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Ladner’s Theorem

Theorem 15.1 (Ladner, 1975): If P ! NP, then there are problems in NP that are
neither in P nor NP-complete.

Such problems are called NP-intermediate.

• No natural problem is known to be NP-intermediate

• Indeed, this would imply that P ! NP
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Lazy diagonalisation

A powerful proof idea:

• Don’t try to construct a diagonalisation that tries to flip the behaviour for a TMMi

that is given in the input

• Rather, for eachMi that you want to be different from, keep on behaving
“sufficiently different” for a large range of inputs – until the inputs given are big
enough to detect a difference withMi (on much smaller inputs)

• To know whichMi we are working on, simply recompute f (0), f (1), . . . as far as
possible in each step

We observed:

• Progress is really slow with this method.

• However, it does not matter how inefficient the actual computations are internally.
Lazy diagonalisation has all the time in the world.
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Schöning’s Generalisation
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Intermediate problems between other classes

Uwe Schöning established the following interesting generalisation of Ladner’s approach:

Theorem 15.2 (Schöning 1982): Consider two classes C1 and C2 of decidable
languages such that for either class Ck:

• We can effectively enumerate TMs Mk
0,Mk

1, . . . that halt on all inputs and
such that Ck = {L(Mk

i ) | i ≥ 0)}.
• If L ∈ Ck and L’ differs from L on only a finite number of words, then L’ ∈ Ck

If there are decidable languages L1 " C1 and L2 " C2, then there is a decidable
language Ld " C1 ∪ C2.
Moreover, if L1 ∈ P and L2 is not trivial (i.e., L2 " {∅,Σ∗}), then Ld ≤p L2.

This can be used for proving the existence of many other classes of intermediate
problems.

The result has an elegant, not very long proof slightly different from our proof of Ladner’s
theorem, but using related ideas. See Uwe Schöning: A Uniform Approach to Obtain
Diagonal Sets in Complexity Classes, Theor. Comput. Sci. 18, 95–103.
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Example: Ladner’s Theorem via Schöning

We obtain the previous result as a special case:

Corollary 15.3: Consider the classes C1 = NPC (NP-complete problems) and
C2 = P. We find that for either class Ck:

• We can effectively enumerate TMs Mk
0,Mk

1, . . . that halt on all inputs and
such that Ck = {L(Mk

i ) | i ≥ 0)}.
• If L ∈ Ck and L’ differs from L on only a finite number of words, then L’ ∈ Ck

If P ! NP, then L1 = ∅ " NPC and L2 = Sat " P, hence there is a decidable
language Ld " NPC ∪ P.
Moreover, as ∅ ∈ P and Sat is not trivial, Ld ≤p Sat and hence Ld ∈ NP.

Proof: Most properties are clear. The enumeration of NP-complete languages can be
constructed by using ideas we have used to prove Ladner’s theorem.
Enumerate all pairs of polytime TMs and polytime reductions, and construct a new machine for each pair: on input w, check if the reduction
correctly reduces Sat to the given TM for all inputs up to this length. If yes, behave like the TM; if no, behave like Sat. Therefore, if a reduction is not
working, the resulting machine will be like Sat in all but a finite number of places.

□
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Example: Separating coNP from NPC

We obtain another result as a special case:

Corollary 15.4: Consider the classes C1 = NPC (NP-complete problems) and
C2 = coNP. We find that for either class Ck:

• We can effectively enumerate TMs Mk
0,Mk

1, . . . that halt on all inputs and
such that Ck = {L(Mk

i ) | i ≥ 0)}.
• If L ∈ Ck and L’ differs from L on only a finite number of words, then L’ ∈ Ck

If NP ! coNP, then L1 = ∅ " NPC and L2 = Sat " coNP, hence there is a
decidable language Ld " NPC ∪ coNP.
Moreover, as ∅ ∈ P and Sat is not trivial, Ld ≤p Sat and hence Ld ∈ NP.

In words: There are problems in NP which are not in coNP and yet not NP-complete.
This is a stronger statement than Ladner’s theorem, but it also uses a stronger
assumption (namely that NP ! coNP).
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Discussion: Schöning’s Result

Many further classes of problems could be separated in this way.

The most critical questions for applying the theorem are:

• Can we really effectively enumerate TMs for the respective classes? (this is not
trivial and not always true)

• Are the classes really closed under finite variations?

• Under which assumptions can we be sure that L1 " C1 and L2 " C2?
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Hierarchies of intermediate problems

Another generalisation of Ladner’s theorem comes about by applying similar arguments
to find problems that are intermediate to, e.g., P and some intermediate problem.

This shows a lot of complicated structure in, e.g., NP:

• We can define classes of mutually ≤p-reducible problems (even if not
NP-complete), called polynomial many-one degrees

• These classes can be orderd by ≤p on their representatives

Fact 15.5: If P ! NP, then the order of polynomial many-one degrees is dense
and non-total.

Recall:
Dense: Between any two elements is another one distinct from both
Non-total: There are incomparable elements
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The Limits of Diagonalisation
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The Power of Diagonalisation

We have established powerful results using diagonalisation arguments:

• Time and Space Hierarchy: even fine-grained time and space classes differ

• Ladner’s Theorem: NP-intermediate problems differ from both P and NP-complete

What next?
Are there any other interesting open questions about the potential difference of some
complexity classes that we would like to resolve?

How about separating P from NP?

• This has not been resolved using diagonalisation so far

• Indeed, we know some things that make it seem very unlikely that diagonalisation
alone could succeed there

# Coming up next . . .
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Review: Oracles
Recall the following defintions from Lecture 3:

Definition 3.15: An Oracle Turing Machine (OTM) is a Turing machine M with a
special tape, called the oracle tape, and distinguished states q?, qyes, and qno. For
a language O, the oracle machine MO can, in addition to the normal TM opera-
tions, do the following:

Whenever MO reaches q?, its next state is qyes if the content of the oracle tape is
in O, and qno otherwise.

Observe that invoking the oracle always takes one step only

Definition 3.16: A problem P is Turing reducible to a problem Q (in symbols:
P ≤T Q), if P is decided by an OTM MQ with oracle Q.

The following is immediate from the definition:

Proposition 15.6: Turing reducibility ≤T is transitive.
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Cook vs. Karp

One can talk about polynomial-time Turing reductions: ifMQ is a polynomially time
bounded OTM that decides L we may write L ≤p

T Q.

Polynomial Turing reductions are also known as Cook reductions, while polynomial
many-one reductions are known as Karp reductions.

Cook reductions are more powerful than Karp reductions, since they can make use of
solutions to another problem many times within a single run, rather than only once at the
very end. We observe:

Proposition 15.7: ≤p ⊆ ≤p
T .

Example 15.8: It is easy to see that Tautology ≤p
T Sat, whereas Tautology ≤p Sat

is neither known nor expected.
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Complexity classes with oracles

Definition 15.9: Consider a language O ⊆ Σ∗:
• PO is the set of all languages decidable by a deterministic polynomial-time

OTM with oracle O,

• NPO is the set of all languages decidable by a non-deterministic
polynomial-time OTM with oracle O.

Some simple observations:

Proposition 15.10: If O ∈ P then PO = P.

Proposition 15.11: NP ⊆ PSat.

Proof: If L ∈ NP, then there is a polynomial many-one reduction f from L to Sat, i.e.,
w ∈ L iff f (w) ∈ Sat. A polytime OTM for L, on input w, simply computes f (w), and
invokes the oracle to decide f (w) ∈ Sat. □

Proposition 15.12: PO is closed under complement. In particular, coNP ⊆ PSat,
and NP ! PSat unless NP = coNP.
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Relativisation
Relativisation is the generalisation of a result about TMs to OTMs for a fixed oracle. It is
interesting to ask which results hold true relative to particular oracles.

Proofs by diagonalisation typically relativise: they remain correct if TMs are allowed
oracle calls. Indeed, our proofs so far only relied on two properties:

• TMs can be represented as strings (and therefore also iterated over)

• A TM can simulate another one (given as string) without much overhead

Both remain true when looking at machines for a (fixed) oracle O.

Example 15.13: Consider TMs that can use the Halting problem as an oracle.
Such OTMs cannot decide the Halting problem for machines of their own type.
Suppose for a contradiction that they could. We can then construct a diagonal TM
D that, on input 〈M〉, simulates M on 〈M〉 and flips the result. D on input 〈D〉
leads to a contradiction.

Note: OTMs obtained my providing oracles for the Halting problem of a simpler type of
(O)TM give rise to so-called Turing jumps. They produce some of the families of
undecidable languages considered in the theory of computability.
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The limits of diagonalisation

The fact that standard diagonalisation relativises suggests that it is too weak to settle
questions whose answers do not relativise.

A prominent example was discovered in the 1970s:

Theorem 15.14 (Baker, Gill, Solovay, 1975): The answer to P ?
= NP does not

relativise: there are languages A and B such that PA = NPA and PB ! NPB.

Therefore, any proof that answers P ?
= NP must be based on some property of (normal)

TMs that does not relativise.

Ironically, we will prove the second part of the theorem by diagonalisation!
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Proving the theorem: PA = NPA

Theorem 15.15 (Baker, Gill, Solovay, 1975): The answer to P ?
= NP does not

relativise: there are languages A and B such that PA = NPA and PB ! NPB.

Proof: It is not so hard to find a suitable A for the first part of the theorem: the power of
the oracle must be such that deterministic and non-deterministic computations coincide.

We know such complexity classes, e.g., PSpace. Therefore set A = True QBF. Then:

NPTrue QBF (1)
⊆ NPSpace

(2)
⊆ PSpace

(3)
⊆ PTrue QBF

Inclusion (1) follows from the observation that every nondeterministic OTM with oracle
True QBF running in polytime can be simulated by an NTM running in polynomial space.
Inclusion (2) is Savitch’s Theorem. (3) follows from the PSpace-hardness of True QBF.
Since PTrue QBF ⊆ NPTrue QBF, we obtain NPTrue QBF = PTrue QBF.
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Proving the theorem: PB ! NPB

Theorem 15.16 (Baker, Gill, Solovay, 1975): The answer to P ?
= NP does not

relativise: there are languages A and B such that PA = NPA and PB ! NPB.

Proof (continued): To show PB ! NPB, we define from an arbitrary language C ⊆ Σ∗, a
language LC as follows:

LC = {1n | there is v ∈ C with |v| = n}

• Clearly, LC ∈ NPC: Given an input of form 1n, an NTM can guess a suitable word v
and use the C-oracle to check the guess

• Whether LC ∈ PC or not depends on C. (We have already shown that LTrue QBF ∈ PTrue QBF must hold)

We will construct the required language B such that LB " PB.

We only consider the input alphabet Σ = {0, 1}. LetM0,M1, . . . be some enumeration
polynomial time-bounded OTMs (with oracle B, but this is immaterial for the description
of the OTM) for Σ. Let pi be a polynomial that provides a time bound forMi.
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Proving the theorem: PB ! NPB

Theorem 15.17 (Baker, Gill, Solovay, 1975): The answer to P ?
= NP does not

relativise: there are languages A and B such that PA = NPA and PB ! NPB.

Proof (continued): We construct B such that LB = {1n | there is v ∈ B with |v| = n} " PB.

We define B from short words to longer words, proceeding in stages 0, 1, . . .
In stage i ≥ 0, do the following:

• Pick a number n such that (1) n is longer than the longest string w for which w
?∈ B

has been defined yet, and (2) 2n > pi(n).
• Simulate the (deterministic) run ofMi on 1n. For oracle calls, w

?∈ B:

– If w
?∈ B was already defined, answer as defined.

– If w
?∈ B was not defined before, answer no (and define w " B).

• For all w with |w| ≤ n where w
?∈ B was not defined yet, define

– w ∈ B ifMi has rejected 1n

– w " B ifMi has accepted 1n

Stage i therefore ends with w
?∈ B defined for all words w up to length n.
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• Simulate the (deterministic) run ofMi on 1n. For oracle calls, w
?∈ B:

– If w
?∈ B was already defined, answer as defined.

– If w
?∈ B was not defined before, answer no (and define w " B).

• For all w with |w| ≤ n where w
?∈ B was not defined yet, define

– w ∈ B ifMi has rejected 1n

– w " B ifMi has accepted 1n

Stage i therefore ends with w
?∈ B defined for all words w up to length n.
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Proving the theorem: PB ! NPB

Theorem 15.18 (Baker, Gill, Solovay, 1975): The answer to P ?
= NP does not

relativise: there are languages A and B such that PA = NPA and PB ! NPB.

Proof (continued): The definitions of stage i ensure thatMi does not decide LB, since
(for the chosen n) we have LB(1n) !Mi(1n):

• If 1n ∈ L(Mi), then we have defined B to contain no words of length n, so 1n " LB.

• If 1n " L(Mi), then there is a word w of length |w| = n such that the run ofMi on 1n

did not make an oracle call for w
?∈ B. This follows since there are 2n words of this

length, but at most pi(n) < 2n oracle calls. Hence, we have defined w ∈ B, so
1n ∈ LB.

Since LB ! L(Mi) holds for all polynomial time bounded determinsitic OTMsMi with
oracle B, we obtain LB " PB. □
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Discussion: The proof of Baker/Gill/Solovay

Note 1: Our proof for PB ! NPB would work not just for PB but for any DTime(f )B where
f ∈ o(2n).

Note 2: The proof uses diagonalisation, but not as a method for specifying Turing
machines. Indeed, we do not require B to be computable (though it is), and we do not
have to ensure that a particular resource-bounded TM can compute it.
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Summary and Outlook

Ladner’s theorem can be generalised to find intermediate problems elsewhere

Many results in complexity theory relativise to oracle TMs for some oracle (the same for
all TMs considered)

The P vs. NP question does not relativise, as a famous result of Baker, Gill, and Solovay
tells us

What’s next?

• Generalising NTMs with alternation

• A hierarchy between NP and PSpace
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