DEDUCTION SYSTEMS

Optimizations for Tableau Procedures

Sebastian Rudolph
Agenda

- **Optimizations**
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations

- **Classification**

- **Summary**
Optimizations

- Naïve implementation not performant enough
 - \mathcal{T}-regel adds one disjunction per axiom to the corresponding node
 - ontologies may contain > 1.000 axioms and tableaux may contain thousands of nodes
Optimizations

• Naïve implementation not performant enough
 – T-regel adds one disjunction per axiom to the corresponding node
 – ontologies may contain > 1.000 axioms and tableaux may contain thousands of nodes

• realistic implementations use many optimizations
 – (Lazy) unfolding
 – Absorbtion
 – Dependency directed backtracking
 – Simplification and Normalization
 – Caching
 – Heuristics
 – …
Optimizations

- Naïve implementation not performant enough
 - T-regel adds one disjunction per axiom to the corresponding node
 - ontologies may contain $> 1,000$ axioms and tableaux may contain thousands of nodes

- realistic implementations use many optimizations
 - (Lazy) unfolding
 - Absorbtion
 - Dependency directed backtracking
 - Simplification and Normalization
 - Caching
 - Heuristics
 - ...
Agenda

- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations

- Classification

- Summary
Unfolding

- \mathcal{T}-rule is not necessary if \mathcal{T} is unfoldable, i.e., every axiom is:
 - definitorial: form $A \sqsubseteq C$ or $A \equiv C$ for A a concept name
 ($A \equiv C$ corresponds to $A \sqsubseteq C$ and $C \sqsubseteq A$)
 - acyclic: C uses A neither directly nor indirectly
 - unique: only one such axiom exists for every concept name A
Unfolding

- \mathcal{T}-rule is not necessary if \mathcal{T} is unfoldable, i.e., every axiom is:
 - definitorial: form $A \sqsubseteq C$ or $A \equiv C$ for A a concept name
 $(A \equiv C$ corresponds to $A \sqsubseteq C$ and $C \sqsubseteq A)$
 - acyclic: C uses A neither directly nor indirectly
 - unique: only one such axiom exists for every concept name A

- If \mathcal{T} is unfoldable, the TBox can be (unfolded) into a concept
Unfolding Example

• We check satisfiability of A w.r.t. the TBox \mathcal{T}

$$\mathcal{T}:$$

$$A \square B \sqcap \exists r.C$$

$$B \equiv C \sqcup D$$

$$C \sqsubseteq \exists r.D$$
Unfolding Example

- We check satisfiability of A w.r.t. the TBox \mathcal{T}

\[
\mathcal{T}:
\begin{align*}
A & \sqsubseteq B \sqcap \exists r.C \\
B & \equiv C \sqcup D \\
C & \sqsubseteq \exists r.D
\end{align*}
\]
Unfolding Example

- We check satisfiability of \(A \) w.r.t. the TBox \(\mathcal{T} \)

\[
\begin{align*}
A \\
\neg A \sqcap B \sqcap \exists r.C
\end{align*}
\]

\(\mathcal{T} \):

\[
\begin{align*}
A &\sqsubseteq B \sqcap \exists r.C \\
B &\equiv C \sqcup D \\
C &\sqsubseteq \exists r.D
\end{align*}
\]
Unfolding Example

• We check satisfiability of A w.r.t. the TBox \mathcal{T}

\[
\begin{align*}
A & \\
\neg A \land B \land \exists r.C & \\
\neg A \land (C \sqcup D) \land \exists r.C & \\
\mathcal{T}: & \\
A \sqsubseteq B \land \exists r.C & \\
B \equiv C \sqcup D & \\
C \sqsubseteq \exists r.D &
\end{align*}
\]
Unfolding Example

- We check satisfiability of A w.r.t. the TBox \mathcal{T}

$$
\begin{align*}
A & \sqsubseteq B \sqcap \exists r.C \\
\sim & \sim A \sqcap B \sqcap \exists r.C \\
\sim & \sim A \sqcap (C \sqcup D) \sqcap \exists r.C \\
\sim & \sim A \sqcap ((C \sqcap \exists r.D) \sqcup D) \sqcap \exists r.(C \sqcap \exists r.D)
\end{align*}
$$

\mathcal{T}:
- $A \sqsubseteq B \sqcap \exists r.C$
- $B \equiv C \sqcup D$
- $C \sqsubseteq \exists r.D$
Unfolding Example

• We check satisfiability of A w.r.t. the TBox \mathcal{T}

$$\mathcal{T}:
\begin{align*}
A & \subseteq B \sqcap \exists r.C \\
A & \sqsupseteq A \sqcap B \sqcap \exists r.C \\
A & \sqsupseteq A \sqcap (C \sqcup D) \sqcap \exists r.C \\
A & \sqsupseteq A \sqcap ((C \sqcap \exists r.D) \sqcup D) \sqcap \exists r.(C \sqcap \exists r.D)
\end{align*}$$

• A is satisfiable w.r.t. \mathcal{T} iff

$$A \sqcap ((C \sqcap \exists r.D) \sqcup D) \sqcap \exists r.(C \sqcap \exists r.D)$$

is satisfiable w.r.t. the empty TBox
Tableau Algorithm Example with Unfolding

We obtain the following contradiction-free tableau for the satisfiability of
\[U = A \cap ((C \cap \exists r.D) \cup D) \cap \exists r.(C \cap \exists r.D): \]

\[
\begin{align*}
L(v_0) &= \{ U, A, (C \cap \exists r.D) \cup D, \\
&\quad \exists r.(C \cap \exists r.D), C \cap \exists r.D, \\
&\quad C, \exists r.D \} \\
L(v_1) &= \{ C \cap \exists r.D, C, \exists r.D \} \\
L(v_2) &= \{ D \} \\
L(v_3) &= \{ D \}
\end{align*}
\]
Tableau Algorithm Example with Unfolding

We obtain the following contradiction-free tableau for the satisfiability of
\[U = A \land ((C \land \exists r.D) \lor D) \land \exists r.(C \land \exists r.D) : \]

\begin{align*}
L(v_0) &= \{ U, A, (C \land \exists r.D) \lor D, \\
&\quad \exists r.(C \land \exists r.D), C \land \exists r.D, \\
&\quad C, \exists r.D \} \\
L(v_1) &= \{ C \land \exists r.D, C, \exists r.D \} \\
L(v_2) &= \{ D \} \\
L(v_3) &= \{ D \}
\end{align*}

Only one disjunctive decision left!
Lazy Unfolding

- computation of NNF together with unfolding may decrease performance, e.g.:
 - satisfiability of $C \sqcap \neg C$ w.r.t. $\mathcal{T} = \{C \sqsubseteq A \sqcap B\}$
 - unfolding: $C \sqcap A \sqcap B \sqcap \neg (C \sqcap A \sqcap B)$
 - NNF + unfolding: $C \sqcap A \sqcap B \sqcap (\neg C \sqcup \neg A \sqcup \neg B)$
Lazy Unfolding

- computation of NNF together with unfolding may decrease performance, e.g.:
 - satisfiability of $C \sqcap \neg C$ w.r.t. $\mathcal{T} = \{C \sqsubseteq A \sqcap B\}$
 - unfolding: $C \sqcap A \sqcap B \sqcap \neg (C \sqcap A \sqcap B)$
 - NNF + unfolding: $C \sqcap A \sqcap B \sqcap (\neg C \sqcup \neg A \sqcup \neg B)$

- better: apply NNF and unfolding if needed, via corresponding tableau rules:
 - $A \equiv C \Rightarrow A \sqsubseteq C$ and $A \sqsupseteq C$

\sqsubseteq-rule: For $v \in V$ such that $A \sqsubseteq C \in \mathcal{T}$, $A \in L(v)$ and $C \notin L(v)$
 let $L(v) := L(v) \cup C$.

\sqsupseteq-rule: For $v \in V$ such that $A \sqsupseteq C \in \mathcal{T}$, $\neg A \in L(v)$ and $\neg C \notin L(v)$
 let $L(v) := L(v) \cup \{\neg C\}$.

\neg-rule: For $v \in V$ such that $\neg C \in L(v)$ and NNF$(\neg C) \notin L(v)$,
 let $L(v) := L(v) \cup \{\text{NNF}(\neg C)\}$.
Agenda

• Optimizations
 – Unfolding
 – Absorption
 – Dependency-Directed Backtracking
 – Further Optimizations

• Classification

• Summary
Absorption

- What if \(\mathcal{T} \) is not unfoldable?
 - Separate \(\mathcal{T} \) into \(\mathcal{T}_u \) (unfoldable part) and \(\mathcal{T}_g \) (GCI s, not unfoldable)
 - \(\mathcal{T}_u \) is treated via \(\sqsubseteq \) - and \(\sqsupseteq \) - rules
 - \(\mathcal{T}_g \) is treated via the \(\mathcal{T} \) - rule

Absorption decreases \(\mathcal{T}_g \) and increases \(\mathcal{T}_u \).

1. Take an axiom from \(\mathcal{T}_g \), e.g., \(A \sqsubseteq B \sqcup \neg C \).
2. Transform the axiom:
 - If \(\mathcal{T}_u \) contains an axiom of the form \(A \equiv D \) (\(A \sqsubseteq D \) and \(D \sqsubseteq A \)), then \(A \sqsubseteq C \sqcup \neg B \) cannot be absorbed; \(A \sqsubseteq C \sqcup \neg B \) remains in \(\mathcal{T}_g \).
3. Otherwise, if \(\mathcal{T}_u \) contains an axiom of the form \(A \sqsubseteq D \), absorb \(A \sqsubseteq C \sqcup \neg B \) resulting in \(A \sqsubseteq D \sqcap \left(C \sqcup \neg B \right) \).
4. Otherwise move \(A \sqsubseteq C \sqcup \neg B \) to \(\mathcal{T}_u \).

- If \(\mathcal{A} \equiv \mathcal{D} \in \mathcal{T}_u \), try rewriting/absorption with other axioms in \(\mathcal{T}_u \).

- Nondeterministic: \(B \sqsubseteq C \sqcup \neg A \) also possible.
Absorption

• What if \(\mathcal{T} \) is not unfoldable?
 – Separate \(\mathcal{T} \) into \(\mathcal{T}_u \) (unfoldable part) and \(\mathcal{T}_g \) (GCIs, not unfoldable)
 – \(\mathcal{T}_u \) is treated via \(\sqsubseteq \) and \(\sqsupseteq \)-rules
 – \(\mathcal{T}_g \) is treated via the \(\mathcal{T} \)-rule

• absorption decreases \(\mathcal{T}_g \) and increases \(\mathcal{T}_u \)
 1. take an axiom from \(\mathcal{T}_g \), e.g., \(A \sqcap B \sqsubseteq C \)
 2. transform the axiom: \(A \sqsubseteq C \sqcup \neg B \)
 3. if \(\mathcal{T}_u \) contains an axiom of the form \(A \equiv D \) \((A \sqsubseteq D \text{ and } D \sqsupseteq A) \),
 then \(A \sqsubseteq C \sqcup \neg B \) cannot be absorbed;
 \(A \sqsubseteq C \sqcup \neg B \) remains in \(\mathcal{T}_g \)
 4. otherwise, if \(\mathcal{T}_u \) contains an axiom of the form \(A \sqsubseteq D \),
 then absorb \(A \sqsubseteq C \sqcup \neg B \) resulting in \(A \sqsubseteq D \sqcap (C \sqcup \neg B) \)
 5. otherwise move \(A \sqsubseteq C \sqcup \neg B \) to \(\mathcal{T}_u \)
Absorption

• What if \mathcal{T} is not unfoldable?
 – Separate \mathcal{T} into \mathcal{T}_u (unfoldable part) and \mathcal{T}_g (GCI, not unfoldable)
 – \mathcal{T}_u is treated via \sqsubseteq- and \sqsupseteq-rules
 – \mathcal{T}_g is treated via the \sqsubseteq-rule

• absorption decreases \mathcal{T}_g and increases \mathcal{T}_u

1. take an axiom from \mathcal{T}_g, e.g., $A \sqcap B \sqsubseteq C$
2. transform the axiom: $A \sqsubseteq C \sqcup \neg B$
3. if \mathcal{T}_u contains an axiom of the form $A \equiv D$ ($A \sqsubseteq D$ and $D \sqsupseteq A$), then $A \sqsubseteq C \sqcup \neg B$ cannot be absorbed; $A \sqsubseteq C \sqcup \neg B$ remains in \mathcal{T}_g
4. otherwise, if \mathcal{T}_u contains an axiom of the form $A \sqsubseteq D$,
 then absorb $A \sqsubseteq C \sqcup \neg B$ resulting in $A \sqsubseteq D \sqcap (C \sqcup \neg B)$
5. otherwise move $A \sqsubseteq C \sqcup \neg B$ to \mathcal{T}_u

• If $A \equiv D \in \mathcal{T}_u$, try rewriting/absorption with other axioms in \mathcal{T}_u
Absorption

- What if \mathcal{T} is not unfoldable?
 - Separate \mathcal{T} into \mathcal{T}_u (unfoldable part) and \mathcal{T}_g (GCIs, not unfoldable)
 - \mathcal{T}_u is treated via \sqsubseteq- and \sqsupseteq-rules
 - \mathcal{T}_g is treated via the \mathcal{T}-rule

- absorption decreases \mathcal{T}_g and increases \mathcal{T}_u
 1. take an axiom from \mathcal{T}_g, e.g., $A \sqcap B \sqsubseteq C$
 2. transform the axiom: $A \sqsubseteq C \sqcup \neg B$
 3. if \mathcal{T}_u contains an axiom of the form $A \equiv D$ (if $A \sqsubseteq D$ and $D \sqsupseteq A$), then $A \sqsubseteq C \sqcup \neg B$ cannot be absorbed; $A \sqsubseteq C \sqcup \neg B$ remains in \mathcal{T}_g
 4. otherwise, if \mathcal{T}_u contains an axiom of the form $A \sqsubseteq D$, then absorb $A \sqsubseteq C \sqcup \neg B$ resulting in $A \sqsubseteq D \sqcap (C \sqcup \neg B)$
 5. otherwise move $A \sqsubseteq C \sqcup \neg B$ to \mathcal{T}_u

- If $A \equiv D \in \mathcal{T}_u$, try rewriting/absorption with other axioms in \mathcal{T}_u

- nondeterministic: $B \sqsubseteq C \sqcup \neg A$ also possible
Agenda

- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let $v \in V$ with $(C_1 \cup D_1) \cap \ldots \cap (C_n \cup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v)$
Dependency-Directed Backtracking

- despite those optimizations, search space often to big
- let $v \in V$ with $(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v)$

\[
\begin{align*}
\n v \quad & \sqcap \text{-rule} \quad L(v) := \quad L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\exists r. \neg A, \forall r. A\}\end{align*}
\]
Dependency-Directed Backtracking

- despite those optimizations, search space often to big
- let $v \in V$ with $(C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \land \forall r. A \in L(v)$

\[
\begin{align*}
\sqcap \text{-rule} & \quad L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\
& \quad \exists r. \neg A, \forall r. A) \} \\
\sqcup \text{-rule} & \quad L(v) := L(v) \cup \{C_1\} \\
\vdots & \quad \vdots \quad \vdots \\
\sqcup \text{-rule} & \quad L(v) := L(v) \cup \{C_n\}
\end{align*}
\]
Dependency-Directed Backtracking

- despite those optimizations, search space often to big
- let $v \in V$ with $(C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r \neg A \land \forall r. A \in L(v)$

\[
\begin{align*}
\sqcap\text{-rule } L(v) & := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\
& \quad \exists r. \neg A, \forall r. A\} \\
\sqcup\text{-rule } L(v) & := L(v) \cup \{C_1\} \\
\vdots & \quad \vdots \\
\sqcup\text{-rule } L(v) & := L(v) \cup \{C_n\} \\
\exists\text{-rule } L(w) & := \{\neg A\}
\end{align*}
\]
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let \(v \in V \) with \((C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v) \)

\[
\begin{align*}
\sqcap \text{-rule} & \quad L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. A\} \\
\sqcup \text{-rule} & \quad L(v) := L(v) \cup \{C_1\} \\
\vdots & \quad \vdots \quad \vdots \quad \vdots \\
\sqcup \text{-rule} & \quad L(v) := L(v) \cup \{C_n\} \\
\exists \text{-rule} & \quad L(w) := \{-A\} \\
\forall \text{-rule} & \quad L(w) := \{-A, A\} \quad \text{clash}
\end{align*}
\]
Dependency-Directed Backtracking

- despite those optimizations, search space often too big
- let $v \in V$ with $(C_1 \cup D_1) \cap \ldots \cap (C_n \cup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v)$

\[
\begin{align*}
\sqcap \text{-rule } L(v) & := \ L(v) \cup \{(C_1 \cup D_1), \ldots, (C_n \cup D_n), \\
& \exists r. \neg A, \forall r. A\} \\
\sqcup \text{-rule } L(v) & := \ L(v) \cup \{C_1\} \\
\vdots & \vdots \vdots \vdots
\end{align*}
\]

\[
\begin{align*}
\sqcup \text{-rule } L(v) & := \ L(v) \cup \{C_n\} \\
\exists \text{-rule } L(w) & := \ \{\neg A\} \\
\forall \text{-rule } L(w) & := \ \{\neg A, A\} \quad \text{clash}
\end{align*}
\]
• despite those optimizations, search space often to big
• let \(v \in V \) with \((C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v) \)

\[
\begin{align*}
\sqcap \text{-rule } & \quad L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. A\} \\
\sqcup \text{-rule } & \quad L(v) := L(v) \cup \{C_1\} \\
\vdots & \quad \vdots \\
\sqcup \text{-rule } & \quad L(v) := L(v) \cup \{C_n\} \\
\exists \text{-rule } & \quad L(v) := \{\neg A\} \\
\forall \text{-rule } & \quad L(v) := \{\neg A, A\} \quad \text{clash} \\
\sqcup \text{-rule } & \quad L(v) := L(v) \cup \{D_n\}
\end{align*}
\]
Dependency-Directed Backtracking

- despite those optimizations, search space often to big
- let \(v \in V \) with \((C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v) \)

\[\square \text{-rule } L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. A\} \]

\[\sqcup \text{-rule } L(v) := L(v) \cup \{C_1\} \]

\[\vdots \quad \vdots \quad \vdots \]

\[\sqcup \text{-rule } L(v) := L(v) \cup \{C_n\} \]

\[\exists \text{-rule } L(w) := \{\neg A\} \]

\[\forall \text{-rule } L(w) := \{\neg A, A\} \text{ clash} \]

\[\sqcup \text{-rule } L(v) := L(v) \cup \{D_n\} \]

\[\exists \text{-rule } L(w) := \{\neg A\} \]
Dependency-Directed Backtracking

- despite those optimizations, search space often to big
- let \(v \in V \) with \((C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v)\)

\[
\begin{align*}
\sqcap \text{-rule} \quad L(v) & := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. A\} \\
\sqcup \text{-rule} \quad L(v) & := L(v) \cup \{C_1\} \\
\vdots & \quad \vdots \quad \vdots \\
\sqcup \text{-rule} \quad L(v) & := L(v) \cup \{C_n\} \\
\exists \text{-rule} \quad L(w) & := \{\neg A\} \\
\forall \text{-rule} \quad L(w) & := \{\neg A, A\} \quad \text{clash} \\
\sqcup \text{-rule} \quad L(v) & := L(v) \cup \{D_n\} \\
\exists \text{-rule} \quad L(w) & := \{\neg A\} \\
\forall \text{-rule} \quad L(w) & := \{\neg A, A\} \quad \text{clash}
\end{align*}
\]
Dependency-Directed Backtracking

- despite those optimizations, search space often to big
- let \(v \in V \) with \((C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v)\)

\[
\begin{align*}
\sqcap \text{-rule } L(v) & := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\
& \quad \exists r. \neg A, \forall r. A\} \\
\sqcup \text{-rule } L(v) & := L(v) \cup \{C_1\} \end{align*}
\]

\[
\begin{align*}
\sqcap \text{-rule } L(v) & := L(v) \cup \{C_n\} \\
\exists \text{-rule } L(w) & := \{-A\} \\
\forall \text{-rule } L(w) & := \{-A, A\} \quad \text{clash} \\
\sqcup \text{-rule } L(v) & := L(v) \cup \{D_n\} \\
\exists \text{-rule } L(w) & := \{-A\} \\
\forall \text{-rule } L(w) & := \{-A, A\} \quad \text{clash} \\
\end{align*}
\]

- exponentially big search space is traversed
Dependency-Directed Backtracking

- goal: recognize bad branching decisions quickly and do not repeat them

\[\text{backjumping works roughly as follows:} \]
- concepts in the node label are tagged with a set of integers (dependency set) allowing to identify the concept’s “origin”
- initially, all concepts are tagged with \(\emptyset \)
- tableau rules combine and extend these tags
- \(\sqcup \)-rule adds the tag \(\{d\} \) to the existing tag, where \(d \) is the \(\sqcup \)-depth (number of \(\sqcup \)-rules applied by now)
- when encountering a contradiction, the labels allow to identify the origin of the concepts causing the contradiction
- jump back to the last relevant application of a \(\sqcup \)-rule

irrelevant part of the search space is not considered
Dependency-Directed Backtracking

- goal: recognize bad branching decisions quickly and do not repeat them
- most frequently used: backjumping
Dependency-Directed Backtracking

• goal: recognize bad branching decisions quickly and do not repeat them
• most frequently used: backjumping
• backjumping works roughly as follows:
 – concepts in the node label are tagged with a set of integers (dependency set) allowing to identify the concept’s “origin”
 – initially, all concepts are tagged with ∅
 – tableau rules combine and extend these tags
 – \(\sqcup\)-rule adds the tag \(\{d\}\) to the existing tag, where \(d\) is the \(\sqcup\)-depth (number of \(\sqcup\)-rules applied by now)
 – when encountering a contradiction, the labels allow to identify the origin of the concepts causing the contradiction
 – jump back to the last relevant application of a \(\sqcup\)-rule
Dependency-Directed Backtracking

- goal: recognize bad branching decisions quickly and do not repeat them
- most frequently used: backjumping
- backjumping works roughly as follows:
 - concepts in the node label are tagged with a set of integers (dependency set) allowing to identify the concept’s “origin”
 - initially, all concepts are tagged with \emptyset
 - tableau rules combine and extend these tags
 - \sqcup-rule adds the tag $\{d\}$ to the existing tag, where d is the \sqcup-depth (number of \sqcup-rules applied by now)
 - when encountering a contradiction, the labels allow to identify the origin of the concepts causing the contradiction
 - jump back to the last relevant application of a \sqcup-rule
- irrelevant part of the search space is not considered
Dependency-Directed Backtracking

Example

\[(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v) \quad \text{tagged with } \emptyset\]
Dependency-Directed Backtracking

Example

\[(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v) \quad \text{tagged with } \emptyset\]

\[v \quad \sqcap \text{-rule} \quad L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. A\} \quad \text{all with } \emptyset\]
Dependency-Directed Backtracking

Example

\[(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v) \quad \text{tagged with } \emptyset\]

\[v \quad \sqcap \text{-rule} \quad L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. A\} \quad \text{all with } \emptyset\]

\[\sqcup \text{-rule} \quad L(v) := L(v) \cup \{C_1\} \quad C_1 \text{ tagged with } \{1\}\]

\[\vdots \quad \vdots \quad \vdots\]

\[\sqcup \text{-rule} \quad L(v) := L(v) \cup \{C_n\} \quad C_n \text{ tagged with } \{n\}\]
Dependency-Directed Backtracking

Example

\[(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v) \quad \text{tagged with } \emptyset\]

\begin{align*}
\text{\textbf{\textless}} & \text{-rule } L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\
& \quad \exists r. \neg A, \forall r. A\}\quad \text{all with } \emptyset \\
\text{\textbf{\textgreater}} & \text{-rule } L(v) := L(v) \cup \{C_1\}\quad \text{C}_1 \text{ tagged with } \{1\} \\
\quad & \quad \vdots \quad \vdots \quad \vdots \\
\text{\textbf{\textless}} & \text{-rule } L(v) := L(v) \cup \{C_n\}\quad \text{C}_n \text{ tagged with } \{n\} \\
\exists & \text{-rule } L(w) := \{\neg A\}\quad A, r \text{ tagged with } \emptyset
\end{align*}

TU Dresden Deduction Systems
Dependency-Directed Backtracking

Example

\[(C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v)\] tagged with \(\emptyset\)

\[
\begin{align*}
\forall \text{-rule} & \quad L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\
& \quad \exists r. \neg A, \forall r. A\} \quad \text{all with } \emptyset
\end{align*}
\]

\[
\begin{align*}
\forall \text{-rule} & \quad L(v) := L(v) \cup \{C_1\} \quad C_1 \text{ tagged with } \{1\}
\end{align*}
\]

\[
\begin{align*}
\forall \text{-rule} & \quad L(v) := L(v) \cup \{C_n\} \quad C_n \text{ tagged with } \{n\}
\end{align*}
\]

\[
\begin{align*}
\exists \text{-rule} & \quad L(w) := \{-A\} \quad A, r \text{ tagged with } \emptyset
\end{align*}
\]

\[
\begin{align*}
\forall \text{-rule} & \quad L(w) := \{-A, A\} \quad \neg A \text{ tagged with mit } \emptyset
\end{align*}
\]
Dependency-Directed Backtracking

Example

\[(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v) \quad \text{tagged with } \emptyset\]

\[v \quad \sqcap \text{-rule } \quad L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. A\} \quad \text{all with } \emptyset\]

\[r \quad \sqcup \text{-rule } \quad L(v) := L(v) \cup \{C_1\} \quad C_1 \text{ tagged with } \{1\}\]

\[w \quad \sqcup \text{-rule } \quad L(v) := L(v) \cup \{C_n\} \quad C_n \text{ tagged with } \{n\}\]

\[\exists \text{-rule } \quad L(w) := \{\neg A\} \quad A, r \text{ tagged with } \emptyset\]

\[\forall \text{-rule } \quad L(w) := \{\neg A, A\} \quad \text{clash} \quad \neg A \text{ tagged with mit } \emptyset\]
Dependency-Directed Backtracking

Example

\[(C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v) \text{ tagged with } \emptyset\]

\[
\begin{align*}
\sqcap \text{-rule} & \quad L(v) := L(v) \cup \{ (C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \\
& \quad \exists r. \neg A, \forall r. A \} \quad \text{all with } \emptyset \\
\sqcup \text{-rule} & \quad L(v) := L(v) \cup \{ C_1 \} \quad C_1 \text{ tagged with } \{ 1 \} \\
& \quad \vdots \quad \vdots \quad \vdots \\
\sqcup \text{-rule} & \quad L(v) := L(v) \cup \{ C_n \} \quad C_n \text{ tagged with } \{ n \} \\
\exists \text{-rule} & \quad L(w) := \{ \neg A \} \quad A, r \text{ tagged with } \emptyset \\
\forall \text{-rule} & \quad L(w) := \{ \neg A, A \} \text{ clash} \quad \neg A \text{ tagged with mit } \emptyset \\
\end{align*}
\]

• \(\text{tag}(A) \cup \text{tag}(\neg A) = \emptyset\)
Dependency-Directed Backtracking

Example

$$(C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \sqcap \exists r. \neg A \sqcap \forall r. A \in L(v) \quad \text{tagged with } \emptyset$$

\[
\begin{align*}
\sqcap \text{-rule} \quad L(v) & := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. A\} \\
& \quad \quad \text{all with } \emptyset \\
\sqcup \text{-rule} \quad L(v) & := L(v) \cup \{C_1\} \quad C_1 \text{ tagged with } \{1\} \\
& \quad \quad \vdots \quad \vdots \quad \vdots \\
\sqcup \text{-rule} \quad L(v) & := L(v) \cup \{C_n\} \quad C_n \text{ tagged with } \{n\} \\
\exists \text{-rule} \quad L(w) & := \{\neg A\} \quad A, r \text{ tagged with } \emptyset \\
\forall \text{-rule} \quad L(w) & := \{\neg A, A\} \quad \text{clash} \quad \neg A \text{ tagged with mit } \emptyset
\end{align*}
\]

- $\text{tag}(A) \cup \text{tag}(\neg A) = \emptyset$
- None of the \sqcup-rules has contributed to the contradiction
Dependency-Directed Backtracking

Example

\[(C_1 \sqcup D_1) \cap \ldots \cap (C_n \sqcup D_n) \cap \exists r. \neg A \cap \forall r. A \in L(v) \] tagged with \(\emptyset\)

\[\sqcap\text{-rule } L(v) := L(v) \cup \{(C_1 \sqcup D_1), \ldots, (C_n \sqcup D_n), \exists r. \neg A, \forall r. A\}\] all with \(\emptyset\)

\[\sqcup\text{-rule } L(v) := L(v) \cup \{C_1\} \] \(C_1\) tagged with \(\{1\}\)

\[\vdots \quad \vdots \quad \vdots \quad \vdots\]

\[\sqcup\text{-rule } L(v) := L(v) \cup \{C_n\} \] \(C_n\) tagged with \(\{n\}\)

\[\exists\text{-rule } L(w) := \{\neg A\} \] \(A, r\) tagged with \(\emptyset\)

\[\forall\text{-rule } L(w) := \{\neg A, A\}\] clash \(\neg A\) tagged with mit \(\emptyset\)

- \(\text{tag}(A) \cup \text{tag}(\neg A) = \emptyset\)
- None of the \(\sqcup\)-rules has contributed to the cotractiction
- Output false (unsatisfiable)
Agenda

- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations

- Classification

- Summary
Further Optimizations

- **Simplification and Normalization**
 - quick recognition of trivial contradictions
 - normalization, z.B., $A \cap (B \cap C) \equiv \cap\{A, B, C\}$, $\forall r. C \equiv \neg\exists r. \neg C$
 - simplification, e.g., $\cap\{A, \ldots, \neg A, \ldots\} \equiv \bot$, $\exists r. \bot \equiv \bot$, $\forall r. \top \equiv \top$
Further Optimizations

- **Simplification and Normalization**
 - quick recognition of trivial contradictions
 - normalization, z.B., $A \land (B \land C) \equiv \land\{A, B, C\}$, $\forall r.C \equiv \neg\exists r.\neg C$
 - simplification, e.g., $\land\{A, \ldots, \neg A, \ldots\} \equiv \bot$, $\exists r.\bot \equiv \bot$, $\forall r.\top \equiv \top$

- **caching**
 - prevents the repeated construction of equal subtrees
 - $L(v)$ initialized with $\{C_1, \ldots, C_n\}$ via \exists- and \forall-rules
 - check if satisfiability status is cached, otherwise
 - check satisfiability of $C_1 \land \ldots \land C_n$, update the cache
Further Optimizations

- Simplification and Normalization
 - quick recognition of trivial contradictions
 - normalization, z.B., $A \land (B \land C) \equiv \land\{A, B, C\}$, $\forall r. C \equiv \neg\exists r. \neg C$
 - simplification, e.g., $\land\{A, \ldots, \neg A, \ldots\} \equiv \bot$, $\exists r. \bot \equiv \bot$, $\forall r. \top \equiv \top$

- caching
 - prevents the repeated construction of equal subtrees
 - $L(v)$ initialized with $\{C_1, \ldots, C_n\}$ via \exists- and \forall-rules
 - check if satisfiability status is cached, otherwise
 - check satisfiability of $C_1 \land \ldots \land C_n$, update the cache

- heuristics
 - try to find good orders for the “don’t care” nondeterminism
 - e.g., \land, \forall, \lor, \exists
Further Optimizations

- **Simplification and Normalization**
 - quick recognition of trivial contradictions
 - normalization, z.B., $A \cap (B \cap C) \equiv \cap \{A, B, C\}$, $\forall r. C \equiv \neg \exists r. \neg C$
 - simplification, e.g., $\cap \{A, \ldots, \neg A, \ldots\} \equiv \bot$, $\exists r. \bot \equiv \bot$, $\forall r. \top \equiv \top$

- **caching**
 - prevents the repeated construction of equal subtrees
 - $L(v)$ initialized with $\{C_1, \ldots, C_n\}$ via \exists- and \forall-rules
 - check if satisfiability status is cached, otherwise
 - check satisfiability of $C_1 \cap \ldots \cap C_n$, update the cache

- **heuristics**
 - try to find good orders for the “don’t care” nondeterminism
 - e.g., \cap, \forall, \sqcup, \exists

- ...
Agenda

• Optimizations
 – Unfolding
 – Absorption
 – Dependency-Directed Backtracking
 – Further Optimizations

• Classification

• Summary
Optimizing Classification

One of the most wide-spread tasks for automated reasoning is classification

- compute all subclass relationships between atomic concepts in \mathcal{T}
Optimizing Classification

One of the most wide-spread tasks for automated reasoning is classification

- compute all subclass relationships between atomic concepts in \mathcal{T}
- check for $\mathcal{T} \models C \sqsubseteq D$ can be reduced to checking satisfiability of \mathcal{T}
 together with the ABox $(C \sqcap \neg D)(a)$ (or, equivalently: $C(a), (\neg D)(a)$)
 - \Rightarrow if \top is satisfiable: subsumption does not hold (as we have constructed a counter-model)
 - \Rightarrow if \top is unsatisfiable: subsumption holds (no counter-model exists)
Optimizing Classification

One of the most wide-spread tasks for automated reasoning is classification

• compute all subclass relationships between atomic concepts in \mathcal{T}

• check for $\mathcal{T} \models C \sqsubseteq D$ can be reduced to checking satisfiability of \mathcal{T}
 together with the ABox $(C \sqcap \neg D)(a)$ (or, equivalently: $C(a), (\neg D)(a)$)
 \leadsto if \top is satisfiable: subsumption does not hold (as we have constructed a counter-model)
 \leadsto if \top is unsatisfiable: subsumption holds (no counter-model exists)

• naïve approach needs n^2 subsumption checks for n concept names

• normally cached in the concept hierarchy graph
Concept Hierarchy Graph

- ⊤
 - Disease
 - JuvDisease
 - Arthritis
 - JuvArthritis
 - Joint
 - JointDisease

TU Dresden Deduction Systems
Optimizing Classification

most wide-spread technique is called enhanced traversal
Optimizing Classification

most wide-spread technique is called enhanced traversal

• hierarchy is created incrementally by introducing concept after concept
Optimizing Classification

most wide-spread technique is called enhanced traversal

- hierarchy is created incrementally by introducing concept after concept
- top-down phase: recognize direct superconcepts
- bottom-up phase: recognize direct subconcepts

\[
\text{If } A \sqsubseteq B \text{ and } C \sqsubseteq D \text{ hold, then } B \sqsubseteq C \implies A \sqsubseteq D
\]

\[
A \not\sqsubseteq D \implies B \not\sqsubseteq C
\]
Optimizing Classification

most wide-spread technique is called enhanced traversal

- hierarchy is created incrementally by introducing concept after concept
- top-down phase: recognize direct superconcepts
- bottom-up phase: recognize direct subconcepts
- transitivity of \sqsubseteq used to save checks

If $A \sqsubseteq B$ and $C \sqsubseteq D$ hold,
then $B \sqsubseteq C \rightarrow A \sqsubseteq D$
and $A \not\sqsubseteq D \rightarrow B \not\sqsubseteq C$
Enhanced Traversal Example

already created hierarchy:

- \top
- **Disease**
 - **JuvDisease**
 - **JointDisease**
 - **Arthritis**
 - **Joint**

Goal: insertion of JointDisease

Top-Down Phase:

- **JointDisease** \sqsubseteq **Disease**
- **JointDisease** $\not\sqsubseteq$ **JuvDisease**
- **JointDisease** $\not\sqsubseteq$ **Arthritis**
- **JointDisease** $\not\sqsubseteq$ **Joint**

Bottom-Up Phase:

- **JuvArthritis** \sqsubseteq **JointDisease**
- **JuvDisease** $\not\sqsubseteq$ **JointDisease**
- **Arthritis** \sqsubseteq **JointDisease**

TU Dresden Deduction Systems
Enhanced Traversal Example

already created hierarchy:

\[\top \rightarrow \text{Disease} \rightarrow \text{Joint} \rightarrow \text{JuvDisease} \rightarrow \text{JointDisease} \rightarrow \text{Arthritis} \rightarrow \text{JuvArthritis} \] is a subgraph of \[\top \rightarrow \text{Disease} \rightarrow \text{Joint} \rightarrow \text{JuvDisease} \rightarrow \text{JointDisease} \rightarrow \text{Arthritis} \rightarrow \text{JuvArthritis} \]

Goal: insertion of JointDisease

Top-Down Phase:
- JointDisease \(\subseteq \top \text{ Disease} \)

Bottom-Up Phase:
- JuvArthritis \(\subseteq \text{JointDisease} \)
- JuvDisease \(\nsubseteq \text{JointDisease} \)
- Arthritis \(\subseteq \text{JointDisease} \)
already created hierarchy:

\[
\begin{align*}
\top & \quad \Downarrow \quad \text{Disease} \\
\mid & \quad \Downarrow \\
\quad \Downarrow \quad \text{JointDisease} & \quad \text{Joint} \\
\quad \Downarrow & \quad \text{JuvDisease} \\
\quad \Downarrow & \quad \text{Arthritis} \\
\quad \Downarrow & \quad \text{JuvArthritis} \\
\end{align*}
\]

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease \sqsubseteq Disease
- JointDisease $\sqsubseteq \ ?$ JuvDisease

Bottom-Up Phase:

- JuvArthritis \sqsubseteq JointDisease
- JuvDisease \nless JointDisease
- Arthritis \sqsubseteq JointDisease
Enhanced Traversal Example

already created hierarchy:

```
⊤
├── Disease
│   ├── JuvDisease
│   │   └── Arthritis
│   └── JointDisease
│       └── Joint
│           └── Arthritis
│                   └── JuvArthritis
└── JointDisease
```

Goal: insertion of JointDisease

Top-Down Phase:
- JointDisease ⊑ Disease
- JointDisease ⊑ Arthritis
- JointDisease ⊑ ? Arthritis

Bottom-Up Phase:
- JuvArthritis ⊑ JointDisease
- JuvDisease ⊑ JointDisease
- Arthritis ⊑ JointDisease
Enhanced Traversal Example

already created hierarchy:

Goal: insertion of JointDisease

Top-Down Phase:
- JointDisease \sqsupseteq Disease
- JointDisease $\not\sqsubseteq$ JuvDisease
- JointDisease $\not\sqsubseteq$ Arthritis
- JointDisease $\sqsubseteq?\ Joint$

Bottom-Up Phase:
Enhanced Traversal Example

already created hierarchy:

```
⊤
  ┌─ Disease
  │   └─ Joint
  │       │
  │       └─ JointDisease
  │           └─ JuvDisease
  │               └─ Arthritis
  │                   └─ JuvArthritis
```

Goal: insertion of JointDisease

Top-Down Phase:
- JointDisease ⊑ Disease
- JointDisease ⊑ JuvDisease
- JointDisease ⊑ Arthritis
- JointDisease ⊑ Joint

Bottom-Up Phase:
- JuvArthritis ⊑? JointDisease
Enhanced Traversal Example

already created hierarchy:

\[
\begin{array}{c}
\top \\
\downarrow \\
\text{Disease} \\
\downarrow \\
\text{JuvDisease} \\
\downarrow \\
\text{JointDisease} \\
\downarrow \\
\text{Arthritis} \\
\downarrow \\
\text{JuvArthritis} \\
\end{array}
\]

Goal: insertion of JointDisease

Top-Down Phase:
- JointDisease \sqsubseteq Disease
- JointDisease $\not\sqsubseteq$ JuvDisease
- JointDisease $\not\sqsubseteq$ Arthritis
- JointDisease $\not\sqsubseteq$ Joint

Bottom-Up Phase:
- JuvArthritis \sqsubseteq JointDisease
- JuvDisease \sqsubseteq? JointDisease
Enhanced Traversal Example

already created hierarchy:

\[
\begin{array}{c}
\top \\
\text{Disease} \\
\text{Joint} \\
\text{JuvDisease} \\
\text{JointDisease} \\
\text{Arthritis} \\
\text{JuvArthritis} \\
\text{Joint} \\
\end{array}
\]

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease ⊑ Disease
- JointDisease ⊉ JuvDisease
- JointDisease ⊉ Arthritis
- JointDisease ⊉ Joint

Bottom-Up Phase:

- JuvArthritis ⊑ JointDisease
- JuvDisease ⊉ JointDisease
- Arthritis ⊉ JointDisease
Enhanced Traversal Example

already created hierarchy:

\[
\begin{array}{c}
\top \\
\downarrow \\
\text{Disease} \\
\downarrow \\
\text{JuvDisease} \\
\downarrow \\
\text{JointDisease} \\
\downarrow \\
\text{Arthritis} \\
\downarrow \\
\text{JuvArthritis}
\end{array}
\]

Goal: insertion of JointDisease

Top-Down Phase:

- JointDisease ⊑ Disease
- JointDisease ⊏ JuvDisease
- JointDisease ⊏ Arthritis
- JointDisease ⊏ Joint

Bottom-Up Phase:

- JuvArthritis ⊏ JointDisease
- JuvDisease ⊏ JointDisease
- Arthritis ⊏ JointDisease

TU Dresden Deduction Systems
Agenda

- Optimizations
 - Unfolding
 - Absorption
 - Dependency-Directed Backtracking
 - Further Optimizations
- Classification
- Summary
Summary

- we have a tableau algorithm for $ALCIF$ knowledge bases
 - ABox treated like for ALC
 - number restrictions are treated similar to functionality and existential quantifiers
- termination via cycle detection
 - becomes harder as the logic becomes more expressive
- naive tableau algorithm not sufficiently performant
- diverse optimizations improve average case
- specific methods for classification
 - enhanced traversal
- tableaux algorithms or variants modifications thereof are the basis of OWL reasoners