain the class of acyclic existential rules

o A.k.a. non-recursive existential rules
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Full Existential Rules

• A full existential rule is an existential rule of the form

• We denote FULL the class of full existential rules

• A local property - we can inspect one rule at a time 

) given Σ, we can decide in linear time whether Σ2 FULL

) closed under union - Σ1 2 FULL, Σ2 2 FULL ) (Σ1 [ Σ2) 2 FULL

• Why does the chase terminate?

8X8Y ('  (X,Y) ® Ã(X))
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Full Existential Rules

• Consider a database D and a set Σ2 FULL

• chase(D,Σ) µ {P(c1,…,cn) | hc1,…,cni 2 adom(D)n and   P 2 sch(Σ)}

• |chase(D,Σ)|  ·  |sch(Σ)| · (|adom(D)|)maxarity

active domain - constants occurring in D

schema - predicates occurring in Σ

maximum number of tuples 
with terms of adom(D) 

maximum number of atoms with predicates of
sch(Σ) and terms of adom(D)

maxarity = maxP 2 sch(Σ) {arity(P)}
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Complexity Measures for Query Answering

• Data complexity: is calculated by considering only the database as part of the 

input, while the ontology and the query are fixed

• Combined complexity: is calculated by considering, apart from the database, 

also the ontology and the query as part of the input

• Data complexity vs. Combined complexity

o Data complexity tends to be a more meaningful measure - ontologies and 

queries tend to be small; databases tend to be large

o Nevertheless, the combined complexity is a relevant measure - identifies 

the real source of complexity
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Some Important Complexity Classes

Problems that can be solved by an algorithm 
that uses a polynomial amount of memory

PSPACE

Problems that can be solved by an algorithm 
that runs in exponential time

EXPTIME

Problems that can be solved by an algorithm 
that runs in double-exponential time

2EXPTIME

We need the power of non-determinismNP coNP

NEXPTIME coNEXPTIME We need the power of non-determinism

LOGSPACE

Problems that can be solved by an algorithm 
that runs in polynomial time

PTIME

Problems that can be solved by an algorithm 
that uses a logarithmic amount of memory
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Data Complexity of FULL

Theorem: BCQ-Answering under FULL is in PTIME w.r.t. the data complexity

Proof: Consider a database D, a set Σ2 FULL, and a BCQ Q

We apply the naïve algorithm:

1. Construct chase(D,Σ)

2. Check for the existence of a homomorphism h such that h(Q) µ chase(D,Σ)

Step 1: We construct the chase level-by-level

L1

L0 = D

L2

Ln

…

• From Lk to Lk +1: for each σ 2 Σ, find all the 

homomorphisms h such that h(body(σ)) µ Lk, and 

add to Lk the set of atoms h(head(σ))

• Stop when Lk = Lk +1

|Σ| · (|adom(D)|)maxvariables(Σ) · maxbody(Σ) · |Lk|
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Data Complexity of FULL

Theorem: BCQ-Answering under FULL is in PTIME w.r.t. the data complexity

Proof: Consider a database D, a set Σ2 FULL, and a BCQ Q

We apply the naïve algorithm:

1. Construct chase(D,Σ)

2. Check for the existence of a homomorphism h such that h(Q) µ chase(D,Σ)

Step 1: We construct the chase level-by-level in time

(k-1) · |Σ| · (|adom(D)|)maxvariables(Σ) · maxbody(Σ) · |L|

where k, |L| ·  |chase(D,Σ)|  ·  |sch(Σ)| · (|adom(D)|)maxarity
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Data Complexity of FULL

Theorem: BCQ-Answering under FULL is in PTIME w.r.t. the data complexity

Proof: Consider a database D, a set Σ2 FULL, and a BCQ Q

We apply the naïve algorithm:

1. Construct chase(D,Σ)

2. Check for the existence of a homomorphism h such that h(Q) µ chase(D,Σ)

Step 2: By applying similar analysis, we can show that the existence of h can be 

checked in time

(|adom(D)|)#variables(Q) · |Q| · |chase(D,Σ)|

where |chase(D,Σ)|  ·  |sch(Σ)| · (|adom(D)|)maxarity
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Data Complexity of FULL

Theorem: BCQ-Answering under FULL is in PTIME w.r.t. the data complexity

Proof: Consider a database D, a set Σ2 FULL, and a BCQ Q

We apply the naïve algorithm:

1. Construct chase(D,Σ)

2. Check for the existence of a homomorphism h such that h(Q) µ chase(D,Σ)

Consequently, in the worst case, the naïve algorithm runs in time

(|sch(Σ)| · (|adom(D)|)maxarity)2 · |Σ| · (|adom(D)|)maxvariables(Σ) · maxbody(Σ)

+ 

(|adom(D)|)#variables(Q) · |Q| · |sch(Σ)| · (|adom(D)|)maxarity
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Data Complexity of FULL

Theorem: BCQ-Answering under FULL is PTIME-hard w.r.t. the data complexity

Proof : By a LOGSPACE reduction from Monotone Circuit Value problem

We cannot do better than the naïve algorithm
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Data Complexity of FULL

Circuit evaluates to true iff D ^ Σ ² T(g6)

encoding of the circuit as a database D

T(g1)   T(g3)

AND(g4,g1,g2)   OR(g5,g2,g3)   OR(g6,g4,g5)

evaluation of the circuit via a fixed set Σ

8Χ8Υ8Ζ (T(X) ^ OR(Z,X,Y) ® T(Ζ))

8Χ8Υ8Ζ (T(Y) ^ OR(Z,X,Y) ® T(Ζ))

8Χ8Υ8Ζ (T(X) ^ T(Y) ^ AND(Z,X,Y) ® T(Ζ))
Does the circuit evaluate to true? 

^ _

_

g4 g5

g6

g1 g2 g3
1 0 1

0 1

1
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Combined Complexity of FULL

Theorem: BCQ-Answering under FULL is in EXPTIME w.r.t. the combined complexity

Proof: Consider a database D, a set Σ2 FULL, and a BCQ Q

We apply the naïve algorithm:

1. Construct chase(D,Σ)

2. Check for the existence of a homomorphism h such that h(Q) µ chase(D,Σ)

By our previous analysis, in the worst case, the naïve algorithm runs in time

(|sch(Σ)| · (|adom(D)|)maxarity)2 · |Σ| · (|adom(D)|)maxvariables(Σ) · maxbody(Σ)

+ 

(|adom(D)|)#variables(Q) · |Q| · |sch(Σ)| · (|adom(D)|)maxarity
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Combined Complexity of FULL

Theorem: BCQ-Answering under FULL is EXPTIME-hard w.r.t. the combined 
complexity

Proof : By simulating a deterministic exponential time Turing machine 

We cannot do better than the naïve algorithm
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EXPTIME-hardness of FULL

Our Goal: Encode the exponential time computation of a DTM M on input 

string I using a database D, a set Σ 2 FULL, and a BCQ Q such that 

D ^ Σ ² Q iff M accepts I in at most N = 2m steps, where m =|I|k
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The Schema

0 1 2 j N-1

0

1

2

i α

N-1

Symbol[α](i,j) - at time instant i, cell j contains α

…

…

…

…
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The Schema

0 1 2 j N-1

0

1

2

i α

N-1

…

…

Cursor(i,j) - at time instant i, cursor points to cell j

…

…
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The Schema

0 1 2 j N-1

0

1

2

i α

N-1

…

…

State[s](i) - at time instant i, the machine is in state s

…

…

s
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The Schema

0 1 2 j N-1

0

1

2

i α

N-1

…

…

Accept(i) - at time instant i, the machine accepts 

…

…

Accept
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The Schema

0 1 2 j N-1

0

1

2

i

N-1

…

…

…

…

First(0), Succ(0,1), Succ(1,2), Succ(2,3), …, Succ(N-2,N-1)

Á - transitive closure of Succ
will be defined later
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Initialization Rules

0 1 2 n-1 n N-1

0 α0 α1 α2 … αn-1 t … t

… …

Assume that I = α0…αn-1

s0

8T8C (First(T) ^ Á(n-1,C) ® Symbol[t](T,C))

8T (First(T) ® Symbol[αi](T,i) ^ Cursor(T,T) ^ State[s0](T))
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Transition Rules

j j+1 j+2

i x α y

i+1 x β y

s1

s2

δ(s1,α)   =   (s2,β,+1)

8T8T18C8C1 (State[s1](T) ^ Cursor(T,C) ^ Symbol[α](T,C) ^ Succ(T,T1) ^ Succ(C,C1) ®

Symbol[β](T1,C) ^ Cursor(T1,C1) ^ State[s2](T1)) 
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8T8T18C8C1 (Symbol[α](T,C) ^ Cursor(T,C1) ^ Á(C1,C) ^ Succ(T,T1) ® Symbol[α](T1,C)) 

Inertia Rules

8T8T18C8C1 (Symbol[α](T,C) ^ Cursor(T,C1) ^ Á(C,C1) ^ Succ(T,T1) ® Symbol[α](T1,C)) 

Cells that are not changed during the transition keep their old values

j j+1 j+2

i x α y

i+1 x β y

s1

s2
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Accepting Rule

Once we reach the accepting state we accept

8Τ (State[sacc](T) ® Accept(Τ))

0 1 2 n-1 n N-1

i sacc

… …
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Defining First, Succ and Á

• First(0), Succ(0,1), Succ(1,2), Succ(2,3), …, Succ(N-2,N-1)

• In fact, 0,…,N-1 are in binary form - assume the N = 2m, where m = 3

First(0,0,0), Succ(0,0,0,0,0,1), Succ(0,0,1,0,1,0),…, Succ(1,1,0,1,1,1)

• Inductive definition of Firsti and Succi

D = {First1(0), Last1(1), Succ1(0,1)}

First2(0,0), Last2(1,1), Succ2(0,0,0,1), Succ2(0,1,1,0), Succ(1,0,1,1)

8Χ (First1(X) ^ First1(X) ® First2(X,X))

8Χ (Last1(X), Last1(X) ® Last2(X,X))
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8Χ8Υ8Ζ (Last1(X),Succ1(Y,Z) ® Succ2(X,Y,X,Z))

Defining First, Succ and Á

• First(0), Succ(0,1), Succ(1,2), Succ(2,3), …, Succ(N-2,N-1)

• In fact, 0,…,N-1 are in binary form - assume the N = 2m, where m = 3

First(0,0,0), Succ(0,0,0,0,0,1), Succ(0,0,1,0,1,0),…, Succ(1,1,0,1,1,1)

• Inductive definition of Firsti and Succi

D = {First1(0), Last1(1), Succ1(0,1)}

First2(0,0), Last2(1,1), Succ2(0,0,0,1), Succ2(0,1,1,0), Succ(1,0,1,1)

8Χ8Υ8Ζ (First1(X),Succ1(Y,Z) ® Succ2(X,Y,X,Z))
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Defining First, Succ and Á

• First(0), Succ(0,1), Succ(1,2), Succ(2,3), …, Succ(N-2,N-1)

• In fact, 0,…,N-1 are in binary form - assume the N = 2m, where m = 3

First(0,0,0), Succ(0,0,0,0,0,1), Succ(0,0,1,0,1,0),…, Succ(1,1,0,1,1,1)

• Inductive definition of Firsti and Succi

D = {First1(0), Last1(1), Succ1(0,1)}

First2(0,0), Last2(1,1), Succ2(0,0,0,1), Succ2(0,1,1,0), Succ(1,0,1,1)

8Χ8Υ8Ζ8W (First1(X), Last1(Y),Succ1(Z,W) ® Succ2(Z,X,W,Y)) 
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Defining First, Succ and Á

D = {First1(0), Last1(1), Succ1(0,1)}

8Χ8Υ (Succi(X,Y) ® Succi+1(Z,X,Z,Y))

8Χ8Υ8Z8W (Succ1(Z,W) ^ Lasti(X) ^ Firsti(Y) ® Succi+1(Z,X,W,Y))

8X8Z (First1(Z) ^ Firsti(X) ® Firsti+1(Z,X))

8X8Z (Last1(Z) ^ Lasti(X) ® Lasti+1(Z,X))

Inductive definition of Firsti+1 and Succi+1:

Definition of Ám:

8Χ8Υ (Succm(X,Y) ® Ám(X,Y))

8Χ8Υ8Z (Succm(X,Z) Ám(Z,Y) ® Ám(X,Y))
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Concluding EXPTIME-hardness of FULL

• Several rules but polynomially many   )   feasible in polynomial time

• D ^ Σ ² 9X Accept(X) iff M accepts I in at most N steps

• Can be formally shown by induction on the time steps

Corollary: BCQ-Answering under FULL is EXPTIME-complete w.r.t. the 

combined complexity
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Termination of the Chase

• Drop the existential quantification

o We obtain the class of full existential rules

o Very close to Datalog

• Drop the recursive definitions

o We obtain the class of acyclic existential rules

o A.k.a. non-recursive existential rules

P


